用户名: 密码: 验证码:
高速车轮钢韧化机理及工艺优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速车轮是高速铁路运输中最重要的部件之一,到目前为止,我国高速铁路用车轮100%依赖进口。韧性不足是高速车轮国产化最大的难点,因此,如何提高车轮钢的韧性,实现高速车轮国产化,是发展我国高速铁路的重要研究课题。在过去数十年中,车轮钢的材料研究主要集中在化学元素的合金化机理和提高钢质的洁净度等方面,但是专门针对车轮钢特殊生产工艺条件下的韧化机理尚未开展系统的研究工作。为此,本论文以珠光体组织为主的中高碳车轮钢作为研究载体,以提高中高碳珠光体钢的韧性为研究目标,采用EBSD、Thermo-Calc热力学计算、Ansys有限元计算和断裂韧性测试等多种研究手段和测试方法,从夹杂物冶金、热加工温度参数的精确控制、特殊的淬火工艺等多方面探索了车轮钢的韧化机理,提出了与传统方法不同的韧化机制,获得了具有创新性的研究结果。
     研究结果表明,车轮钢中的硫含量及其存在方式对车轮钢的韧性有显著影响。结果显示,车轮钢中的硫含量与传统钢不同,并不是硫含量越低车轮钢的韧性就越高,而是存在一个最佳含量范围,当硫含量由常规的0.001%增加至0.006~0.01%时,车轮钢的断裂韧性提高40%以上,可显著增加车轮高速运行时的安全裕量。适当增加硫含量后,车轮钢中的夹杂物由以单个裸露氧化物为主,绝大部分改性为以硫化物包裹氧化物的复合夹杂物;硫化物包裹在氧化物夹杂表面后,极大减轻了夹杂物周围基体区域的应力集中,防止了硬性夹杂物成为断裂启裂源,这是韧性改善的主要原因。添加适量的Ca,以提高硫化物的析出温度和适当降低车轮圆坯的加热温度,均有利于提高硫化物的包裹效果。在此基础上提出了硫化物在氧化物上析出和脱离的热力学模型。
     研究发现,珠光体球团的细化及均匀化是改善车轮钢韧性的另一个原因。通过适当降低钢坯加热温度、终轧温度、踏面淬火温度等热加工过程中的关键温度控制参数,不仅可有效细化车轮钢原始奥氏体晶粒度,更为重要的是细化珠光体球团尺寸,并提高珠光体球团均匀性,降低大尺寸球团出现概率,从而提高车轮韧性水平。进一步研究表明,在解理断裂过程中,珠光体球团是解理断裂基本单元,能阻止球团内部滑移带扩展,说明珠光体球团是车轮钢中重要的韧性控制结构单元。
     采用水冷—中断水冷—强水冷的间歇式踏面淬火,可以在不改变生产周期的前提下,获得与连续水冷方式相比更为理想的冷却特性和温度场分布,抑制贝氏体相变,使硬度梯度分布更均匀,显著细化了珠光体球团,改善了踏面附近的韧性;与连续淬火相比,间歇式淬火是获得细小珠光体球团的最佳冷却方式。
     综上所述,本论文首次在车轮钢中采用夹杂物冶金技术,利用与基体变形能力接近的硫化物,巧妙地包裹在脆而硬的难变形的氧化物周围,减轻变形过程中的应力集中,显著提高了车轮钢的断裂韧性,获得了创新性的研究成果;同时采用精确控制多种热履历参数,细化了车轮钢的精细结构,也明显改善了车轮钢的韧性。
Most recently, higher demand on safety level of railway wheels has been proposed as high speed railway operation speed break through350km per hour, so it is more important to develop high toughness wheels for high speed train transport. There are certainly researches on elements alloying mechanism and cleanliness improvement could be found in wheel steels, but investigations focus on toughness improvement in specific manufacturing process for high speed railway wheels is not adequate and need to be strengthened. The present study pays attention on toughness improvement of medium-high carbon pearlite wheel steels. A serial of analysis and testing methods, such as EBSD, Thermo-Calc thermodynamic calculation, Ansys finite element analysis and fracture toughness testing, et al, have been employed in present paper. Toughening mechanism of railway wheel steels has been researched through inclusion metallurgic, precision controlling of thermal process temperature parameters and special quenching process, so that toughening mechanism different from conventional way have been suggested and innovate research results have been attained.
