用户名: 密码: 验证码:
羟烷基甲酰胺的合成及其塑化的热塑性淀粉性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淀粉是一种来源广泛,价格低廉、再生周期短的生物质资源,淀粉在塑化剂作用下可转变为热塑性淀粉(TPS)。热塑性淀粉是具有发展前景的一种生物降解塑料,改善热塑性淀粉性能的研究是当前的热点课题之一。
     本文在文献调研的基础上,设计出在无溶剂、无催化剂条件下,以醇胺和甲酸乙酯为原料合成了系列羟烷基甲酰胺(HAF)类化合物,表征了化合物的结构。该合成方法避免了传统合成方法中使用催化剂、大量溶剂和高压条件,也减少了传统方法中过量原料的用量。该合成方法更加符合绿色化学的要求。
     以HAF作为淀粉的塑化剂,系统地研究了以无毒的HAF为塑化剂制备的热塑性淀粉(HAFTPS)的性能。用红外(FT-IR)研究了塑化剂HAF与淀粉分子之间的氢键作用力,塑化剂HAF和淀粉分子间有很好的相容性。用扫描电镜(SEM)观察热塑性淀粉的微观形貌,原淀粉颗粒被破坏,形成了均一的连续相。
     用X衍射(XRD)详细地研究了HAFTPS的结晶,HAFTPS结晶类型和HAF的结构有关。HAF分子酰胺氮原子仅联有一个氢原子时,相应的HAFTPS中有VA结晶形成;HAF分子酰胺氮原子没有氢原子相联时,由于塑化剂的大体积效应,相应的HAFTPS中有EH结晶形成。HAFTPS的VA结晶和EH结晶吸水后会转化成VH结晶。与传统的以甘油为塑化剂的热塑性淀粉(GTPS)进行了对比。HAFTPS的热稳定性不及GTPS的高。研究了HAFTPS的吸水性能和力学性能。以N,N-二羟乙基甲酰胺为塑化剂的热塑性淀粉(BTPS,是HAFTPS的一种)的耐水性能优于GTPS,而制备的其它的HAFTPS耐水性不及GTPS。在相对湿度(RH)44%的环境中,BTPS拉伸强度优于GTPS,而制备的其它的HAFTPS拉伸强度不及GTPS。在RH 68%的环境中BTPS断裂伸长率优于GTPS。
     以HAF作为蒙脱土(MMT)活化扩层剂,采用熔融一次性挤出,制得MMT增强的HAFTPS/MMT纳米复合材料。用FT-IR研究了淀粉、HAF、MMT之间的氢键,说明三者之间有很好的相容性。用原子力显微镜(AFM)观察到HAFTPS/MMT中纳米级剥离的蒙脱土。XRD表明HAFTPS/MMT中MMT层间距扩大。MMT的添加对HAFTPS结晶类型没有影响。用热重(TG)研究了HAFTPS/MMT复合材料的热稳定性。与HAFTPS相比,HAFTPS/MMT复合材料的耐水性得到提高。MMT的添加提高了HAFTPS的拉伸强度。
Starch, a cheap polysaccharide obtained from a great variety of crops, is one of biomass resources. Thermoplastic starch (TPS) can be obtained from starch in the presence of plasticizer. TPS is a promising biodegradable plastic. It is one of key research projects to improve the properties of TPS.
     In the text, a series of hydroxyalkylformamides (HAF) were synthesized from alcohol amine and ethyl formate without solvent and catalyst. These products were confirmed by FT-IR, 1H NMR, MS. There were no catalyst, no high pressure and no use of much solvent for the method compared to traditional method. The new method reduced the amount of superfluous reagent. It accorded with the principles of green chemistry.
