用户名: 密码: 验证码:
复合材料构件数字化制造若干支撑技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合材料构件以其高比强度、高比模量、可设计性、耐热、耐腐蚀、耐疲劳、隐身性好等独特性能而日益受到各行各业的高度重视,并在汽车、兵器、电子、航空航天等领域得到越来越广泛应用。复合材料的研究水平和应用程度是一个国家科技发展水平的重要体现,尤其在航空工业,各种先进的飞机无不与先进的复合材料技术紧密联系在一起。
     为满足日益提高的飞机复合材料构件生产制造的要求,迫切需要全面应用数字化技术,改造现有的生产制造方式和流程,逐步实现复合材料构件设计、制造的数字化和一体化。本文围绕复合材料构件数字化制造的具体需求,研究数字化制造过程中的若干关键支撑技术,包括复合材料构件铺层曲面的展开预处理、复合材料构件铺层曲面的优化展开、复合材料构件模具材料的智能选择以及复合材料构件工装零组件的快速装配等,所取得的主要成果如下:
     针对复合材料构件铺叠成型中预浸料的铺层展开需要,研究了曲面三角化、区域划分、剪口等曲面展开预处理技术。提出了一种基于离散高斯曲率的曲面区域划分方法,可有效实现用于铺层曲面展开的曲面区域划分。研究并实现了曲面自适应曲面剪口算法,该算法将曲面上高斯曲率大于用户所给阈值的点作为剪口起始点,再利用最短路径生成算法生成剪口路径,该算法可实现全封闭、单边界、双边界、多边界等类型曲面的自适应剪口。根据复合材料构件铺层曲面展开的实际需求,本文还提出了一种交互式曲面剪口算法,根据用户指定的剪口路径关键点,算法可生成符合用户需求的剪口路径。为了提高材料的下料效率和利用率,简化后续的排样工作,进一步提出了一种剪口路径优化算法,可有效消除锯齿状的剪口路径,实现剪口路径的平直化。
     提出了一种以中心三角片为基三角片的“涟漪式”曲面展开方法,该方法能快速获得曲面的初始展开,有效减少累积误差。在获得曲面初始展开的基础上,提出了一种改进的基于弹簧-质点模型的曲面优化展开算法,算法的改进主要体现在以下几个方面:自适应时间步长的应用提高了算法的速度和稳定性;通过对模型中各质点惩罚力的计算,实现了翻转三角片的整体调整;算法还综合利用初速度和忽略初速度两种方法所具有的优点,使得展开过程中翻转三角片的快速调整、迭代的快速收敛等关键问题得到了较为圆满的解决。该算法能够快速获得网格数量较大的复杂曲面的优化展开,有效消除初始展开及优化过程中出现的翻转三角片,提高了复杂铺层曲面的展开质量。
     提出了一种基于网格边的复杂曲面优化展开的新方法。该方法以曲面三角网格中各网格边长为优化变量,以展开前后网格边长误差最小为优化目标,以网格中各内部点均可展为约束条件,并采用牛顿法和矩阵分块等方法对该优化问题进行求解,构造出与原始曲面网格边长误差最小的可展曲面,并对构造出的可展曲面用“涟漪式”展开方法进行展开,从而实现复杂曲面的优化展开。该方法具有稳定、收敛速度快、展开精度高、展开操作简单等优点,可应用于网格数量较小的复杂铺层曲面的优化展开。
     设计复合材料构件铺叠成型模具时,模具材料的选择至关重要。在分析研究复合材料构件模具材料选择的知识和经验的基础上,本文提出了一种模具材料选择模糊决策方法,该方法运用加权多因素模糊模式识别技术,同时结合基于规则的推理(RBR)技术和权重动态调整技术,实现了具有一定自适应功能的复合材料构件模具材料的模糊决策。
     针对复合材料构件工装快速装配的要求,提出了“批装配”的概念,解决了“批装配”实现过程中装配特征的定义、零件实例化、实时预览等关键技术,实现了螺栓联接、螺钉联接、销联接等零组件的快速装配设计,大大减轻了设计人员的装配设计工作,提高了装配设计的效率。在对当前典型工装组件库中的实体模型、零组件参数表、组件的预览方法、组件实例化方法等进行分析研究的基础上,提出了组件库建库工具的总体框架,并在CATIA上开发了该组件建库工具,实现了组件的建立、查询、预览、调用以及主要参数的显示等功能。
Composite components have many inimitable performances such as high specific strength, high specific stiffness, designable, heat-resistant, corrosion-resistant, fatigue resistant and good stealthy, so they are being given more and more attention in many fields and being applied more and more widely in many domains including automobile, weapon, electron, aviation, space and so on. To some degree, the research level and application level of composite material reflect the science and technology developing level of a country. Especially in aviation industry, almost every advanced aircraft is closely related to sophisticated material technologies.
