用户名: 密码: 验证码:
深部热环境围岩及风流传热传质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着矿产资源的大规模开发,埋藏于浅部的矿产资源日益枯竭,大批矿山过渡到深部开采,深部开采与浅部开采最大的区别在于深部围岩体所处的特殊环境。对深部热害矿井来说,包括煤体在内的围岩体散热是矿井热环境最重要的影响因素。本文采用物理试验、数值模拟和理论分析相结合的方法对热害矿井围岩传热传质机理进行了研究,重点对巷道围岩体的热物理性质、巷道围岩非稳态传热传质以及风流对流换热特性进行了分析。
     对于破碎围岩体,通过微观试验发现其结构符合分形模型,利用图像分形维数计算方法获得了无压力下破碎煤体计盒维数。根据有效导热系数的定义和热阻模拟方法,计算了干燥破碎煤体的导热系数,与实测值吻合;对于孔隙岩体,采用ANASYS模拟了不同孔隙率条件下孔隙规则分布与随机分布两类模型的稳态热传导。结果表明,等效导热系数与固体基质率之间呈双对数线性关系,拟合公式指数与Archie定律一致;含小孔隙且未集中分布岩体的导热系数是各向同性的。
     采用分离变量法求解了进风流参数恒定条件下巷道围岩体非稳态热传导方程,获得了温度场理论解的显式形式,分析发现,壁面无量纲温度与无量纲传热系数均随Fo增加而不断减小,Bi数越大两者变化幅度越大。提出了适合判断巷道非稳态传热正规状况的公式,计算发现巷道型非稳态传热也存在正规状况阶段,此时围岩过余温度变化率由边界条件和相对位置决定,与初始条件无关;理论计算发现,当Fo=2-12时采用无穷级数第一项代替完整级数误差大,当项数增加到5项时可近似代替完整级数,当Fo>12后才可用第一项代替完整级数。
     通过自行设计、研制的试验系统对巷道非稳态传热传质规律进行了研究,试验结果表明,均质围岩温度与Fo数可用多项式拟合,当阶数为4时有很高精度,且在正规状况阶段的拟合优度明显高于初始阶段;围岩温度与无量纲半径可用对数关系拟合,在正规状况阶段拟合优度高;巷道壁面温度与进风流温度、风速均为线性关系,对预测某种进风流参数下壁面温度提供了简洁计算公式。试验发现,裂隙对温度场有很大影响,宽度为总长度4%左右的裂隙,其两端温度梯度约占总温度梯度51%;含湿岩体温度场与干燥围岩温度场分布类似,在通风初期含湿岩体近壁端温度变化速率大,是受水分蒸发产生的潜热引起。对围岩体含水率实测可知,相比温度场来说,风流对湿度场的影响明显偏低。在影响区域内,围岩含水率为对数分布,与温度场分布类似,可用Fick第二定律进行分析。
     计算发现实际巷道中风流流动状态均为紊流,根据实测数据获得了巷道风流的阻力系数公式;采用光滑圆管紊流模型,计算了巷道风流速度分布,并推导了巷道风流温度分布;根据温度分布与速度分布类比定律,采用恒热流模型计算了巷道风流对流换热的准则方程。实测数据表明,沿巷道延伸方向的风流温度为线性分布,验证了恒热流模型分析风流对流换热特性正确;回归了紊流条件下巷道风流对流传热的经验准则关联式,可用于工程计算。对含湿巷道风流温度和绝对含湿量变化进行了实测分析,结果表明风流温度在短时间内趋于恒定,绝对含湿量变化与温度变化相同,说明质量传递与非稳态传热规律类似。
With the long-term and large-scale exploiting of mineral resources, high-grade mineral resources buried in the shallow seam are being gradually exhausted, so more and more coal mines have been being faced with the challenge of deep mining. However, the most significant difference between deep mining and shallow mining is the special circumstances of rock mass. For heat harmful coal mine, heat transfer of or rock mass is the most important factor of the thermal environment. Therefore, the research on heat transfer mechanism of rock mass or coal mass is extremely necessary for thermal disaster control. Laboratory test, numerical simulation and theory analysis have been used to study the mechanism of heat and mass transfer of surrounding rock for heat harmful mine. Major issues including characteristic of thermo-physical, characteristic of unsteady heat and mass transfer of airway and heat convection were analyzed thoroughly.