     Thermoplastic starches using nontoxic HAF as plasticizers (HAFTPS) were prepared. The properties of HAFTPS were studied. The hydrogen bond interaction between HAF and starch was proved by Fourier-transform infrared (FT-IR) spectroscopy, it demonstrated that starch and HAF had good compatibility. By scanning electron microscope (SEM), starch granules were completely disrupted and a continuous phase was obtained. The crystallinity of HAFTPS was characterized by X-ray diffraction (XRD). The HAFTPS crystallinity related to the structure of plasticizer HAF. If there was one hydrogen atom connected to nitrogen of HAF, the corresponding HAFTPS only had VA crystallinity; if there was no hydrogen atom connected to nitrogen of HAF, the corresponding HAFTPS had EH crystallinity due to the bulky plasticizer. VA and EH crystallinity could lead to VH crystallinity upon hydration. The properties of HAFTPS were compared with that of traditional thermoplastic starch using glycerol as plasticizer (GTPS). The thermal stability of HAFTPS was inferior to that of GTPS. HAFTPS water vapour absorption and mechanical properties were investigated. The water resistance of thermoplastic starch using N,N-bis(2-hydroxyethyl)formamide as the plasticizer (BTPS, one kind of HAFTPS) was better than that of GTPS, the water resistance of other prepared HAFTPS was inferior to that of GTPS. At relative humidity (RH) 44%, the tensile strength of BTPS was better than that of GTPS, whereas, the tensile strength of other HAFTPS was inferior to that of GTPS. At RH 68%, the elongation at break of BTPS was better than that of GTPS.
     HAF were used as Montmorillonite (MMT) activators. MMT-reinforced HAFTPS/MMT nano composites were prepared with the method of one time extrusion. The hydrogen bond interaction among HAF, starch and MMT was proved by FT-IR, it demonstrated that starch, HAF and MMT had good compatibility. Exfoliated nano MMT in HAFTPS/MMT was found by atomic force microscopy (AFM). XRD demonstrated that d-space of MMT in HAFTPS/MMT was expanded. MMT had no influence upon the crystallinity HAFTPS. The thermal stability was examined by Thermogravimetric (TG) analysis. The water resistance and tensile strength of HAFTPS were improved by adding MMT.
引文
[1]张耀东,马彦龙,卫爱丽,废旧塑料改性再生技术现状及进展,资源再生,2008,(9):44~46
    [2]朱清时,绿色化学的进展,大学化学, 1997,12(6):7~11
    [3]闵恩泽,傅军,绿色化学的进展,化学通报,1999,(1):10~15
    [4] Klemchuk P P, Degradable plastics: a critical review, Polymer Degradation and Stability, 1990, 27(2): 183~202
    [5]张钦,赵裕荣,可完全生物降解塑料,化工新型材料,1999,27(6):3~8
    [6] Kyrikou I, Briassoulis D, Biodegradation of agricultural plastic films: A critical review, Journal of Polymers and the Environment, 2007, 15 (2): 125~150
    [7] Yu L, Dean K, Li L, Polymer blends and composites from renewable resources, Progress in Polymer Science, 2006, 31(6): 576~602
    [8] Auras R, Harte B, Selke S, An overview of polylactides as packaging materials, Macromolecular Bioscience, 2004, 4(9): 835~864
    [9]刘娅,赵国华,陈宗道等,淀粉塑化机理研究进展,粮食与油脂,2003,(4): 8~9
    [10] Nashed G, Rutgers R P G, Sopade P A, The plasticization effect of glycerol and water on the gelatinization of wheat starch, Starch/St?rke, 2003, 55: 131~137
    [11] Zhou J, Hanna M A, Extrusion of starch acetate with mixed blowing agents, Starch/St?rke, 2004, 56: 484~494.
    [12] Sanchez~Tovar S A, Salazar-Zazuet A, Mena-Iniesta B, et al. Viscoamylographic studies on zea mays [Mexican white Tuxpeno Maize] partial gelatinization with calcium hydroxide, Starch/St?rke, 2004, 56: 526~534
    [13] Ayoub A, Berzin F, Tighzert L, et al. Study of the thermoplastic wheat starch cationisation reaction under molten condition, Starch/St?rke, 2004, 56: 513~519
    [14] Dole P, Joly C, Espuche E, et al. Gas transport properties of starch based films, Carbohydrate Polymers, 2004, 58: 335~343.