     To meet the improving manufacturing requirement of composite components on aircrafts, it is urgent to apply digital technologies and improve the current manufacturing mode and manufacturing process. Digitalization and integration of designing and manufacturing of composite components should be realized gradually. Centring on digital manufacturing of composite components, this thesis dedicated its research to several support technologies in digital manufacturing of composite components. Support technologies studied in this thesis include pretreatment processing of curved surface flattening, optimal flattening of complex ply surfaces on composite components, intelligent decision-making for composite component mold material, rapid assembly designing for parts and components of composite components tools, and so on. The main contents and contributions of the thesis are as follows:
     Aiming at the demands of ply surface flattening of prepreg in ply forming of composite components, some pretreatment methods of surface flattening such as triangulating, dividing, and cutting are studied. A method of surface dividing based on mesh discrete Gaussian curvatures is given. By the method, effect surface dividing results for ply surface flattening can be obtained. An adaptive method of creating cutting path is studied and realized, it takes those points whose Gaussian curvature is larger than the given threshold as start points on cutting paths and the whole cutting paths can be acquired with the shortest path generating algorithm. The adaptive method can accomplish cutting tasks on closed surfaces, one boundary surfaces, two boundaries surfaces, and multi-boundaries surfaces. To meet the requirements of flattening ply surfaces on composite components, an interactive cutting method is also given. By some key path points appointed interactively by users, it can create cutting path according to the user’s demands. For improving material utilization ratio and cutting efficiency, and simplifying the subsequent packing work, a cutting path optimization algorithm is further brought forward, and it can effectively eliminate the jagged cutting paths and make the cutting paths straight and smooth.
     A ripple-style flattening method which uses the center-triangle as the base triangle is presented. By the method, an initial flattening with less cumulative error can be rapidly obtained. Based on the initial flattening results, an improved algorithm for surface optimal flattening based on spring-mass model is put forward. The main improvements of the algorithm are as follows: firstly, adaptive time-step improves the speed and stability of current algorithm; secondly, each overlapping region can be integrally adjusted through calculating the penalty forces of each mass in the model; lastly, both with and without the initial velocity being taken into account, the algorithm combines the advantages of the two cases, thus some key problems such as rapid adjusting overlapping region during optimal flattening processing and rapid convergence of optimal iteration can be solved satisfactorily. Using above algorithm, optimal flattenging results of complex ply surfaces with mass triangular grids can be rapidly attained and overlapping triangles brought by initial flattening and optimization process can be effectively eliminated, thus the quality of complex ply surfaces flattening is enhanced.
     A novel Edge-based Flattening is presented for optimally flatteing complex surface. In the optimal flattening model, length of each mesh edge is selected as optimization variables, and the error of edge-lengths between the original mesh and the flattened mesh is selected as objective function, and each internal point of the mesh being developable is selected as optimization constrain. By Newton’s Method and matrix blocking technologies, the optimization problem can be solved effectively, and a developable surface which has the minimum edge-length error can be constructed. The ripple-style flattening method can be used to flatten the developable surface, thus the optimal flattening result of the original surface is obtained. Through above method, all kinds of complex ply surfaces with small quantity of triangular grids can be flattened stably, quickly and accurately, and the flattening operation can be finished more simply.
     The selection of materials for ply molds is very important during designing of ply molds. Based on the study of the knowledge and experience of composite components mold materials, a fuzzy decision-making method for selecting composite component mold materials is presented. Using technologies of fuzzy pattern recognition with weights, technologies of RBR and technologies of dynamic adjusting weights, the method has possessed some self adapting abilities. The decision-making method can commendably provide rapid and intelligent decision-making for mold materials of composite component.
     Aiming at the demands of rapid assembly design for parts and components of tools for composite components, the concept of Batch-Assembly is put forward, and several key technologies related to Batch-Assembly, such as the definition of assembly features, instantiation of parts and components and real time preview, are resolved. The rapid assembly design for bolt connection, screw connection, pin connection, and so on, is implemented by Batch-Assembly. It improves the efficiency of assembly design and lightens the labor of assembly designing considerably. Based on the analysis and research of entity-modelings in current component library of tools, parametric tables of parts and components, the method of component preview, and the method of component instantiation, a general frame for constructing component library is put forward, and tools for establishing the library, including querying components in the library, calling components from the library, previewing components, and showing main parameters of components, are designed and developed based on CATIA.