     It is showed in this paper that there is makeable effect of sulphur content and its existing state on toughness of railway wheel steels. Traditionally, sulphur content was intently controlled at very low level with the purpose of toughening, but this attempting seldom worked. Distinct from traditional attempts, we find out that there is a best sulphur content scope. Fracture toughness increases about40%by increasing S from normal0.001to0.006~0.01%in this paper. And redundant safety assurance of wheels notablely increases as running at high speed. With sulphur adding in railway wheel steels, main inclusions change from naked oxides to complex inclusions which are specified as sulphides covering oxides. Stress concentration around complex inclusions essentially decreased with a cover of ductile MnS, so that microcracks original from oxides could be prevented, and that is the main reason of toughening. Adding with certain content of Ca, precipitation temperature increasing and proper decreasing in casting heating temperature of the steel, both could promote sulphides covered on oxides. Based on these work, thermodynamic model of MnS precipitation and dissolution from oxide has been proposed.
     It is found that another reason of wheel steels toughening is refining and uniformity of pearlite colony size. As key parameters in thermal process of wheels, deformation temperature, finish rolling temperature and tread quenching temperature must keep at lower levels, so prior austenite grain size get fined, what more, uniformity of pearlite colony size increase, which means probability of big colony size reduce, and toughness level of wheel steels increase. Further study in fracture surface reveals that single pearlite colony could form into a fracture facet and slip bands in a facet ended at pearlite colony boundaries. So it is reasonable to consider the pearlite colony as controlling submicrostructure of railway wheel steels.
     Adapted with interrupt tread quenching, which means a cooling way of a starting water quenching and then stop about100s and a further cooling, cooling rates and cooling fields better than that in continuous quenching could get, bainite phase transformation is depressed, hardness contribution gets uniform and pearlite colony size gets finer, toughness near tread get improved without changing in producing routine. It is indicated that interrupt quenching is more suitable for getting fine pearlite colony than continuous quenching.
     In summary, with introducing inclusions metallurgic technology firstly in railway wheel steels, brittle and hard, undeforming oxides could be covered by sulphides, which have similar ability of deformation with steel matrix. So that stress concentration around inclusions decrease and fracture toughness essentially improve and a new toughening mechanism is developed. At the same time, after precision controlling of thermal process temperature parameters, toughness of wheel steels improve for finer pearlite submicrostructure.
引文
[1]General definitions of highspeed. UIC:http://www.uic.org/spip.php?article971.
    [2]冈田宏.日本新干线的现状和未来的发展.中国铁道科学,2002,23(2):21-25.
    [3]High Speed lines in the World, UIC High Speed Department, Updated 1 November 2011.
    [4]钱立新.世界高速列车技术的最新进展.中国铁道科学,2003,24(4):1-11.
    [5]钱立新.速度350km/h等级世界高速列车技术发展综述.中国铁道科学,2007,28(4):66-72.
    [6]徐国梁.200km/h动力分散电动车组.铁道车辆,2002,40(5):19-22.
    [7]High Speed principles and advantages. UIC:http://www.uic.org/spip.php?article443.
    [8]High speed rail:fast track to sustainable mobility, UIC High Speed Department,2009.
    [9]World high speed rolling stock, UIC High Speed Department, Updated 1 November 2011.
    [10]Lee Y S. A study of the development and issues concerning high speed rail (HSR). Transport Studies Unit, University of Oxford, Working paper N° 1020.
    [11]GLA Economics. London's central business district:its global importance.2008.
    [12]周宏业,陈修正,何邦模,周述晾.关于我国发展200km/h以上高速铁路的设想.中国铁路,1991(9):1-6.
    [13]刘友梅,杨颖.“中华之星”—270km/h的高速列车.中国铁路,2003(12):35-36.
    [14]季怀忠.高速列车车轮的生产技术.2001中国钢铁年会论文集,pp.191-193.
    [15]European Standard. EN 13262:2004+A 1:2008:Railway applications—Wheelsets and bogies—Wheels—Product requirement.
    [16]日本工業规格.JIS E5402-1:2005:铁道车两用—一体车輪—第1部:品质要求.