    [15] Kuutti L, Peltonen J, Myllarinen P, et al. AFM in studies of thermoplastic starches during ageing, Carbohydrate Polymers, 1998, 37: 7~12
    [16] Souza R C R, Andrade C T, Inverstigation of the Gelatinization and extrusion processed of corn starch, Advances in Polymer Technology, 2002, 21(1): 17~24
    [17] Tan I, Wee C C, Sopade P A, et al. Estimating the specific heat capacity of starch-water-glycerol systems as a function of temperature and compositions, Starch/St?rke, 2004, 56: 6~12
    [18] Sitohy M Z, Ramadan M F, Dgradability of different phosphorylated starches and thermoplastic films prepared from corn starch phosphomonoesters, Starch/St?rke, 2001, 53: 317~322
    [19] Thuwall M, Boldizar A, Rigdahl M, Extrusion processing of high amylose potatostarch materials, Carbohydrate Polymers, 2006, 65: 441~446
    [20]周江,佟金,热塑性淀粉加工过程的控制参数及塑化程度的表征方法,塑料工业,2006,34(增刊):234~237
    [21]王佩璋,王澜,李田华,2002,淀粉的热塑性研究,中国塑料,16(4):39~43
    [22] Forssell P M, Mikkil? J M, Moates G K, et al. Phase and glass transition behaviour of concentrated barley starch-glycerol-water mixtures, a model for thermoplastic starch, Carbohydrate Polymers, 1997, 34: 275~282
    [23] Da Róz A L, Carvalho A J F, Gandini A, et al. The effect of plasticizers on thermoplastic starch compositions obtained by melt processing, Carbohydrate Polymers, 2006, 63: 417~424
    [24] Wang L, Shogren R L, Carriere C, Preparation and properties of thermoplastic starch-polyester laminate sheets by coextrusion, Polymer Engineering and Science, 2000, 40: 499~506
    [25]于九皋,郑华武,淀粉与木糖醇共混的性能,应用化学,1996,13:61~63
    [26] Veiga-Santos P, Oliveira L M, Cereda M P, et al. Surose and inverted sugar as plasticizer. Effect on cassava starch-gelatin film mechanical properties hydrophilicity and water activity, Food Chemistry, 2007, 103: 255~262
    [27] Ma X F, Yu J G, Formamide as the plasticizer for thermoplastic starch, Journal of Applied Polymer Science, 2004, 93: 1769~1773
    [28] Huang M F, Yu J G, Ma X F, Ethanolamine as the nevel plasticizer for thermoplastic starch, Polymer Degradation and Stability, 2005, 89(3): 540~546
    [29] Chena P, Yua L, Chen L, Morphology and Microstructure of Maize Starches with Different Amylose/Amylopectin Content, Starch/St?rke, 2006, 58: 611~615
    [30]唐赛珍,陶欣,我国可降解塑料的研究与发展,现代化工,2002, 22(1):2~7
    [31] Franchetti S M, Marconato J C, Biodegradable polymers-A partial way for decreasing the amount of plastic waste, Quimica Nova, 2006, 29 (4): 811-816
    [32] Aoi K, Takasu A, Tsuchiya M, et al. New chitin-based polymer hybrids, 3 Misiciblity of chintin-graft-poly(2-ethyl-2-oxazoline) with poly(vinyl alcohol), Macromolecular Chemistry and Physics, 1998, 199: 2805-2811
    [33] Pawlak A, Mucha M, Thermogravimetric and FTIR studies of chitosan blends, Thermochimica Acta, 2003, 396: 153-166
    [34] Fang J M, Fowler P A, Tomkinson J, et al. The preparation and characterisation of a series of chemically modified potato starches, Carbohydrate Polymers, 2002, 47: 245~252
    [35]赵永青,何小维,黄强等,淀粉颗粒的结晶性及非晶化方法,现代化工,2007,27, 67~69
    [36] Leloup V M, Colonna P, Ring S G, ?-amylase adsorption on starch crystallites, Biotechnology and Bioengineering, 1991, 38: 127~134