     For cracked surrounding rock, the structure belongs to fractal model through micro-test. According to the calculation method of fractal dimension for image, the box-counting dimension of cracked coal mass without pressure was calculated, which is about 1.76. Based on the definition of affective conductivity, the heat conductivity of loose coal mass was calculated through the method of thermal resistance, which was equal to test results. For pore rock mass, steady heat transfer of models with different porosity which the distribution of pore was regular and random was simulated by ANASYS. The results show that the effective heat conductivity was isotropic for rock mass without connected cranny. The fitting formula for effective heat conductivity and solid matrix ratio was linear double logarithmic expression, and the index accords with Archie laws.
     By using the method of separation of variables, the explicit form of analytical solution for temperature field of airway surrounding rock was accepted. The wall surface temperature and unsteady heat transfer coefficient diminish, both of which are concerned with Bi number. The judgment formula of normal status stage of unsteady heat transfer for airway was proposed. Both the calculating and test results show that there is normal status stage for unsteady heat transfer of airway, and change ratio of excess temperature of surrounding rock depends on boundary conditions and is independent of initial conditions. When Fo=2-12, the error was big by using the first item instead of complete series. When the number of terms was 5, the values of first five items and complete series are approximately equal. The first item could replace the complete series only when Fo>12.
     The laws of unsteady heat transfer of dry airway were studied through self designed experimental system. The results show that the relation between surrounding rock temperature and Fo is polynomial sums, with high precision when the order is 4, and the fitting precision of normal status stage is higher than that of initial stage. The relation between surrounding rock temperature and radius is logarithmic expression, and the fitting precision of normal status stage is also higher than that of initial stage. The relation between wall surface temperature and airflow temperature is linear expression, and the relation between wall surface temperature and wind speed is also linear expression. The simple formula was accepted for calculating wall temperature under some parameters of airflow. Through analysis on concrete masonry test, cranny plays important role on temperature distribution. The ratio of temperature gradient of cranny is about 51% while the ratio of length is only 4%. The laws of unsteady heat and mass transfer for wet airway were also studied. The temperature field of wet surrounding rock is similar to that of dry surrounding rock. The change ratio of wall temperature is much bigger than that of dry surrounding rock on the initial stage because of the latent heat transfer due to water evaporation. The distributing of moisture content was also analyzed. Compared with temperature field, the influence on moisture content was much less. On the disturbance range, the moisture distributing accords with parabola formula, which is similar to temperature field and can be analyzed by the second Fick laws.
     The flow state of airflow in real airway is turbulent flow. The regression formula of resistance coefficient of airflow was obtained based on the test results. The distributing of velocity and temperature of airflow was analyzed by using the model of smooth pipe with turbulent flow. Based on the model of constant heat flux, the criterion correlation of convective heat transfer was calculated, by using the analogical laws of velocity and temperature. The test results show that the distributing of airflow temperature accords with linear expression, which verifies that the calculated model is correct. The regression expression of experience criterion correlation for turbulent flow was accepted. The parameters of airflow in wet airway were also analyzed. The airflow temperature tends to fixed value in a short time. The law of mass transfer is similar to that of heat transfer.
引文
[1]谢和平.深部高应力下的资源开采-现状、基础科学问题与展望[A].科学前沿与未来(第六集)[C].香山科学会议主编,北京:中国环境科学出版社, 2002: 179-191.
    [2]何满潮.深部开采工程岩石力学的现状及其展望[A].第八次全国岩石力学与工程学术大会论文集[C].中国岩石力学与工程学会主编,北京:科学出版社, 2004: 88-94.
    [3]晏玉书.我国煤矿软岩巷道围岩控制技术现状及发展趋势[A].何满潮编.中国煤矿软岩巷道支护理论与实践[C].北京:中国矿业大学出版社, 1996: 1-17.
    [4] Diering D H. Ultra-deep level mining: future requirements[J]. The Journal of the South African Institute of Mining and Metallurgy, 1997(10): 249-255.
    [5] Diering D H. Tunnels under pressure in an ultra-deep Wifwatersrand gold mine[J]. The Journal of South African of Mining and Metallurgy, 2000(10): 319-324.