    [17]日本工業规格.JIS E5402-2:2005:铁道车两用—一体车輪—第2部:寸法要求.
    [18]季怀忠.抗剥离高速车轮钢的研究.钢铁研究总院博士学位论文.2004.
    [19]木川武彦.车轮材料の动向—一体车轮の技术开发.金属,2000,70(2):107-118.
    [20]Wheel and tyre rolling plant. Bonatrans:http://www.bonatrans.cz/en/wheel-and-tyre-rolling-plant.html.
    [21]崔银会,张建平,苏航,江波.高速列车车轮材料研究的综述.安徽冶金科技职业学院学报,2005,15(2):9-16.
    [22]董仁泽.铁路车轮材料现状与提速后的对策.中国铁道学会铁路用钢可靠性及寿命学术研讨会论文集.1998年9月,包头,铁道科学研究院,pp.85-92.
    [23]Pau M, Aymerich F, Ginesu F. Distribution of contact pressure in wheel-rail contact area. Wear,2002,253:265-274.
    [24]Walther F, Eifler D. Local cyclic deformation behavior and microstructure of railway wheel materials. Materials Science and Engineering A,2004,387-389:481-485.
    [25]Jiang Xiaoyu, Jin Xuesong. Numerical simulation of wheel rolling over rail at high-speeds. Wear,2007,262:666-671.
    [26]Hasegawa I, Uchida S. Railway technology today 7:braking system. Japan Railway & Transport Review,1999,20:52-59.
    [27]张斌,付秀琴.铁路车轮,轮箍踏面剥离的类型及形成机理.中国铁道科学,2001,22:73-78.
    [28]Ekberg A, Sotkovszki P. Anisotropy and rolling contact fatigue of railway wheels. International Journal of Fatigue,2001,23:29-43.
    [29]Ekberg A, Elena K. Fatigue of railway wheels and rails under rolling contact and thermal loading—an overview. Wear,2005,258:1288-1300.
    [30]Ekberg A, Marais J. Effects of imperfections on fatigue initiation in railway wheels. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit,2000,214:45-54.
    [31]Osterle W, Rooch H, Pyzalla A, Wang L. Investigation of white etching layers on rails by optical microscopy, electron microscopy, X-ray and synchrotron X-ray diffraction. Materials Science and Engineering A,2001,303:150-157.
    [32]Su Hang, Pan Tao, Li Li, Yang Caifu, Cui Yinhui, Ji Huaizhong. Frictional heat-induced phase transformation on train wheel surface. Journal of Iron and Steel Research International,2008,15:49-55.
    [33]Ahlstrom J, Karlsson B. Microstructural evaluation and interpretation of the mechanically and thermally affected zone under railway wheel flats. Wear,1999,232: 1-14.
    [34]Mutton P J, Epp C J, Dudek J. Rolling contact fatigue in railway wheels under high axle loads. Wear,1991,144:139-152.
    [35]Zerbst U, Madler K, Hintze H. Fracture mechanics in railway applications—an overview. Engineering Fracture Mechanics,2005,72:163-194.
    [36]Ekberg A, Kabo E, Nielsen J C O, Lunden R. Subsurface initiated rolling contact fatigue of railway wheels as generated by rail corrugation. International Journal of Solids and Structures,2007,44:7975-7987.
    [37]Handa K, Kimura Y, Mishima Y. Surface cracks initiation on carbon steel railway wheels under concurrent load of continuous rolling contact and cyclic frictional heat. Wear,2010, 268:50-58.
    [38]Elena K, Ekberg A. Fatigue initiation in railway wheels-on the influence of defects. CHARMEC:Department of Solid Mechanics Chalmers University of Technology, Sweden, July 18,2000.
    [39]ER9失效车轮检验分析报告.钢铁研究总院,2010年9月,内部资料.
    [40]Esslinger V, Kieselbach R, Koller R, Weisse B. The railway accident of Eschede technical background. Engineering Failure Analysis,2004,11:515-535.
    [41]Kubota M, Hirakawa K. The effect of rubber contact on the fretting fatigue strength of railway wheel tire. Tribology International,2009,42:1389-1398.
    [42]European Standard. EN 50126-1:1999:Railway applications—The specification and demonstration of Reliability, Availability, Maintainability and Safety (RAMS)—Part 1: Basic requirements and generic process.