    [37] Jacobs H, Mischenko N, Koch M H J, et al. Evaluation of the impact of annealing on gelatinization at intermediate water content of wheat and potatostarches: A differential scanning calorimetry and small angle X-ray scattering study, Carbohydrate Research, 1998, 306: 1~10
    [38] Paris M, Bizot H, Emery J, et al. Crystallinity and structuring role of water in native and recrystallized starcyes by 13C CP-MAS NMR spectroscopy: 1: Spectral decomposition, Carbohydrate Polymers, 1999, 39: 327~339
    [39] Waigh T A, Donald A M, Heidelbach F, et al. Analysis of the native structure of starch granules with small angle X-ray microfocus scattering, Biopolymers, 1999, 49: 91~105
    [40] van Soest J J G, Vliegenthart J F G, Crystallinity in starch plastics: consequences for material properties, Trends in Biotechnology, 1997, 15: 208~213
    [41] Beker A A, Miles M J, Helbert W, Internal structure of the starch granule revealed by AFM, Carbohydrate Research, 2001, 330: 249~256
    [42] Blandhard J M V, Bates D R, Muhr A H, et al. Small-angle neutron scattering studies of starch granule structure, Carbohydrate Polymers, 1984, 4: 427~442
    [43] Yamaguchi M, Kainuma K, French D, Electron microscopic observations of waxy maize starch, Journal of Ultrastructure Research, 1979, 69: 249~261
    [44]杨留枝,刘延奇,贾春晓等,水分含量对玉米淀粉颗粒结晶度的影响,云南农业大学学报,2006, 21(6): 780~784
    [45]惠斯特勒R J,贝密勒J N,帕斯卡尔E F著,淀粉的化学与工艺学,王雒文,闵大铨,杨家顺等译,北京:中国食品出版社,1988,230~238
    [46] Zobel H F, Starch crystal transformations and their industrial importance, Starch/St?rke, 1988, 40: 1~7
    [47] van Soest J J G, Hulleman S H D, de Wit D, et al. Crystallinity in starch bioplastics, Industrial Crops and Products, 1996, 5: 11~22
    [48] Elsenhaber F, Schulz W, Monte carlo simulation of the hydration shell of double-helical amylose: a left-handed antiparallel double helix fits best into liquid water structure, Biopolymers, 1992, 32: 1643~1664
    [49] Imberty A, Chanzy H, Perez S, et al. The double helical nature of the crystalline part of A-starch, Journal of Molecular Biology, 1988, 201: 365~378
    [50] Imberty A, Perez S, A revisit to the three-dimensional structure of B-starch, Biopolymers, 1988, 27: 308~325
    [51] Sair L, Heat-mositure treatment of starch, Cereal Chemistry, 1967, 44: 8~26
    [52] Kulp K, Lorenz K, Heat-moisture treatment of starch I: Physicochemical properties, Cereal Chemistry, 1981, 58: 46~48
    [53] Myll?rinen P, Buleon A, Lahtinen R, et al. The crystallinity of amylose and amylopectin films, Carbohydrate Polymers, 2002: 48, 41~48
    [54] Winter W T, Sarko A, Crystal and molecular structure of V-anhydrous amylase, Biopolymers, 1974, 13: 1447~1460
    [55] Winter W T, Sarko A, Crystal and molecular structure of the amylase-DMSO complex, Biopolymers, 1974, 13: 1461~1481
    [56] Yamashita Y, Hirai N, Single crystals of amylase V complexes. II. Crystals with7-1 helical configuration, Journal of Polymer Science Part A, 1966, 24: 161~171
    [57] Yamashita Y, Monobe K, Single crystals of amylase V complexs, III. Crystals with 8-1 helical configuration, Journal of Polymer Science Part A, 1971, 29: 1471~1481
    [58] Zobel H F, X-ray diffraction of oriented amylase fibers. III. Structure of amylase-n-butanol complexes, Biopolymers, 1968, 6: 1119~1128