    [6] Vogel M, Andrast H P. Alp transit-safety in construction as a challenge, health and safety aspects in very deep tunnel construction[J]. Tunneling and Underground Space Technology, 2000, 15(4): 481-484.
    [7] J.查德威克.南非金矿井的深部开采技术[J].国外金属矿山, 1997, 6: 29-34.
    [8] Kidybinski. Strata control in deep mines[M]. Rotterdam: A. A. Balkema, 1990.
    [9]何满潮,谢和平,彭苏萍.深部开采岩体力学研究[J].岩石力学与工程学报, 2005, 24(1): 2803-2813
    [10]何满潮,谢和平,彭苏萍.深部开采岩体力学及工程灾害控制研究[J].煤矿支护, 2007, 3: 1-14
    [11]谢和平,彭苏萍,何满潮.深部开采基础理论与工程实践[M].北京:科学出版社, 2006.
    [12]钱七虎.非线性岩石力学的新进展-深部岩体力学的若干问题[A].第八次全国岩石力学与工程学术大会论文集[C].中国岩石力学与工程学会主编,北京:科学出版社, 2004: 10-17.
    [13]钱鸣高. 20年来采场围岩控制理论和实践的回顾[J].中国矿业大学学报, 2000, 19(1): 1-4.
    [14] Sun Jun, Wang Sijing. Rock mechanics and rock engineering in china: developments and current state-of-the-art[J]. International Journal of Rock Mechanics and Mining Science, 2000, (37):447-465
    [15]古德生.金属矿床深部开采中的科学问题[A].科学前沿与未来(第六集)[C].香山科学会议主编,北京:中国环境科学出版社, 2002: 192-201.
    [16]谢和平,陈忠辉.岩石力学[M].北京:科学出版社, 2004.
    [17]张国枢,谭允祯,陈开岩等.通风安全学[M].徐州:中国矿业大学出版社, 2000.
    [18]王德明.矿井通风与安全[M].徐州:中国矿业大学出版社, 2007.
    [19] Jeppe C W B. The estimation of ventilation air temperatures in deep mines[J]. Journal of the Chemical Metallurgical and Mining Society of South Africa, 1939.
    [20]吴先瑞,彭毓全.德国矿井降温技术考察[J].江苏煤炭, 1992, 4: 8-11.
    [21] von Glehm F H, Bluhm S J. Practical aspects of the ventilation of high-speed developing tunnels in hot working environments[J]. The Journal of the South African Institute of Mining and Metallurgy, 2000, 11:445-448.
    [22] von Glehm F H, Marx W X, Botha P et al. Estimation of ventilation and cooling requirements for caving mining in hot rock[A]. 1st International Symposium on Block and Sub-level Caving[C] V & A Waterfront, 2007:51-58.
    [23] del Castillo D O, Burn A, Pieters A et al. The design and implementation of a 17MW thermal storage cooling system on a South African mine[A]. International Congress of Refrigeration[C]. Washington, D.C., 2003: 1-8.
    [24] Lowndes I S, Pickering S J, Twort C T. The application of exergy analysis to the cooling of a deep UK colliery[J]. The Journal of the South African Institute of Mining and Metallurgy, 2004, 8: 381-396.
    [25] Kotas T J. The exergy method of thermal plant analysis[M]. Krieger Pub. Co., 1995.
    [26]张灿.冰输冷降温系统的研究与应用[D].泰安:山东科技大学, 2006.
    [27]毛淑丽.冰输冷降温系统原理及设计计算研究[D].泰安:山东科技大学, 2007.
    [28]乔华,王景刚,张子平.深井降温冰冷却系统融冰及技术经济分析研究[J].煤炭学报, 2000, 12(增): 122-125.
    [29]何满潮,张毅,乾增珍等.深部矿井热害治理地层储冷数值模拟研究[J].湖南科技大学学报, 2006, 21(2): 13-16.
    [30]何满潮,徐敏. HEMS深井降温系统研发及热害控制对策[J].岩石力学与工程学报, 2008, 27(7): 1353-1361.
    [31]何满潮,张毅,郭东明等.新能源治理深部矿井热害储冷系统研究[J].中国矿业, 2006, 15(9): 62-66.
    [32]何满潮,乾增珍,徐能雄等.深部地层储能技术及其工程应用[J].地热能, 2003, 5: 3-8.