引文
[1]张祝基.打造空中巨无霸——空客A380开始总装侧记.人民日报, 2004年5月10日,第七版
    [2]苏宁.梦想成真——记首架波音787成功下线[J].中国民用航空, 2007, 80(8): 42-43
    [3]李薇,杨楠楠,高大伟.数字化技术在复合材料构件研制中的应用与研究[J].航空制造技术, 2006, (3): 32-37
    [4]益小苏.先进复合材料技术研究与发展[M].北京:国防工业出版社, 2006
    [5]席平.三维曲面的几何展开[J].计算机学报, 1997, 20(4): 315-322
    [6] Hoschek J. Approximation of surfaces of revolution by developable surfaces [J]. Computer-Aided Design, 1998, 30(10): 757-763
    [7] Shimada T, Tada Y. Flattening of curved surface using finite element method in computer-aided optimum design of structure [M]. London: Springer, Verlag, 1989
    [8] Parida L, Mudur S P. Constraint-satisfying Plannar Flattening of Complex Surface [J]. Computer-Aided Design, 1993, 25(4): 225-232
    [9] Chen H Y, Lee I K. On surface approximation using developable surfaces [J]. Graphical Models and Image Processing, 1999, 61(2): 110-124
    [10] Elber G. Model fabrication using surface layout projection [J]. Computer-Aided Design, 1995, 27(4): 283-291
    [11]陈动人,王国瑾.基于伪直母线的复杂曲面自适应分片与展开[J].软件学报, 2003, 14(3): 660-665
    [12]刘胜兰.逆向工程中自由曲面与规则曲面重建关键技术研究[博士学位论文].南京:南京航空航天大学, 2004
    [13] Wang C L, Wang Y, Tang K, et al. Reduce the stretch in surface flattening by finding cutting paths to the surface boundary [J]. Computer-Aided Design, 2004, 36(8): 665-677
    [14]李基拓,陆国栋,张东亮.基于切割路径树优化的三角化网格曲面自动切割[J].浙江大学学报(工学版), 2006, 40(8): 1320-1326
    [15]王恒,谢步瀛.膜结构裁剪及展开的修正二次测地线法[J].东华大学学报(自然科学版), 2005, 31(4): 112-114
    [16] Azariadis P N, Aspragathos N A. Geodesic curvature preservation in surface fattening through constrained global optimization [J]. Computer-Aided Design, 2001, 33( 8): 581-591
    [17] Zhan F B. Three Fastest Shortest Path Algorithms on Real Road Networks [J]. Journal of Geographic Information and Decision Analysis, 1997, 1(1): 69-82
    [18]张丽艳,吴熹.三角网格模型上任意两点间的近似最短路径算法研究[J].计算机辅助设计与图形学学报, 2003, 15(5): 592-597
    [19]吴熹.逆向工程中区域划分技术研究[硕士学位论文].南京:南京航空航天大学, 2003
    [20] Kanai T, Suzuki H. Approximate shortest path on a polyhedral surface and its applications [J]. Computer-Aided Design, 2001, 33(11): 801-811
    [21] Chen J, Han Y. Shortest path on the polyhedron [C]. Proceedings of the 6th ACM Symposium on Computer Geometry, Berkley, California, 1990: 360-369
    [22] Manning J R. Computerized pattern cutting [J]. Computer-Aided Design, 1980, 12(1): 43-47
    [23]张玉峰.裤衩型钢煤斗曲面展开图的计算机自动生成[J].工程图学学报, 2005, (4): 156-160
    [24]陈靖芯,徐晶,李红,等.曲面展开技术的研究及其应用[J].扬州大学学报, 2003, 6(3): 54-57
    [25] Floater M S, Hormann K. Surface parameterization: a tutorial and survey [M]. Advances in Multiresolution for Geometric Modelling. Dodgson N, Floater M, Sabin M: Heidelberg: Springer-Verlag, 2005, 157-186
    [26] Sheffer A, Sturler E. Parameterization of Faceted Surfaces for Meshing using Angle-Based Flattening [J]. Engineering with Computers, 2001, 17(3): 326-337
    [27] Bennis C, Vezien J M, Iglesias G. Piecewise Surface Flattening for Non-Distorted Texture Mapping [J]. Computer Graphics, 1991, 25(4): 237-246
    [28]张贤杰.复杂曲面优化展开技术研究[硕士学位论文].西安:西北工业大学, 2004
    [29]苏步清,华宣积,忻元龙.使用微分几何引论[M].北京:科学出版社, 1998.9
    [30] Sheffer A, Levy B, Mogilnitsky M, et al. ABF++: Fast and Robust Angle Based Flattening [J]. ACM Transactions on Graphics (TOG) 2005, 24(2): 311-330
    [31] Wang C L, Tang K. Achieving developability of a polygonal surface by minimum deformation: a study of global and local optimization approaches [J]. The Visual Computer: International Journal of Computer Graphics, 2004, 20(11): 521-539
    [32] Hinds B K, McCartney J, Woods G. Pattern development for 3D surfaces [J]. Computer-Aided Design, 1991, 23(8): 583-592
    [33]杨继新,刘健,肖正扬,等.复杂曲面的可展化及其展开方法[J].机械科学与技术, 2001, 20(4): 520-521
    [34]席平.复杂类薄板件的二维展开[J].中国机械工程, 1997, 8(4): 34-36
    [35]席平,张珩,熊歆斌,等.不规则压延件展开毛料的几何计算法[J].工程图学学报, 1998, (3): 94-100
    [36] Azariadis P N, Aspragathos N A. Design of plane developments of doubly curved surfaces [J]. Computer-Aided Design, 1997, 29(10): 675-665