    [59] Gidley M J, Bociek S M, 13C CP/MAS studies of amylase inclusion complexes, cyclodextrins, and the amorphous phase of starch granules: relationships between glycosidic linkage conformation and solid-state 13C chemical shift, Journal of the American Chemical Society, 1988, 110: 3820~3829
    [60] Helbert W, Chanzy H, Single crystals of V amylose complexed with n-butanol or n-pentanol: Structural features and properties, International Journal of Biological Macromolecules, 1994, 16: 207~213
    [61] Rutschmann M A, Solms J, Formation of inclusion complexes of starch with different organic compounds. IV. Ligand binding and variability in helical conformations of V amylose complexes, Lebensmittel Wissenschaft Technologie, 1990, 23: 84~87
    [62] Rappenecker G, Zugenmaier P, Detailed refinement of the crystal structure of VH-amylose, Carbohydrate Research, 1981, 89: 11~19
    [63] Brisson J, Chanzy H, Winter W T, The crystal and molecular structure of VH amylase: An electron diffraction analysis, International Journal of Biological Macromolecules, 1991, 13: 31~39
    [64] Buléon A, Delage M M, Brisson J, et al. The crystal and molecular structure of VH amylose electron diffraction analysis, International Journal of Biological Macromolecules, 1990, 12: 25~33
    [65] Mercier C, Charbonniere R, Grebaut J, et al. Formation of amylase-lipid complexes by twin-screw extrusion cooking of manioc starch, Cereal Chemistry, 1980, 57: 4~9
    [66] Tristao de Andrade C, Rocha de Souza R C, Process for production of totally biodegradable thermoplastic based on starch and natural polymers, Brazile, BR Pat. 2002000174, 2004
    [67] Yang J H, Yu J G, Ma X F, Preparation of a novel thermoplastic starch material using ethylenebisformamide as the plasticizer, Starch/St?rke, 2006, 58: 330~337
    [68]马骁飞,耐回生热塑性淀粉的结构与性能研究,博士学位论文,天津大学,2004
    [69]杨晋辉,乙二撑二甲酰胺塑化热塑性淀粉性能研究,博士学位论文,天津大学,2006
    [70]张建设,脂肪酰胺二元醇的合成及应用于淀粉热塑性研究,博士学位论文,天津大学,2008
    [71] Shi R, Zhang Z, Liu Q, et al. Characterization of citric acid/glycerol co-plasticized thermoplastic starch prepared by melt blending, CarbohydratePolymers, 2007, 69: 748~755
    [72] Stein T M, Gordon S H, Greene R V, Amino acids as plasticizers II. Use of quantitative structure-property relationships to predict the behavior of monoammoniummonocarboxylate plasticizers in starch-glycerol blends, Carbohydrate Polymers, 1999, 39: 7~16
    [73] van Soest J J, Benes G K, The influence of starch molecular mass on the properties of extruded thermoplastic starch, Polymer, 1996, 37(16): 3543~3522
    [74] van Soest J J G, Kortleve P M, The influence of maltodextrins on the structure and properties of compression~molded starch plastic sheets, Journal of Applied Polymer Science, 1999, 74: 2207~2219
    [75] Dean K, Yu L, Wu D Y, Preparation and characterization of melt-extruded thermoplastic starch/clay nanocomposites, Composites Science and Technology, 2007, 67: 413~421
    [76] Ray S S, Okamoto M, Polymer/layered silicate nanocomposites: a review from preparation to processing, Progress in Polymer Science, 2003, 28: 1539~1641
    [77]徐国财,张立德,纳米复合材料,北京:化学工业出版社,2002,6~22