    [33]何满潮,张毅,乾增珍等.储冷对井治理深部矿井热害研究[J].煤田地质与勘探, 2006, 34(5): 23-26.
    [34]何满潮.一种深部地层储能及利用系统:中国, 03200528.8[P]. 2004-3-17.
    [35]国家安全生产监督管理总局.煤矿安全规程[M].北京:煤炭工业出版社, 2005.
    [36]胡春胜.孙村煤矿深部制冷降温技术的研究与应用[J].矿业安全与环保, 2005, 32(5): 45-47.
    [37]郭建伟.深热综采工作面制冷降温技术的研究与实施[J].矿业安全与环保, 2006, 33(1): 37-39.
    [38]袁亮.淮南矿区矿井降温研究与实践[J].采矿与安全工程学报, 2007, 24(3): 298-301.
    [39]孙希奎,李学华,程卫民.矿井冰水冷辐射降温技术研究[J].采矿与安全工程学报, 2009, 26(1): 105-109.
    [40] J. Bear. Dynamics of fluids in porous media[M]. American Elsevier, New York, 1972.
    [41]王补宣.工程传热传质学(下册)[M].北京:科学出版社, 1998.
    [42]论文编辑组.面向二十一世纪热科学研究—庆贺王补宣院士七十五寿辰论文集[C].北京:高等教育出版社, 1999.
    [43] Kaviany M. Principle of heat transfer in porous media[M]. New York: Springer-Verlag, 1995.
    [44] Carbonell R G, Whitaker S. Heat and mass transfer in porous media[A]. In: Proceedings of the NATO Advanced Study Institute on Mechanics of Fluids in Porous Media[C]. Newark, USA, 1984: 121-198.
    [45] Miller M. Bounds for effective electrical thermal and magnetic properties of heterogeneous materials [J]. Mathematical Physics, 1969, 12(10):1988-2004.
    [46] Hadley G R. Thermal conductivity of packed metal powders[J]. International Journal of Heat and Mass Transfer, 1986, 29 (6): 909-920.
    [47] Buonanno G, Carotenuto A. The effective thermal conductivity of a porous medium with interconnected particles[J]. Int. J. Heat Mass Transfer, 1997, 40(2): 393-405.
    [48] Mandelbrot B B. The Fractal Geometry of Nature[M]. San Francisco: Freeman, 1983.
    [49] Katz A, Thompson A. Fractal sandstone pores: implications for conductivity and pore formation[J]. Physical Review Letters, 1985, 54: 1325-1328.
    [50] Thovert J F, Wary F, Adler P. M. Thermal conductivity of random media and regular fractals[J]. Journal of Applied Physics, 1990, 68(8): 3872-3883.
    [51]施明恒,李小川,陈永平.利用分形方法确定聚氨酯泡沫塑料的有效导热系数[J].中国科学(E), 2006, 36(5): 560-568.
    [52]施明恒,樊荟.多孔介质导热的分形模型[J].热科学与技术, 2002, 1(1): 28-31.
    [53] Chen Y P, Shi M H. Determination of effective thermal conductivity for real porous media using fractal theory[J]. Journal of Thermal Science, 1999, 8(2): 102-107.
    [54]陈永平,施明恒.基于分形理论的多孔介质导热系数研究[J].工程热物理学报, 1999, 20(5): 608-612.
    [55]陈永平,施明恒.应用分形理论的实际多孔介质有效导热系数的研究[J].应用科学学报, 2000, 18(9): 263-266.
    [56]李小川,施明恒,张东辉.非均匀多孔介质中导热过程[J].东南大学学报, 2005, 35(5): 761-765.
    [57]郁伯铭.分形多孔介质的传热与传质分析(综述)[J].工程热物理学报, 2003, 24(3): 481-483.
    [58] Yu Boming, Cheng Ping. Fractal models for the effective thermal conductivity of bi-dispersed porous media[J]. J. Thermophysics and Heat Transfer, 2002, 16(1): 22-29.
    [59] Xiulan Huai, Weiwei Wang, Zhigang Li. Analysis of effective thermal conductivity of fractalporous media[J]. Applied Thermal Engineering, 2007, 27: 2815-2821.