    [43]European Standard. EN 50126-2:2007:Railway applications—The specification and demonstration of Reliability, Availability, Maintainability and Safety (RAMS)—Part 2: Guide to the application of EN 50126-1 for safety.
    [44]Seo J W, Kwon S J, Jun H K, Lee D H. Effects of residual stress and shape of web plate on the fatigue life of railway wheels. Engineering Failure Analysis,2009,16: 2493-2507.
    [45]Ravaee R, Hassani A. Fracture mechanics determinations of allowable crack size in railroad rails. Journal of Failure Analysis and Prevention,2007,7:305-310.
    [46]Liu Z X, Gu H C. Failure modes and materials performance of railway wheels. Journal of Materials Engineering and Performance,2000,9(5):580-584.
    [47]杨才福,苏航,惠卫军,许达,张永权,董瀚.高速列车用车轮钢、轴承钢和弹簧钢的发展.机车电传动,增刊,2003:32-36.
    [48]水恒勇,张永权,杨才福.国内外高速列车车轮材料的开发动向.钢铁,增刊,2002,37:629-632.
    [49]水恒勇,张永权,杨才福.高速列车车轮用材料的开发动向.钢铁研究学报,2003,15:66-69.
    [50]梦列科夫.有效的车轮钢脱氧新工艺.钢铁译文集,1995:1-2.
    [51]任虹.车轮钢脱氧工艺对B类夹杂物的影响.马钢技术,1999:3-5.
    [52]高速铁路用动车组车轮的材料基础研究.钢铁研究总院,2009年,内部资料.
    [53]Ahlstrom J, Karlsson B. Modified railway wheel steels:production and evaluation of mechanical properties with emphasis on low-cycle fatigue behavior. Metallurgical and Materials Transactions A,2009,40(7):1557-1567.
    [54]Sakamoto H, Toyama K, Hirakawa K. Fracture toughness of medium-high carbon steel for railroad wheel. Materials Science and Engineering A,2000,285:288-292.
    [55]季怀忠,崔银会,苏航,张永权,水恒勇.碳含量对高速车轮用钢综合性能的影响.钢铁,2005,40(2):62-81.
    [56]Langueh A, Brunel J-F, Charkaluk E, Dufrenoy P, Demilly F. Influence of the steel grades on rolling contact fatigue of railway wheels. Procedia Engineering,2011,10: 2627-2632.
    [57]梦列科夫.合金元素对车轮钢淬透性的影响.国外机车车辆工艺,1996(3):19-22.
    [58]Kitura K.按照UIC812-3标准对R7T和B4N钢进行微合金化的实用性研究.钢铁译文集,1999(1):58-62.
    [59]Singh U P, Popli A M, Jain D K, Roy B, Jha S. Influence of microalloying on mechanical and metallurgical properties of wear resistant coach and wagon wheel steel. Journal of Materials Engineering and Performance,2003,12(5):573-560.
    [60]付秀琴,张斌,张弘,张明如.贝氏体车轮钢性能分析.中国铁道科学,2008,29(5):83-86.
    [61]Zhang M R, Gu H C. Microstructure and mechanical properties of railway wheels manufactured with low-medium carbon Si-Mn-Mo-V steel. Journal of University of Science and Technology Beijing,2008,15(2):1-7.
    [62]Zhang M R, Gu H C. Fracture toughness of nanostructured railway wheels. Engineering Fracture Mechanics,2008,75:5113-5121.
    [63]Constable T, Boelen R, Pereloma E V.引入马氏体相改善车轮钢性能的探索.第14届国际轮轴大会译文选集,2005,73-80.
    [64]Adachi Y, Morooka S, Nakajima K, Sugimoto Y. Computer-aided three-dimensional visualization of twisted cementite lamellae in eutectoid steel. Acta Materialia,2008,56: 5995-6002.
    [65]Furuhara T, Moritani T, Sakamoto K, Maki T. Substructure and crystallography of degenerate pearlite in an Fe-C binary alloy. Materials Science Forum,2007,539-543: 4832-4837.
    [66]栾佰峰,张达,郭宁,徐文雷,周正,刘礼华,刘庆.桥梁缆索用过共析钢热轧盘条微观组织定量表征.材料热处理学报,2011,32:78-82.