    [37] Azariadis P N, Aspragathos N A. On using planar developments to perform texture mapping on arbitrarily curved surfaces [J]. Computers & Graphics, 2000, 24(4): 539-554
    [38]毛昕.曲面片的可展度及其最佳展开基点[J].工程图学学报, 1998, (2): 1-11
    [39]毛昕.曲面片的可展性能及其应用[J].工程图学学报, 2002, (2): 133-138
    [40] Cho W, Patrikalakis N M, Peraire J. Approximate development of trimmed patches for surface tessellation [J]. Computer-Aided Design, 1998, 30(14): 1077-1087
    [41] Shimada T, Tada Y. Approximate Transformation of An Arbitrary Curved Surfaces Into A Plane Using Dynamic Programming [J]. Computer-Aided Design, 1991, 23(2): 153-159
    [42] Liu F, Sowerby R, Chen X, et al. The development of near-net shaped blanks for deep drawing operations [C]. Proceedings of 28th Int. MATADOR Conf, Macmillan, 1990: 347
    [43] Chen X, Sowerby R. Blank development and the prediction of earing in cup drawing [J]. International Journal of Mechanical Sciences, 1996, 38(5): 509-516
    [44] McCartney J, Hinds B K, Seow B L, et al. An energy based model for the flattening of woven fabrics [J]. Journal of Materials Processing Technology, 2000, 107(1): 312-318
    [45] McCartney J, Hinds B K, Seow B L. The flattening of triangulated surfaces incorporating darts and gussets [J]. Computer-Aided Design, 1999, 31(1): 249-260
    [46] Carignan M, Yang Y, Thalmann N M. Dressing Animated Synthetic Actors with Complex Deformable Clothes [J]. Computer Graphics, 1992, 26(2): 99-104
    [47]徐国艳,施法中.板料冲压成形毛料计算方法研究进展[J].锻压技术, 2001, 26(4): 14-16
    [48]徐国艳,施法中.有限元反向法计算筒形件毛料形状[J].塑性工程学报, 2002, 9(2): 42-45
    [49]徐国艳,施法中.板料冲压成形盒形件的毛料计算[J].中国机械工程, 2003, 14(9): 788-790
    [50] Yu G X, Patrikalakis N M. Optimal development of doubly curved surfaces [J]. Computer Aided Geometric Design, 2000, 17(6): 545-577
    [51]张其林,张莉,罗晓群.任意空间曲面近似展开成平面的增量有限元算法[J].计算机力学学报, 2001, 18(4): 498-500
    [52] Zhang Q L, Luo X Q. Finite element method for developing arbitrary surfaces to flattened forms [J]. Finite Elements in Analysis and Design, 2003, 39(10:): 977-984
    [53]樊劲,袁铭辉.基于弹簧质点模型的二维/三维映射算[J].软件学报, 1999, 10(2): 140-148
    [54] Fan J, Wang Q F, Chen S F, et al. A spring-mass model-based approach for warping cloth patterns on 3D objects [J]. The Journal of Visualization and Computer Animation, 1998, 9(4): 215-227
    [55]王弘,王昌凌.基于能量模型的曲面展开通用算法[J].计算机辅助设计与图形学学报, 2001, 13(6): 556-560
    [56] Wang C L, Smith S F, Yuen M F. Surface flattening based on energy model [J]. Computer-Aided Design, 2002, 34(11): 823-833
    [57]王弘,王昌凌.基于物理模型的参数化曲面展开[J].华中理工大学学报, 2000, 28(3): 10-12
    [58] Li J T, Zhang D L, Lu G D, et al. Flattening triangulated surfaces using a mass-spring model [J]. International Journal of Advanced Manufacturing Technology, 2005, 25(1-2): 108-117
    [59]毛国栋,孙炳楠,徐浩祥.基于弹簧-质点系统的薄膜结构曲面展开算法[J].浙江大学学报(工学版), 2005, 39(8): 1238-1242
    [60]毛国栋.索膜结构设计方法研究[博士学位论文].杭州:浙江大学, 2004
    [61] Azariadisa P N, Nearchoua A C, Aspragathos N A. An evolutionary algorithm for generating planar developments of arbitrarily curved surfaces [J]. Computers in Industry, 2002, 47(3): 357-368
    [62]王俊彪,张贤杰.基于单元等变形的复杂曲面展开算法研究[J].机械科学与技术, 2004, 23(4): 447-449
    [63]张贤杰,王俊彪,杨海成.基于单元变形能的复杂曲面优化展开算法研究[J].西北工业大学学报, 2006, 24(270-274):
    [64] Ball N R, Sargent P M, Lge D O. Genetic algorithm representation for laminate Layups [J]. Artificial Intelligence in Engineering, 1993, 8(2): 99-108
    [65] Riche R L, Haftka R T. Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm [J]. AIAA Journal, 1995, 31(5): 951-956
    [66] Nagendra S, Haftka R T, Gurdal Z. Optimization of laminate stacking sequence with stability and strain constraints [J]. AIAA Journal, 1992, 30(8): 2132-2137
    [67] CallaHan K J, Weeks G E. Optimum design of composite laminates using genetic algorithms [J]. Composites Engineering, 1992, 2(3): 149-160.
