用户名: 密码: 验证码:
实际巷道火灾过程热物理参数变化规律与计算机仿真的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在亚洲最大的试验巷道完成全尺寸的巷道火灾试验14次,连续采集了烟气温度、壁温、岩体温度、压力、氧气和二氧化碳的浓度、风速等参数随位置和时间的变化量;研究了热阻力与风机风压、火风压、节流效应、粘性比热阻、膨胀热阻、坑木表面的延燃速度、比燃料消耗率和复合对流换热系数等火灾时期的主要热物理参量的变化规律;并考察了密闭火区空间的温度和压力的变化特点;给出了反映火灾烟流运动确定性和混沌特点的数学描述;引入了比燃料消耗率的概念,并把它作为研究非稳定流火灾的重要特征参数,建立了系列仿真模型;应用化学热力学和化学动力学原理,研究了煤矿中三种主要固体燃料的燃烧机理及燃烧热的流向;应用传热传质学理论研究了烟流与围岩间的主要换热形式及大小;提出了计算火风压大小的新公式;揭示了产生节流效应的热物理机制及节流发生的时限。
The fullscale tunnel fire experiments were completed for 14 times in the maximum testing tunnel in Asia, and the variations changing with time at different position were acquired continually, such as temperature of smoke flow, temperature of wall and rock, pressure, concentration of oxygen and carbon dioxide and air-flow velocity etc. The time-dependent law of the main thermophysics parameters wree studied, of which are thermal resistance, fan pressure, thermal potential pressure, coefficient of throttled flow, dimensionless viscous drag force, expansion thermal resistance, flame velocity spreading on the surface of fuels, dimensionless rate of mass loss, and synthetic coefficient of heat transfer in the process of burning and in the airtight space abruptly cut off fresh air-flowing. The characteristics of the determinacy and chaos in the process of motion of smoke was described by use of Lyapunov characteristic exponent. The dimensionless rate of mass loss of fuels as a significant nature parameter was defined for studing the unsteady flow during fire, and a series of models were set up for the simulation of fire. Based on the thermochemistry and chemical kinetics, the combustion mechanism and flowing direction of combustion heat for the three main species of solid fuels was studied. Based on the principle of heat and mass transfer, the main forms and quantity of heat transfer between the smoke-flow and the surround rock were studied. The new formula for calculating thermal potential pressure was drawn out. The mechanism and time limit of throttled flow taking place was brought to light.
引文
[1] Kenneth K. Kuo. Principles of Combustion. Pennsylvania, 1987
    [2] H. D. Gruschka, F. Wecken. Gas Dynamic Theory of Detonation. Gardon and Breach Science Publishers, 1971
    [3] H. W. Liepmann, A. Roshko. Elements of Gas Dynamics. California Institute of Technology Copyright, 1957
    [4] 张梓雄,董曾南.粘性流体力学.北京:清华大学出版社,1999.6
    [5] 范维澄等.火灾学简明教程.安徽:中国科学技术大学出版社,1995
    [6] 王德明等.矿井火灾救灾决策支持系统.北京:煤炭工业出版社,1996.10.
    [7] 煤炭工业部煤矿安全科技情报中心站救护分站编.矿井灾害处理事故汇编.第一集,1985.3
    [8] 煤炭工业部煤矿安全科技情报中心站救护分站编.矿井灾害处理事故汇编.第二集,1985.3
    [9] 王省身,张国枢.矿井火灾防治.徐州:中国矿业大学出版社,1990
    [10] 韩昭沧主编.燃料及燃烧.北京:冶金工业出版社,1994.10
    [11] 俞启香.矿井瓦斯.徐州:中国矿业大学出版社,1992
    [12] 顾启泰著.应用仿真技术.北京:国防工业出版社,1995.9
    [13] Donghoon Shin, Sangmin Choi. The combustion of simulated waste particles in a fixed bed. Combustion and Flame, 2000, 121(1/2):167
    [14] A. Kronenburg, R. W. Bilger, and J. H. Kent. Modeling soot formation in turbulent methane-air jet diffusion flames. Combustion and Flame, 2000, 121(1/2):24
    [15] J.WACLAWIK.O TEMPERATURZE GAZOW POZAROWYCH W WYROBISKU KORYTARZOWYM. ARCHIVES OF MINING SCIENCES, 1989, 34
    [16] [波] W.齐乌尔津斯基本,J.特拉兹,W.特鲁吐温.矿井火灾的模拟.第四届国际矿井通风会议论文集,中国统配煤矿总公司,1989.3
    [17] [日] 天野熏松,水田芳昭,[中] 钱标.岩石热扩散率的现场测量及不稳定地下气候预测.第四届国际矿井通风会议论文集,中国统配煤矿总公司,1989.3
    [18] 1985.