    [67]Walentek A, Seefeldt M, Verlinden B, Aernoudt E, Houtte P V. Investigation of pearlite structure by means of electron backscatter diffraction and image analysis of SEM micrographs with an application of the hough transform. Materials Science and Engineering A,2008,483-484:716-718.
    [68]Takahashi T, Ponge D, Raabe D. Investigation of orientation gradients in pearlite in hypoeutectoid steel by use of orientation imaging microscopy. Steel Research International,2007,78:38-44.
    [69]Doi S N, Kestenbach H-J. Determination of the pearlite nodule size in eutectoid steels. Metallography,1989,23:135-146.
    [70]Musiol C, Brook R. The fracture toughness of Fe-20%Co-15%Cr-5%Mo maraging alloy. Engineering Fracture Mechanics,1977,9:379-387
    [71]Raghupathy V P, Srinivasan V, Krishnan H, Chandrasekharaiah M N. The effect of sulphide inclusions on fracture toughness and fatigue crack growth in 12 wt%Cr steel. Journal of Materials Science,1982,17:2112-2126
    [72]Materkowski J P, Krauss G.Tempered martensite embrittlement in SAE 4340 steel. Metallurgical Transactions A,1979,10A:1643-1651
    [73]Tsangarakis N. On the dependence of fracture toughness on metallurgical factors. Materials Science and Engineering,1983,58:269-276
    [74]Lyne C M, Kasak A. Effect of sulfur on the fatigue behavior of bearing steel. Transactions of the ASM,1968,61:10-13
    [75]Haigh B P. Part II:slag inclusions, welding and soldering. Slag inclusions in relation to fatigue. Transactions of the Faraday Society,1924,20:153-157.
    [76]Zhang M Z, Kelly P M. The morphology and formation mechanism of pearlite in steels. Materials Characterization,2009,60:545-554.
    [77]Laszlo F. Tessellated stresses. Part Ⅰ. The Journal of the Iron and Steel Institute,1943, 147:173-199.
    [78]Laszlo F. Tessellated stresses. Part Ⅱ. The Journal of the Iron and Steel Institute,1943, 148:137-159.
    [79]Laszlo F. Tessellated stresses. Part Ⅲ. The Journal of the Iron and Steel Institute,1944, 150:183-209.
    [80]Laszlo F. Tessellated stresses. Part Ⅳ. The Journal of the Iron and Steel Institute,1945, 152:207-229.
    [81]Brooksbank D, Andrews K W. Thermal expansion of some inclusions found in steels and relation to tessellated stresses. Journal of the Iron and Steel Institute,1968,206:595-599.
    [82]Brooksbank D, Andrews K W. Tessellated stresses associated with some inclusions in steel. Journal of the Iron and Steel Institute,1969,207:474-483.
    [83]潘涛,杨志刚,白秉哲,方鸿生.钢中夹杂物与奥氏体基体热膨胀系数差异导致的热应力和应变能研究.金属学报,2003,39(10):1037-1042.
    [84]赵建生.断裂力学及断裂物理.武汉:华中科技大学出版社,2003:124-130.
    [85]Jiang X Y, Jin X S. Numerical simulation of wheel rolling over rail at high-speeds. Wear, 2007,262:666-671.
    [86]Oh Y J, Lee B S, Hong J H. The effect of non-metallic inclusions on the fracture toughness mater curve in high copper reactor pressure vessel welds. Journal of Nuclear Materials,2002,301:108-117
    [87]Strnadel B, Hausild P. Statistical scatter in the fracture toughness and Charpy impact energy of pearlitic steel. Materials Science and Engineering A,2008,486:208-214.
    [88]Park Y J, Bernstein I M. The process of crack initiation and effective grain size for cleavage fracture in pearlitic eutectoid steel. Metallurgical Transactions A,1979,10A: 1653-1664.
    [89]Alexander D J, Bernstein I M. Cleavage fracture in pearlitic eutectoid steel. Metallurgical Transactions A,1989,20A:2312-2335.
    [90]Curry D A, Knott J F. Effects of microstructure on cleavage fracture stress in steel. Metal Science,1978,12:511-514.