    [60]王唯威,淮秀兰.分形多孔介质导热数值模拟分析[J].工程热物理学报, 2007, 28(5): 835-837.
    [61]秦跃平,党海政,曲方.回采工作面围岩散热的无因次分析[J].煤炭学报, 1998, 23(1): 62-66.
    [62]秦跃平,党海政,刘爱明.用边界单元法求解巷道围岩的散热量[J].中国矿业大学学报, 2000, 29(4): 403-406
    [63] Roy T R, Singh B. Computer simulation of transient climatic conditions in underground airways[J]. Mining science and technology, 1991, 13: 395-402.
    [64] A. H.舍尔巴尼.矿井降温指南(译本)[M].北京:煤炭工业出版社, 1982.
    [65]平松良雄.通风学(译本)[M].北京:冶金工业出版社, 1981.
    [66]岑衍强,胡春胜,候祺棕.井巷围岩与风流间不稳定换热系数的探讨[J].阜新矿业学院学报, 1987, 6(3): 105-114.
    [67]秦跃平,秦凤华,党海正.用差分法结算巷道围岩与风流不稳定换热准数[J].湘潭矿业学院学报, 1998, 13(1): 6-10.
    [68]孙培德.计算非稳定传热系数的新方法[J].中国矿业大学学报, 1991, 20(6): 33-37.
    [69] Sun Peide. A new coumputation method for the unsteady heat transfer coefficient in a deep mine[J]. Journal of coal science & engineering(China), 1999, 5(2): 57-61.
    [70] Yakovenko A K, Averin G V. Determination of the heat-transfer coefficient for a rock mass with small Fourier numbers[J]. Fiziko-teknicheskle Problemy Razrabotkl Poleznykh Iskopaemykh, 1984, 1: 63-67.
    [71] Starfield A M, Dickson, A. J. A study of heat transfer and moisture pick-up in mine airways[J]. Journal of the South Africa Institute of Mining and Metallurgy, 1967, 67:211-234.
    [72] Starfield A M. The computation of temperature increases in wet and dry airways[J]. Journal of the Mine Ventilation Society of South Africa, 1966, 19:157-165.
    [73] Starfield A M, Bleloch A L. A new method for the computation of heat and moisture transfer in a partly wet airway[J]. Journal of the South Africa Institute of Mining and Metallurgy, 1983, 83:263-269.
    [74]周西华,王继仁,卢国斌等.回采工作面温度场分布规律的数值模拟[J].煤炭学报, 2002, 27(1): 59-63.
    [75]周西华.矿井空调热力过程的数值模拟研究[D].阜新:辽宁工程技术大学, 1999.
    [76] Barrow H, Pope C W. A simple analysis of flow and heat transfer in railway tunnels[J]. International journal of heat and fluid flow, 1987, 8(2): 119-123.
    [77]邓先和,邓颂九.光滑圆管中恒定物性流体的对流传热准数方程近似分析解[J].化工学报, 1987, 4:494-502.
    [78] Redjem-saad L, Ould-rouiss M, Lauriat G. Direct numerical simulation of turbulent heat transfer inpipe flows: effect of Prandtl number[J]. International journal of heat and fluid flow, 2007, 28: 847-861.
    [79] Piller M. Direct numerical simulation of turbulent forced convection in a pipe[J]. International journal for numerical methods in fluids, 2005, 49: 583-602.
    [80] Obot N T, Das L, Vakili D E et al. Effect of Prandtl number on smooth-tube heat transfer and pressure drop[J]. International communications in heat and mass transfer, 1997, 24(6): 889-896.
    [81] Obot N T, Esen E B, Snell K H et al. Pressure drop and heat transfer characteristics for air flow through spirally fluted tubes[J]. International communications in heat and mass transfer, 1992, 19(1): 41-50.
    [82] Obot N T, Esen E B. Smooth tube friction and heat transfer in laminar and transitional flow[J]. International communications in heat and mass transfer, 1992, 19(3):299-310.
    [83] Antona R A, Kim J. Turbulent Prandtl number in the near-wall region of a turbulent channel flow[J]. International journal of heat and mass transfer, 1991, 34(7): 1905-1908.
    [84] Mceligot D M, Taylor M F. The turbulent Prandtl number in the near-wall region for low-Prandtl number gas mixtures[J]. International journal of heat and mass transfer, 1996, 39(6): 1287-1295.