    [19] [日] 羽田,博宪等.井下燃烧物的燃烧气体研究.资源,1990,P1-9
    [20] [西德] 瓦尔特.保特.根据矿井中的燃烧热能预计火风压.GLUCKAUF,1982,Nr5
    [21] [日] 山尾信一郎等.关于矿内火灾的研究.
    [22] [日] 山尾信一郎.防止井下火灾.日本矿业会志,1983,(8):117-120
    [23] C.J. Lea. Computational modeling of mine fires. Min. Eng. B Sc, 1994.7
    [24] Margaret R. Egan. Impact of air velocity on the development and detection of small coal fires. INT. BU.OF MINES, PGH, U. S. G. P. O: 1993-709-008/80044.
    [25] 张国枢,王省身.火风压的计算及其影响因素分析.中国矿业学院学报,1983
    [26] 戚宜欣.矿井火灾烟流温度场及浓度场的数值模拟.两安矿业学院学报,1994,1
    [27] 李传统.火风压机理及烟流参数变化规律的研究.博士学位论文,中国矿业大学,1995.3
    [28] Fu Pei Fang, Yu Qi Xiang, Ye Ru Ling, Jiang Shi Cai. Computer simulation of combudtion of mine fire. Coal Mine Safety and Health. Proceedings of the International Mining Tech. '98 Symposium, ChongQing/China/14-16 Otc. 1998
    [29] 周心权,吴兵.矿井火灾救灾理论与实践.北京:煤炭工业出版社,1996.11
    [30] 吴兵.矿井火灾时期火风压模拟研究报告.中国矿业大学,1994.10
    [31] 叶汝陵等.巷道火灾时期通风技术和MTU通风程序移植的研究技术鉴定资料.煤炭科学研究总院重庆分院,1991.3
    [32] 傅培舫,叶汝陵等.巷道火灾时期非稳定流的研究技术鉴定资料.煤炭科学研究总院重庆分院,1998.12。
    [33] 张兴凯,李华.一次实际模拟火灾实验结果及分析.煤矿安全,1994.10
    [34] 张兴凯.水平巷道火灾烟流逆流层的形成条件.煤矿安全,1994.11
    [35] 蒋军成.矿井烟气流动的分析及救灾决策支持系统研究.中国矿业大学,博士论文,1996.6
    [36] Jerzy A. Owczarek. Fundamentals of Gas Dynamics. International Textbook Co., 1964
    [37] M.J. Zucrow, J.D. Hoffman. Gas Dynamics. John Wiley & Sons, Inc., 1976
    [38] W. H. LI, S. H. LAM. Principles of Fluid Mechanics. Addison-Wesley Publishing Company, Inc., 1964
    [39] 岑可法,樊建人合编.燃烧流体力学.北京:水利电力出版社,1991.9
    [40] 范维澄,陈义良,洪茂玲.计算燃烧学.合肥:安徽科学技术出版社,1987.3
    [41] 卞阴贵,徐立功编著.气动热力学.合肥:中国科学技术出版社,1997
    [42] C.M. Coats, A. P. Richardson. Nonpremixed combustion in turbulent moxing layers. Part 1: Flame characteristics. Combustion and Flame 122:253-270 (2000)
    [43] C.M. Coats, A. P. Richardson and S. Wang. Nonpremixed combustion in turbulent mixing layers. Part 2: Recirculation, mixing and flame stabilization. Combustion and Flame 122:271-290(2000)
    [44] S. Mazumder, M. F. Modest. Turbulence-radiation interaction in nonreactive flow of combustion gases. Transactions of the ASME, J. of Heat Transfer, 1999, 121 (8): 726-729
    [45] 刘式达,刘式适编著.孤波和湍流.上海:上海科技教育出版社,1994.10
    [46] 顾雁编著.量子混沌.上海:上海科技教育出版社,1996.12
    [47] O. Manca, B. Morrone, and S. Nardim. Thermal analysis of solids at high Peclet numbers Subjected to moving heat sources. Transactions of the ASME, J. of Heat Transfer, 1999, 12(2): 182-186
