用户名: 密码: 验证码:
水力通风换热机性能参数关系及换热效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深井高温热害是矿业生产中的一大难题,传统通风降温已不能彻底解决这一问题,这也随着矿井采掘深度的加大而更加突出。
     为降低井下作业区域温度,使工作环境达到职业卫生防护条件,以确保矿山安全生产及工人身体健康,论文在深入研究目前国内外深井热害治理的现状与水平的基础上,根据利用外界冷源来降低空气温度的有效方法,提出利用深井开采中供水系统水流的位能作为深井作业区域通风的动力,利用产生的风流及气液对流换热来调节深井空气温度。在此理论基础上,研制出了一种控制调节深井温度的新型装置——水力通风换热机。
     本论文主要研究内容和成果如下:
     (1)介绍了水力通风换热机的基本原理和主要功能。水力通风换热机主要由扇风机、水轮机和换热结构三部分组成。水轮机的作用是产生通风动力,扇风机用来形成风流,热空气和冷水在换热结构中进行气液对流换热达到降温效果。换热、通风也即是水力通风换热机的主要功能。本研究为深井通风降温提供了一种新的研究思路和方向。
     (2)根据国内外人工降温技术,论文分析了深井热源和待换热量,确定了深井降温工作面热荷载计算的基本方法,即:将井下各种热源分别计算再进行汇总。这一方法虽然不能准确而实时的计算井下总热量,但结合了水力通风换热机自身的特性,可作为水力通风换热机在不同条件下的深井降温设计的参考依据,它是论文对换热机进行深入研究的基础。在此基础上,论文确定了工作面需冷量,并对融冰实验进行了初步研究。
     (3)研究装置运转形成通风过程中动力转换的控制因素,确定了各控制因素对装置总体性能的影响机制以及换热机主要性能参数的数学表达式。对水力通风换热机进行初步实验,转速、风量、风压等主要性能参数的测试结果满足设计要求,其实验数据与理论数值进行比较得出,两者基本吻合,由此证明了性能参数关系式的正确性,可以作为论文进一步研究的理论基础。对动力转换效率的研究表明论文实验方案及装置有待进一步优化。根据实验结果论文研究中涉及的水能利用率比较高,适合较深的高温矿井通风降温。
     (4)建造了高温环境实验空间,研究气液对流换热规律,建立了气液热交换数学模型。在不同的热环境条件下研究装置内热空气与冷却水对流换热的换热效果。实验表明,经过换热作用,26℃左右的热空气可以降低到15℃以下,降温幅度达到10℃以上,这一降温结果完全满足深井通风的要求。实验及数值计算表明,本研究成果可行且有效,可以推广应用于深井通风降温的实际工作中。
     (5)通过实验和数值模拟计算,论文得出影响换热效果的主要设计参数,这一结果可以为换热机的进一步改良优化提供改进方向。
High temperature damage produced in deep mining is a major problem in mining production.The traditional ventilation cooling can not completely solve this problem. At the same time, the high temperature damage is more prominent along with the increase of mine mining depth.
     Based on in-depth study status and level of high temperature damage produced in deep mining treatment at home and abroad, one theory is proposed which is using water's potential energy of supply water system in deep mining as a ventilation driving force in the deep mine working area and using generated dissolute and gas-liquid convection heat transfer to regulate the air temperature in deep mine, according to an effective method which is using outside cold source to reduce the air temperature, in order to reduce the temperature of underground working areas so that the work environment can achieve occupational health protection conditions and ensure mine safety and health of workers. Based on this theory, new devices which is hydraulic ventilation and heat transfer machine is developed, which is used to control and regulate deep mine temperature.
     The research contents and results of this paper are as follows:
     (1) The basic principal and main function of hydraulic ventilation and heat transfering engine were introduced. The hydraulic ventilation and heat transferring engine consisted of fan blower, hydraulic turbine and heat transfer structure. Hydraulic turbine was used to generate ventilation power; fan blower was used to form airflow; heat transfering structure provided a room for hot airflow which was exchanged with cold water in the form of convection to lower temperature. Therefore, heat transfering and ventilation were the main function of hydraulic ventilation and heat transfer engine, which provided new idea and direction for the research of ventilation and cooling in deep mine.