    [68] Haftka R T. Stacking-sequence optimization for buckling of laminated plates by integer programming [J]. AIAA Journal, 1992, 30(3): 814-819
    [69]修英姝,崔德刚.复合材料层合板稳定性的铺层优化设计[J].工程力学, 2005, 22(6): 212-216
    [70] Yang J M, Chou T W. Fiber inclination model of three dimensional textile structural composites [J]. Journal of Composites Materials, 1986, 20(5): 472-484
    [71] Kalidindi S R, Abusafieh A. Longitudinal and transverse module and strength of low angel 3-D braided composites [J]. Journal of Composite Materials, 1996, 30(8): 885-905
    [72] Sun H Y, Qiao X. Prediction of the mechanical properties of three-dimensionally braided composites [J]. Composites Science and Technology, 1997, 57(6): 623-629
    [73] Wu D L. Three-cell model and 5D braided structural composites [J]. Composites Science and Technology, 1996, 56(3): 225-233
    [74]刘振国,陆萌,麦汉超,等.三维四向编织复合材料弹性模量数值预报[J].北京航空航天大学学报, 2000, 26(2): 182-185
    [75] LeeL J, Young W B, Lin R J. Mold filling and cure modeling of RTM and SRIM [J]. Composite Structures, 1994, (27): 109-120
    [76] SUN Xiudong, LI Shoujie, LI Liang, et al. Mold filling and curing analysis in vacuum-assisted resin transfer molding-scrimp [C]. Proceedings of NSF Design and Manufacturing Grantees Conference '99, California, 1999
    [77] Poe C C J, Dexter H B, Raju I S, A review of NASA textile composites research, in AIAA Paper No 97-1321. 1997.
    [78] Master J E, Portanowa M A, Standard test methods for textile composites, in NASACR-4751. 1997.
    [79]梁志勇,段跃新,尹明仁,等.复合材料RTM制造工艺计算机模拟分析研究[J].航空学报, 2000, 21(增刊): 66-71
    [80] Cohen D. Influence of filament winding parameters on composite vessel quality and strength [J]. Composites: Part A, 1997, 28A(3): 1035-1047
    [81] Mertiny P, Ellyin F. Influence of the filament winding tension on physical and mechanical properties of reinforced composites [J]. Composites: Part A, 2002, 33(12): 1615-1622
    [82] Banerjee A, Sun L, Mantell S C, et al. Model and experimental study of fiber motion in wet filament winding [J]. Composites, Part A, 1998, 29A: 251-263
    [83]王增加,李辅安,喻俊伟.纤维缠绕成型的CAD/CAM技术研究[J].纤维复合材料, 2004, (2): 35-38
    [84]熊慧.自动铺丝束CAM技术的研究与开发[博士学位论文].南京:南京航空航天大学, 2004
    [85] Campbell R W, P-Polyphenylene Sulfide Polymers. 1975, Patent 3.919.177: U. S.