    [78]漆宗能,尚文宇,聚合物/层状硅酸盐纳米复合材料理论与实践,北京:化学工业出版社,2002,9~15
    [79]邱海霞,多糖与蒙脱土的纳米插层及其在吸水树脂中的应用,博士学位论文,天津大学,2004
    [80] Aranda P, Hitzky R, Poly(ethylene oxide)/NH4+-smectite nanocomposites. Applied Clay Science, 1999, 15: 119~135
    [81] Bharadwaj R K, Mehrabi A R, Hamilton C, et al, Structure-property relationships in cross-linked polyester-clay nanocomposites, Polymer, 2002, 43:3699~3705
    [82] Ganguly A, Sarkar M D, Bhowmic A K, Morphological mapping and analysis of poly[styrene-b-(ethylene-co-butylene)-b-styrene] and its clay nanocomposites by atomic force microscopy, Journal of Polymer Science: Part B: Polymer Physics, 2007, 45: 52~66
    [83] Takenawa R, Komori Y, Hayashi S, et al, Intercalation of nitroanilines into kaolinite and second harmonic generation, Chemistry of Materials, 2001, 13: 3741~3746
    [84] Chang J H, Jang T G, Ihn K J, Poly(vinyl alcohol) nanocomposites with different clays: prestine clays and organoclays, Journal of Applied Polymer Science, 2003, 90: 3208~3214
    [85] Davis R D, Gilman J W, VanderHart D L, Processing degradation of polyamide 6/montmorillonite clay nanocomposites and clay organic modifier, Polymer Degradation and Stability, 2003, 79: 111~121
    [86] Ray S S, Bousmina M, Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world, Progress in Materials Science, 2005, 50: 962~1079
    [87] Ma X F, Yu J G, Wang N, Production of thermoplastic starch/MMT-sorbitolnanocomposites by dual-melt extrusion processing, 2007, Macromolecular Materials and Engineering, 292: 723~728
    [88] Park H M, Lee W K, Park C Y, et al. Environmentally friendly polymer hybrids, Journal of Materials Science, 2003, 38: 909~915
    [89] Chen B Q, Evants J R G, Thermoplastic starch-clay nanocomposites and their characteristics, Carbohydrate Polymers, 2005, 61: 455~463
    [90] Zhang Q X, Yu Z Z, Xie X L, et al. Preparation and crystalline morphology of biodegradable starch/clay nanocomposites, Polymer, 2007, 48: 7193~7200
    [91]黄明福,环境友好热塑性淀粉/蒙托石纳米复合材料的研究,博士学位论文,天津大学,2005
    [92] Ishida H, Campbell S, Blackwell J, General approach to nanocomposite preparation, Chemistry of Materials, 2000, 12: 1260~1267
    [93] Li Y, Ishida H, Solution intercalation of polystyrene and the comparison with poly(ethylmethacrylate), Polymer, 2003, 44: 6571~6577
    [94] Wilhelm H M, Sierakowski M R, Souza G P, et al. Starch film reinforced with miniral clay, Carbohydrate Polymers, 2003, 52: 101~110
    [95] Chiou B S, Wood D, Yee E, et al. Extruded starch-nanoclay nanocomposites: Effects of glycerol and nanoclay concentration, Polymer Engineering and Science, 2007, 1898~1904
    [96] Bagdi K, Muller P, Pukanszky B, Thermoplastic starch/layered silicate composites: structure, interaction, properties, Composite Interfaces, 2006, 13: 1~17
    [97] Tang X Z, Alavi S, Herald T J, Effects of plasticizers on the structure and properties of starch-clay nanocomposites films, Carbohydrate Polymers, 2008, 74: 552~558
    [98] Kaiser M E, Midland, Mich, Process for preparing 2-oxazolines, America, US 4203900, 1980
    [99] Ricci A, Sbrana G, Braca G, Process for producing formic acid by carbonylation of hydroxyalkylamines and hydrolysis of the hydroxyalkylformamides produced, EP 0248259, 1991.