    [48] G. F. Carrier, F. E. Fendell, and M. F. Wolff. Wind-aided firespread across arrays of discrete fuel elements. I. Theory. Combustion Sci. and Tech.., 1991, 75:99.31-51
    [49] M. F. Wolff, G. F. Carrier, F. E. Fendell. Wind-aided firespread across arrays of discrete fuel elements. Ⅱ. Experiment. Combustion Sci. and Tech., 1991, Vol.77, 99.261-289
    [50] R. Kurose, H Tsuji, H. Makino. Effects of moisture in coal on pulverized coal combustion characteristics. Fuel 80 (2001) 1457-1465
    [51] M. Satto, K. Amagai etc. Combustion characteristics of waste material containing high moisture. Fuel 80 (2001) 1201-1209
    [52] G. Zheng, J. A. Kozinski. Thermal events occurring during the combustion of biomass residue. Fuel 79 (2000) 181-192
    [53] L. Sorum, M. G. Gronli, J. E. Hustad. Pyrolysis characteristics and kinetics of municipal solid wastes. Fuel 80 (2001) 1217-1227
    [54] B.K. Mazumdar. Theoretical oxygen requirement fo coal combustion: relationship with its calorific value. Fuel 79 (2000) 1413-1419
    [55] 常弘哲,张永康,沈际群编.燃料与燃烧.上海:上海交通大学出版社,1993.3
    [56] X.H. Liang, J. A. Koziski. Numerical modeling of combustion and pyrolysis of cellulosic biomass in thermogravimentric systems. Fuel 79 (2000) 1477-1486
    [57] E. Donskoi, D. L. McElwain. Optimization of coal pyrolysis modeling. Combusstion and Flame 122:359-367 (2000)
    [58] Seung Wook Beck, Jeong Soo Kim. Ignition of a pyrolyzing solid with radiatively active fuel vapor. Combustion Sci. and Tech., 1991, Vol.75, 99.89-102
    [59] K. B. McGRATTAN, T. KASHIWAGI, and H. R. BAUM. Effects of ignition and microgravity environment. Combustion and Flame 106:377-391 (1996)
    [60] J Larfeldt, B. Lockner, M. C. Melaaen. Modelling and measurements of the pyrolysis of large wood particles. Fuel 79 (2000) 1637-1643.
    [61] (苏)E.B.康托劳维奇著,闻望译.固体燃料燃烧与气化导论.北京:中国工业出版社,1965.9
    [62] Tao Fang Zeng, Wei Biao Fu. The ratio CO/CO_2 of oxidation on a burning carbon surface. Combustion and Flame 107:197-210(1996)
    [63] Dougal Drysdale. An Introduction to Fire Dynamics. A Wiley -interscience Publication, 1985
    [64] 霍然,胡源,李元洲编著.建筑火灾安全工程导论.合肥:中国科学技术大学出版社,1999.11
    [65] A. V. Kristin. Detailed modeling of soot formation in hydrocarbon pyrolysis. Combustion and Flame 121:513-524(2000)
    [66] D. Brian Spalding. Combustion and Mass Transfer. Oxford. New York, Pergamon, 1979.