    [86]邢玉清,王军,孟令辉.中长纤维毡/高分子量PPS悬浮液含浸法热塑性复合材料工艺研究[J].复合材料学报, 2000, 17(1): 108-110
    [87] Walter S, Cremens A. General look at thermal expansion molding [C]. Proceedings of 21st International SAMPE Symposium, California, 1976: 635-649
    [88]肖少伯.复合材料成型新工艺--热涨成型法[J].宇航材料工艺, 1996, 26(6): 10-13
    [89] Brouwer W D, Herpt E C F C, Labordus M. Vacuum injection moulding for large structural applications [J]. Composites: Part A, 2003, 34: 551-558
    [90]赵渠森等.先进复合材料手册[M].北京:机械工业出版社, 2003
    [91]牛春匀著,西安飞机工业公司译.飞机复合材料结构设计与制造[M].西安:西北工业大学出版社, 1995
    [92]田嘉生,王枫.复合材料制件成形用模具材料研究[J].沈阳航空工业学院学报, 1997, 14(2): 34-36
    [93]何颖,蔡闻峰,赵鹏飞.热压罐成型中温固化复合材料模具[J].纤维复合材料, 2006, (1): 58-59
    [94] Chang C F, Perng D B. Assembly-part automatic positioning using high-level entities of mating features [J]. Computer Integrated Manufacturing Systems, 1997, 10(3): 205-215
    [95] Mullins S H, Anderson D C. Automatic identification of geometric constraints in mechanical assemblies [J]. Computer-Aided Design,, 1998, 30(9): 715-726
    [96] Turner J U, Subramaniam S, Gupta S. Constraint representation and reduction in assembly modeling and analysis [J]. IEEE Transactions on Robotics and Automation, 1992, 8(6): 741-750
    [97] Martini K. Hierarchical geometric constraints for building design [J]. Computer-Aided Design, 1995, 27(3): 181-191
    [98] Kumar A V, YU L. Sequential Constraint Imposition for Dimension- driven Solid Models [J]. Computer Aided Design, 2001, 33(6): 475-486
    [99]冯毅雄,谭建荣,伊国栋,等.基于符号的装配建模方法研究[J].计算机辅助设计与图形学学报, 2003, 15(6): 673-679
    [100] ZHA X F, DU H. A PDES/STEP-based model and system for concurrent integrated design and assembly planning [J]. Computer-Aided Design, 2002, 34(14): 1087-1110
    [101] Mello L S H, Sanderson A C. Representation of mechanical assembly sequences [J]. IEEE Transaction on Robotics and Automation, 1991, 7(2): 211-227
    [102] Lai H Y, Huang C T. A Systematic Approach for Automatic Assembly Sequence Plan Generation [J]. International Journal of Advanced Manufacturing Technology, 2004, 24(9): 752-763
    [103]邵毅,余剑峰,李原,等.基于VMap的装配路径规划研究与实现[J].西北工业大学学报, 2001, 19(1): 118-120
    [104] Lee K [J]. A Hierarchical Data Structure for Representing Assemblies [J]. Computer-Aided Design, 1985, 17(1): 15-19
    [105] Chen R S, Lu K Y, Tai P H. Optimizing assembly planning through a three-stage integrated approach [J]. International Journal of Production Economics, 2004, 88( 3): 243-256
    [106]刘检华,姚珺,宁汝新.虚拟装配工艺规划实现技术研究[J].机械工程学报, 2004, 40(6): 138-143
    [107]金天国.面向并行工程的夹具装配建模及规划技术研究[博士学位论文].哈尔滨:哈尔滨工业大学, 2001
    [108] Bullinger H J, Richter M. Virtual assembly planning [J]. Human Factors and Ergonomics In Manufacturing, 2000, 10(3): 331-341
    [109] Jayaram S, Connacher H I, Lyons K W. Virtual assembly using virtual reality techniques [J]. Computer-Aided Design, 1997, 29(8): 575-584
    [110]姚珺,宁汝新.基于虚拟现实的装配规划研究[J].机械工程学报, 2002, 38(8): 130-134
    [111]张建民.虚拟装配集成环境及其关键技术研究[博士学位论文].西安:西安交通大学, 2003
    [112]姚珺.虚拟装配理论与方法研究[博士学位论文].北京:北京理工大学, 2002
    [113] SEHYUN M, SOONHUNG H. Knowledge-based parametric design of mechanical products based on configuration design method [J]. Expert Systems with Applications, 2001, 21(2): 99-107
    [114] Tzafestas S G, Stamou G B. Concerning Automated Assembly: Knowledge-Based Issues and a Fuzzy System for Assembly under Uncertainty [J]. Computer Integrated Manufacturing Systems, 1997, 10(3): 183-192
    [115] Zha X Y, Du H, Lim Y E. Knowledge intensive Petri net framework for concurrent intelligent design of automatic assembly systems [J]. Robotics and Computer Integrated Manufacturing, 2001, 17(5): 379-398