    [100] Coupland K, Smith P J, N-acylalkanolamine humectants-an alternative approach to moisturisation, Speciality Chemicals, 1986, 6(4): 10~17
    [101] Halesowen R K, Smith G, Process for preparing 2-oxazolines utilizing stannous salts of carboxylic acid, America, US 4673748, 1987
    [102] Fry E M, Oxazolines, The Journal of Organic Chemistry, 1949, 14: 887~894
    [103] D’Alelio G F, Reid E E, A series of N-methyl amides, Journal of the American Chemical Society, 1937, 59: 109~111
    [104] Shibanuma T, Iwanami M, Fujimoto M, et al. Synthesis of the metabolites of 2-(N-benzyl-N-methylamino)ethyl methyl 2,6-dimethyl-4-(m-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate hydrochloride (nicardipine hydrochloride,1) YC-93), Chemical & PharmaceuticalBulletin, 1980, 28: 2609~2613
    [105] Frings R B, Grahe G F, A thermally curable mixture, EP 469550, 1992
    [106] Deutsch J, Niclas H J, A convenient procedure for the formylation of amines and alcohols using cyanomethyl formate, Synthetic Communications, 1993, 23: 1561~1568
    [107] Wenker H, The synthesis of ?2–oxazolines and ?2–thiazolines from N-acyl-2-aminoethanols, Journal of the American Chemical Society, 1935, 57: 1079~1080
    [108] Hosseini-Sarvari M, Sharghi H, ZnO as a new catalyst for N-formylation of amines under solvent-free conditions, The Journal of Organic Chemistry, 2006, 71: 6652~6654
    [109] Saegusa T, Kobayashi S, Hirota K, et al. Synthetic reaction by complex catalysts. XIII. Carbonylation of amines by group IB and IIB mental compound catalysts, Bulletin of Chemical Society of Japan, 1969, 42: 2610~2614
    [110] Lambert C L, Duranleau R G, Process for the preparation of formylalkanolamines, America, US 4510326, 1985
    [111] Blicke F F, Lu C J, Formylation of amines with chloral and reduction of the N-formyl derivatives with lithium aluminum hydride, Journal of the American Chemical Society, 1952, 74: 3933~3934
    [112] Iwata M, Kuzuhara H, N-formylation of aliphatic primary amines with N,N-dimethylformamide promoted by 2,3-dihydro-1,4-phthalazinedione, Chemistry Letters, 1989, 18: 2029~2030
    [113] Grajkowski A, Wilk A, Chmielewski M K, et al. The 2-(N-formyl-N-methyl)aminoethyl group as a potential phosphate/thiophosphate protecting group in solid-phase oligodeoxyribonucleotide synthesis, Organic Letters, 2001, 3: 1287~1290
    [114]薛松,有机结构分析,合肥:中国科技大学出版社,2005,113
    [115]帕拉马尼克B N,甘古利A K,格罗斯M L, Applied electrospray mass spectrometry,电喷雾质谱应用技术,蒋宏键,俞克佳译,北京:化学工业出版社,化学与应用化学出版中心,2005,29~30
    [116]滕凤恩,王煜明,X射线分析原理与晶体衍射实验,长春:吉林大学出版社,2002, 338
    [117] Godbillot L, Dole P, Joly C, et al. Analysis of water binding in starch plasticized films. Food Chemistry, 2006, 96: 380~386
    [118] Mali S, Sakanaka L S, Yamashita F, et al. Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect, Carbohydrate Polymers, 2005: 60, 283~289
    [119] Wang N, Yu J G, Chang P R, et al. Influence of formamide and water on the properties of thermoplastic starch/poly(lactic acid) blends, Carbohydrate Polymers, 2008, 71: 109~118
    [120] Huang M F, Yu J G, Ma X F, Studies on the properties ofmontmorillonite-reinforced thermoplastic starch composites, Polymer, 2004, 45: 7017~7023
    [121] Cyras V P, Manfredi L B, Ton-That M T, et al. Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films, Carbohydrate Polymers, 2008, 73: 55~63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700