    [67] 严家騄编著.工程热力学.北京:高等教育出版社,1990.8
    [68] Jennifer L. Rhatigan, Hasan Bedir and J. S. T'IEN. Gas-phase radiative effects on the burning and extinction of a solid fuel. Combustion and Flame 112:231-241 (1998)
    [69] J. S. T'IEN. Diffusion flame extinction at small stretch rates: The mechanism of radiative loss. Combustion and Flame 65:31-34 (1986)
    [70] S. H. Wu, C. Y. Wu. Integral equation solutions for transient radiative transfer in nonhomogeneous anisotropically scattering media. J. of Heat Transfer, 2000, 122:818-821
    [71] C. H. Sohn, J. S. Kim, K. Maruta. Nonlinear evolution of diffusion flame oscillations triggered by radiative heat loss. Combustion and Flame 123:95-106 (2000)
    [72] [德] 工艺与化学工程学会编.传热手册.北京:化学工业出版社,1983.3
    [73] 李汝辉编著.传质学基础.北京:北京航空航天大学出版社,1987.9
    [74] 郭方中编.动态传热学.武汉:华中理工大学出版社,1997.4
    [75] 陶文铨编著.数值传热学.西安:西安交通大学出版社,1995.12
    [76] 郭宽良等编著.计算传热学.合肥:中国科学技术大学出版社,1989.8
    [77] 徐华舫编著.空气动力学基础.北京:北京航空学院出版社,1987.11
    [78] A. J. Ward-Smith. The Fluid Dynamics of Flow in Pipes and Ducts, Internal Fluid Flow. Oxford University Press, New York. 1980.
    [79] Katerina Sarde, A. M. K. P. Taylor, and J. H. Whitelaw. Extinction of turbulent counterflow flame under periodic strain. Combustion and Flame 120:265-284
    [80] N. Ramesh, S. P. Venkateshan. Effect of sureface radiation and partition resistance on natural convection heat transfer in a partitioned endosure: An experimental study. Transactions of the ASME, J. of Heat Transfer, 1998, 121:616-622
    [81] 傅培舫.下行通风的沼气运移规律.中国矿业大学,硕士学位论文,1990.12
    [82] Walter Frost, Trevor H. Moulden. Handbook of Turbulence. 1977 Plenum Press, New York
    [83] 过增元.热流体力学.北京:清华大学出版社,1992.2
    [84] Q. Zhu, J. M. Jones, etc. The Predictions of coal/char combustion rate using an artificial Neural Network Approach. Fuel 78 (1999) 1755-1762
    [85] Y. C. Guo, C. K. Chan. A Multi-fluid model for simulating turbulent gas-particle flow and pulverized coal combustion. Fuel 79 (2000) 1467-1476
    [86] A. D'ANNA, A. VIOLI, and A. D'ALESSIO. Modeling the rich combustion of ariphatic hydrocarbons. Combustion and Flame 121: 418-429 (2000)
    [87] A. Rosema, H. Guan, H. Vold. Simulation of spontaneous combustion, to study the causes of coal fires in the Rujigon Bosin. Fuel 80 (2000) 7-16
    [88] Ismai Celik, Wei Ming Zhang, J. L. Spenik etc. One-dimensional modeling and measurement of pulsating gas-solid flow in Tubes. Combustion Sci. and Tech., 1993, Vol.94, 99.353-378
    [89] F. Chejne, J. P. Hemandez, W. F. Florez, etc. Modeling and simulation of time-dependent coal combustion processes in stacks. Fuel 79 (2000) 987-997
    [90] 吴麒主编.自动控制原理.北京:清华大学出版社,1995.2
    [91] 赵以蕙主编.矿井通风与空气诃节。徐州:中国矿业大学出版社,1990.12
    [92] 张惠枕编著.计算机在矿井通风中的应用.徐州:中国矿业大学出版社,1992
    [93] 余恒昌等编.矿山地热与热害治理.北京:煤炭工业出版社,1991.7
    [94] 李先炜编著.岩体力学性质.北京:煤炭工业出版社,1990.3
    [95] 沈显杰,杨淑贞,张文仁著.岩石热物理性质及其测试.北京:科学出版社,1988.5
    [96] GB4989-85.热电偶用补偿导线.
    [97] 马明建,周长城编著.数据采集与处理技术.西安:西安交通大学出版社,1999.4
    [98] 刘惠彬,刘玉刚编.测试技术.北京:航空航天大学出版社,1989.6
    [99] 杨本洛著.理论流体力学的自洽化分析,——源于”湍流”的哲学和数学思考.上海:上海交通大学出版社,1998.8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700