    [116] Rocheleau D N, Lee K. System for interactive assembly modeling [J]. Computer-Aided Design, 1987, 19(2): 65-72
    [117] Roy U, Banerjee P, Liu C R. Design of an automated assembly environment [J]. Computer-Aided Design, 1989, 21(9): 561-569
    [118] Ye X G, Fuh J Y H, Lee K S. Automated assembly modeling for plastic injection moulds [J]. The International Journal of Advanced Manufacturing Technology, 2000, 16(10): 739-747
    [119]潘志毅.基于特征联系的CAD快速建模[硕士学位论文].南京:南京航空航天大学, 2005
    [120]张萍.计算机辅助夹具设计中快速装配建模的研究[硕士学位论文].南京:南京航空航天大学, 2005
    [121]张宏星,许敏,蒋祖华.面向自动装配的装配特征定义与表达方法研究[J].机械科学与技术, 2005, 24(7): 824-826, 851
    [122]金天国,刘文剑,柏合民,等.组合夹具装配中零件尺寸及装配位置的确定方法[J].中国机械工程, 2002, 13(11): 925-929
    [123]沈梅,何小朝,张铁昌.基于装配特征的装配建模[J].中国机械工程, 2001, 12(9): 1025-1029
    [124]郭玉申,郭跃栋,洪鹰. DFA装配建模系统中零件位姿关系的确定[J].中国机械工程, 2000, 11(3): 310-312
    [125]陈晓霞,雍俊海,陈玉健.特征向量变换求解装配约束的表示方法[J].计算机辅助设计与图形学学报, 2005, 17(10): 2293-2298
    [126]黄翔,阎崇京.面向装配的跨零件特征造型的模型表示与实现[J].机械科学与技术, 2003, 22(3): 502-504
    [127] Sibson R. Locally equiangular triangulation [J]. Computer Journal, 1997, 21(3): 243-245
    [128] Lawson C. Transforming Triangulations [J]. Discrete Mathematics, 1972, (3): 365-372
    [129] Field D A. Implementing Watson's algorithm in three dimensions [C]. Proceedings of The 2nd annual ACM Symposium Computational Geometry, New York, 1986: 246-259
    [130]陈永府,张华,陈兴,等.任意曲面的三角形网格划分[J]. 1997, 9(5): 396-401
    [131]刘少华,程朋根,赵宝贵.约束数据域的Delaunay三角剖分算法研究及应用[J].计算机应用研究, 2004, (3): 26-28
    [132] Baumgart B G, Winged-edge Polyhedron Representation, in Technical report STAN-CS-320. 1972, Computer Science Department, Stanford University: Palo Alto, California. p. 1-46.
    [133]黄明吉,邓中亮,陈清金.基于三角剖分的雕刻曲面展开及图形映射技术[J].计算机工程与应用, 2002, 38(11): 7-8, 11
    [134] Taubin G. Estimating the Tensor of Curvature of a Surface from a Polyhedral Approximation [C]. Proceedings of the Fifth International Conference on Computer Vision, Cambridge,Massachusetts, 1995: 902-907
    [135] Huang J, Menq C H. Combinatorial manifold mesh reconstruction and optimization from unorganized points with arbitrary topology [J]. Computer Aidied Design, 2002, 34(2): 149-165
    [136] Moreton H, Sequin C. Functional optimization for fair surface design [J]. ACM Computer Graphics, 1992, 26(2): 167-176
    [137] Meyer M, Desbrun M, Schroder P, et al. Discrete differential-geometry operators for triangulated 2-manifolds [C]. Proceedings of VisMath '02, Berlin, Germany, 2002
    [138] Milroy M J, Bradley C, Vickers G W. Segmentation of a wrap-around model using an active contour [J]. Computer Aided Designed, 1997, 29(4): 299-320
    [139] Krsek P, Pajdla T, Hlavac V. Estimation of dierential parameters on triangulated surface [C]. Proceedings of 21st Workshop of the Austrian Association for Pattern Recognition, 1997, May
    [140] Welch W, Witkin A. Free-form shape design using triangulated surfaces [C]. Proceedings of SIGGRAPH 94, Orlando Florida, 1994: 247-256
    [141] Calladine C R. Gaussian curvature and shell structures [C]. Proceedings of the ConferenceMathematics of Surfaces Manchester, Oxford: Clarendon Press, 1984: 179-196
    [142] Kobbelt L P, Bischoff S, Botsch M, et al. Geometric modeling based on polygonal meshes [C]. Proceedings of EUROGRAPHICS 2000: 1-48
    [143]方蕙兰.网格曲面上离散曲率计算方法的比较与研究[硕士学位论文].杭州:浙江大学, 2005
    [144]方惠兰,王国瑾.三角网格曲面上离散曲率估算方法的比较与分析[J].计算机辅助设计与图形学学报, 2005, 17(11): 2500-2507