    [85] Kenji K, Kwing-so C, Tsuneo A. Heat transfer enhancement and pressure loss by surface roughness in turbulent channel flows[J]. International journal of heat and mass transfer, 2000, 43: 4009-4017.
    [86]吴学慧.城市污水流动与换热及污垢增长特性研究[D].哈尔滨:哈尔滨工业大学, 2009.
    [87] Noureddine B, Sassi B N. Mass and heat transfer during water evaporation in laminar flow inside a rectangular channel-validity of heat and mass transfer analogy[J]. International Journal of Thermal Science, 2001,40: 67-81.
    [88] Smolsky B M, Sergeyev G T. Heat and mass transfer with liquid evaporation[J]. International Journal of Heat and Mass Transfer, 1962, 5(10): 1011-1021.
    [89] Chow L C, Chung J N. Evaporation of water into a laminar stream of air and superheated steam[J]. International Journal of Heat and Mass Transfer, 1983, 26(3): 373-380.
    [90] Kondjoyan A, Daudin J D. Determination of transfer coefficients by psychrometry[J]. International Journal of Heat and Mass Transfer, 1993, 36(7): 1807-1818.
    [91]肯尼斯·法尔科内.分形几何-数学基础及其应用[M].曾文曲,刘世耀,高占阳等译.沈阳:东北大学出版社1991.
    [92]肯尼斯·法尔科内.分形几何中的技巧[M].曾文曲,王向阳,陆夷译.沈阳:东北大学出版社1999.
    [93]杨彦从,彭瑞东,周宏伟.三维空间数字图像的分形维数计算方法[J].中国矿业大学学报, 2009, 38(2): 251-258.
    [94]彭瑞东,谢和平,鞠扬.二维数字图像分形维数的计算方法[J].中国矿业大学学报, 2004,33(1): 19-24.
    [95]杨书申,邵龙义. MATLAB环境下图像分形维数的计算[J].中国矿业大学学报, 2006, 35(4): 478-482.
    [96]康天合,赵阳升,靳钟铭.煤体裂隙尺度分布的分形研究[J].煤炭学报, 1995, 20(4):393-398.
    [97]张东辉.多孔介质扩散、导热、渗流分形模型的研究[D].南京:东南大学, 2003.
    [98]李小川,施明恒.多孔介质热导率的数值计算[J].工程热物理学报, 2008, 29(2):291-293.
    [99]曾攀.有限元分析及应用[M].清华大学出版社,2004.
    [100] Archie, G E. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Petroleum Transactions of AIME 1942, 146:54-62.
    [101]崔广心.相似理论与模型实验[M].徐州:中国矿业大学出版社, 1990.
    [102]王丰.相似理论及其在传热学中的应用[M].北京:高等教育出版社, 1990.
    [103] Mcpherson M J. The analysis and simulation of heat flow into underground airways[J]. International journal of mining and geological engineering, 1986, 4:165-196.
    [104]张渭滨.数学物理方程[M].北京:清华大学出版社,2007.
    [105]庄万,萧礼,洪良辰等.数学物理方程[M].济南:山东科学技术出版社,2007.
    [106] ?zisik M N.热传导[M].俞昌铭,译.北京:高等教育出版社,1983.
    [107] Grigull U, Sandner H. Heat conduction[M]. Washington: Hemisphere Publishing Corporation, 1984.
    [108]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998.
    [109]王英敏,朱毅,李锦泰等.深井巷道围岩与空气热交换过程的研究[J].煤炭学报, 1987, 4: 17-29.
    [110]徐文熙,徐文灿.粘性流体力学[M].北京:北京理工大学出版社,1989.
    [111]赵学瑞,廖其奠.粘性流体力学[M].北京:机械工业出版社, 1993.
    [112]张也影.流体力学[M].北京:高等教育出版社, 1999.
    [113]刘烽,吴增茂,薛越霞.近地层风廓线与垂直湍流强度关系研究[J].青岛海洋大学学报, 2000, 30(1): 36-42.
    [114]杨强生.对流传热与传质[M].北京:高等教育出版社, 1985.
    [115] Tien C L. On the eddy diffusivities for momentum and heat[J]. Applied Science Research, 1959, 8: 345-348.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700