    [91]Baker T J, Kavishe F P L, Wilson J. Effect of non-metallic inclusions on cleavage fracture. Materials Science and Technology,1986,2:576-582
    [92]Holzmann M, Jurasek L, Dlouhy I. Fracture behaviour and cleavage initiation in hypoeutectoid pearlitic steel. International Journal of Fracture,2007,148:13-28.
    [93]Birkle A J, Wei R P, Pellissier G E. Analysis of plane-strain fracture toughness in a series of 0.45C-Ni-Cr-Mo steels with different sulfur contents. Transactions of the ASM,1966, 59:981-990.
    [94]Li J, Guo F, Li Z, Wang J L, Yan M G. Influence of sizes of inclusions and voids on fracture toughness of ultra-high strength steel aermet100. Journal of Iron and Steel Research International,2007,14:254-258.
    [95]Garrison Jr W M, Wojcieszynski A L. A discussion of the effect of inclusion volume fraction on the toughness of steel. Materials Science and Engineering A,2007,464:321
    [96]沈晓辉,阎军,安涛,李翔,张磊.车轮轧制成形过程有限元分析.钢铁,2006,41(3):55-58.
    [97]沈晓辉,安涛,闫军,章静,李翔,张磊.840车轮预成形过程的有限元分析.钢铁研 究学报,2005,17(1):30-33.
    [98]中华人民共和国国家标准GB/T 15749-1995:定量金相手工测定方法.
    [99]陈伟,李龙飞,杨王玥,孙祖庆,何建平.过共析钢温变形过程中的组织演变.金属学报,2009(45):151-155.
    [100]Gladman T, McIvor I D, Pickering F B. Some aspects of the structure-property relationships in high-carbon ferrite-pearlite steels. Journal of the Iron and Steel Institute, 1972,210:916-930.
    [101]Elwazri A M, Wanjara P, Yue S. The effect of microstructural characteristics of pearlite on the mechanical properties of hypereutectoid steel. Materials Science and Engineering A,2005,404:91-98.
    [102]Pickering F B, Garbarz B. The effect of transformation temperature and prior austenite grain size on the pearlite colony size in vanadium treated pearlite steels. Scripta Metallurgica, 21,1987:249-253.
    [103]Jaiswal S, Mclvor I D. Metallurgy of vanadium-microalloyed, high-carbon steel rod. Materials Science and Technology,1985,1:276-284.
    [104]中华人民共和国国家标准GB/T 225-2006:钢淬透性的末端淬火试验方法(Jominy试验)
    [105]Brownrigg A, Prior G K. Hardenability reduction in VN microalloyed eutectoid steels. Scripta Materialia,46,2002:357-361.
    [106]Hyzak J M, Bernstein I M. The role of microstructure on the strength and toughness of fully pearlitic steels. Metallurgical Transactions A,1976,7A:1217-1224.
    [107]Miller L E, Smith G C. Tensile fractures in carbon steels. Journal of the Iron and Steel Institute,1970,208:998-1005.
    [108]Toribio J. Microstructure-based modeling of fracture in progressively drawn pearlitic steels. Engineering Fracture Mechanics,2004,71:769-777.
    [109]Lewandowski J J, Thompson A W. Microstructural effects on the cleavage fracture stress of fully pearlitic eutectoid steel. Metallurgical Transactions A,1986,17A:1769-1786.
    [110]Alexander D J, Bernstein I M. The cleavage plane of pearlite. Metallurgical Transactions A,1982,13A:1865-1868.
    [111]Nakase K, Bernstein I M. The effect of alloying elements and microstructure on the strength and fracture resistance of pearlitic steel. Metallurgical Transactions A,1988, 19A:2819-2829.
    [112]Lewandowski J J, Thompson A W. Effects of the prior austenite grain size on the ductility of fully pearlitic eutectoid steel. Metallurgical Transactions A,1986,17A: 461-472.
    [113]Takahashi T, Nagumo M, Asano Y. Microstructures dominating the ductility of eutectoid pearlitic steel. Journal of the Japanese Institute of Metal,1978,42:708-715.
    [114]Takahashi T, Nagumo M, Asano Y. Crystallographic features and formation processes of pearlite block. Journal of the Japanese Institute of Metal,1978,42:716-723.
    [115]Fujimura T, Anjiki M, Makino T, Daitoh Y. Railway wheel and manufacturing method of the railway wheel. United States patent,5899516, May 4,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700