    [145]林德静,孙晓东.基于材质特性的空间曲面展开算法[J].北京服装学院学报, 2006, 26(3): 20-26
    [146]樊文萱,胡文博.钣金展开[M].北京:北京出版社, 1985
    [147] Parid A L, MUDUR S P. Constrain-satisfying planar development of complex surface [J]. Computer-Aided Design, 1993, 25(4): 225-232
    [148]康小明,马泽恩,林兰芬.不可展曲面近似展开的四边形网格等面积法[J].西北工业大学学报, 1998, 16(3): 327-332
    [149]毛昕.不可展曲面三角线法近似展开的误差分析[J].风机技术, 1999, (1): 23-26, 36
    [150]陈宝林.最优化理论与算法[M].北京:清华大学出版社, 1989
    [151] Li S X. An Overview of SuperLU: Algorithms, Implementation, and User Interface [J]. ACM Trans Math Software, 2005, 31(3): 302-325
    [152] David F R.计算机图形学的算法基础(石教英,彭群生译) [M].北京:机械工业出版社, 2002
    [153]航空航天部科学技术研究院(编).复合材料设计手册[M].北京:航空工业出版社, 1999
    [154]电机工程手册编辑委员会.机械工程手册:工程材料卷[M].北京:机械工业出版社, 1996
    [155]朱剑英.智能系统经典数学方法[M].武汉:华中科技大学出版社, 2001
    [156] Aha D W. Case-Based Learning Algorithms [C]. Proceedings of The 1991 DARPA Case Based Reasoning work shop: Morgan Kaufmann Publishers, Inc, 1991: 147-158
    [157] Han Y H, Lee K. A case-based framework for reuse of previous design concepts in conceptual synthesis of mechanisms [J]. Computers in Industry, 2006, 57(4): 305-318
    [158] Andrews P T J, Shahin T M M, Sivaloganathan S. Design reuse in a CAD environment - Four case studies [J]. Computers & Industrial Engineering, 1999, 37(1-2): 105-109
    [159] Ahmed S. Encouraging reuse of design knowledge: a method to index knowledge [J]. Design Studies, 2005, 26(6): 565-592
    [160] Hunter R, Vizán A, Pérez J, et al. Knowledge model as an integral way to reuse the knowledge for fixture design process [J]. Journal of Materials Processing Technology, 2005, 164-165: 1510-1518
    [161] Chu C H, Hsu Y C. Similarity assessment of 3D mechanical components for design reuse [J]. Robotics and Computer-Integrated Manufacturing, 2006, 22(4): 332-341
    [162] Hong T, Lee K, Kim S. Similarity comparison of mechanical parts to reuse existing designs [J]. Computer-Aided Design, 2006, 38(9): 973-984
    [163]董雁,谭建荣,徐静.面向概念设计的复杂结构零件设计可重用方法[J].机械工程学报, 2005, 41(1): 129-134
    [164]王玉,邢渊,阮雪榆.设计重用研究[J].机械科学与技术, 2001, 20(5):
    [165]邵玉阳. CATIA V5环境下机床夹具标准件库的开发[J].航空标准化与质量, 2004, (6): 37-40
    [166]傅蔡安. CATIA参数化设计在专用夹具快速设计中的应用[J].现代设计技术, 2003, 33(4): 95-98
    [167]李原,彭培林,邵毅,等.基于CATIA的标准件库设计与实现[J].计算机辅助设计与图形学学报, 2005, 17(8): 1873-1877
    [168] Dassault Systemes, CAA V5 encyclopaedia [CP]. 2000, Dassault Systemes: Paris.
    [169]李赫雄,许宏泰,唐家才. SQL Server 2000应用程序开发[M].北京:人民邮电出版社, 2001
    [170]宛延闿.工程数据库系统[M].北京:清华大学出版社, 1999
    [171] Erens F, Verhulst K. Architectures for product families [J]. Computers in Industry, 1997, 33(2/3): 165-178
    [172] Schmidt G. Case-based reasoning for production scheduling [J]. International Journal of Production Economics, 1998, 56-57(1): 537-546
    [173] Tanaka F, Murai M, Kishinami T, et al. Constraint Reduction based on a Lie Algebra for Kinematic Analysis of Assembly [C]. Proceedings of The 4th IEEE International Symposium on Assembly and Task Planning, Fukuoka, Japan: IEEE Press, 2001: 399-404
    [174] Lee H R, Gemmill D. Improved methods of assembly sequence determination for automatic assembly systems [J]. European Journal of Operational Research, 2001, 131(3): 611-621
    [175] Liao X, Wang G G. Evolutionary path planning for robot assisted part handling in sheet metal bending [J]. Robotics and Computer-Integrated Manufacturing, 2003, 19(5): 425-430
    [176] Gardan Y, Minich C. Feature-based models for CAD/CAM and their limits [J]. Computer in Industry, 1993, 23(3): 3-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700