     (2) Analysis on heat source in the deep shaft and study on heat awaiting transferring were made based on artificial cooling technology at home and abroad. And the basic method for calculating thermal loading on cooling working face, in which all kinds of heat source were respectively computed and summarized at last, was determined. This method, a basis for deeply studying heat transfer engine, was not able to accurately and real-timely calculate total underground heat, but could provide for designing underground cooling in different conditions. According to this method, chilling requirement on working face was determined and ice melting test was preliminarily studied.
     (3) The controlling factors of power conversion was formed in the process of ventilation caused by research apparatus' operation; The influence mechanism of controlling factors on total performance was determined; the main performance parameter relation of heat transferring engine was concluded. The preliminary test of hydraulic ventilation and heat transfer engine demonstrated that the test results of main performance parameters such as rotation speed, air volume, air pressure, can satisfy the designing requirement, inosculating with the result of theory, which proved the correctness of performance parameter relation and can be the theoretical basis for further study.
     The study of dynamic conversion efficiency showed that a further optimization is needed for the test scheme. According to test results, waterpower utilization rate involved in paper is high, which is suitable for the ventilation and cooling for deeper hyperthermal mine.
     (4) Hyperthermal testing space was built to study the rule of gas-liquid convection for heat transferring, constructing mathematical model for gas-liquid heat transfer. The effect of heat transferring in the process of convection between hot air and cold water in device was studied in different heat conditions. The tests indicated that the hot air decreased from 26 to 15, with a temperature drop of more than 10, satisfying the requirements of deep mine ventilation. Test and numerical simulation showed that the above results were feasible and effective and could be popularized and applied in engineering practice of deep mine ventilation and cooling.
     (5) Through test and numerical simulation, main designing parameters affecting heat transferring effect was obtained, providing direction for further improving and optimizing heat transfer engine.
引文
[1]李慧娟.矿井降温中的空气调节技术[J].暖通空调,1994,6:43~45.
    [2]兰贵枝.孟加拉国巴矿建井期间降温措施的探讨[J].煤炭科技,2001,4:13~15.
    [3]Middleton JVG, Muller A.A., A surface ice plant for provision of ice for the cooling of service water in an OFS gold mine [A]. Proceeding of the international conference on gold, gold mining technology, Johannesburg, SAIMM,1986.
    [4]胡春胜.孙村煤矿深部制冷降温技术的研究与应用[J].矿业安全与环保,2005,32(5):45~47.
    [5]李慧娟,张伟捷.深井降温技术措施[J].河北煤炭建筑工程学院学报,1989,3:46~51.
    [6]孙艳玲,桂祥友.煤矿热害及其治理[J].辽宁工程技术大学学报,2003,22(增):35~37.
    [7]王文,桂祥友,王国君.矿井热害的产生与治理[J].工业安全与环保,2003,29(4):33~35.
    [8]谭海文.金属矿山深井热害产生原因及其治理措施.黄金.2006,2(28):20~23.
    [9]胡汉华.金属矿矿井热害控制关键技术研究:[博士论文].长沙:中南大学,2007.
    [10]GOU K H, SHU B F, YANG W J. Advances and applications of gas hydrate thermal energy storage technology[C]//Proceedings of the 1st Trabzon Int. Energy and Environment Symp Turkey:Karadeniz Technology University Press, 1996:381-386
    [11]GOU K H, SHU B F, ZHANG Y. Transient behavior of energy charge-discharge and solid-liquid phase charge in mixed gas-hydrate formation[C]//Heat Transfer Science and Technology.1996:728~733
    [12]SUS, CHENHW, TEAKLEP, et al. Management characteristics of coal mine ventilation air flows [J]. Journal of Environmental,2007,86(1):1~19
    [13]PARRAMT, VILLAFRUELAJM, CASTROF, et al. Numerical and experimental analysis of different ventilation systems in deep mines[J].Building and Environment,2006,41(2):87-93.
    [14]谢贤平.深井降温技术中的新方法[J].江西有色冶金,1996,10(1):7~10.
    [15]中华人民共和国国家质量监督检验检疫总局.GB16423-2006.金属非金属矿山安全规程.北京:中国标准出版社,2006.
    [16]梅甫定.高温矿井是否进行增风降温的判别[J].煤矿设计,1992(4):9~12.
    [17]刘何清,吴超,王卫军,等.矿井降温技术研究述评[J].金属矿山,2005,(4):43~46.
    [18]王进,赵运超,粱栋.矿井降温空调系统的分类及发展现状[J].中山大学学报论丛,2007,27(2):109~113.
    [19]刘忠宝,王浚,张书学.高温矿井降温空调的概况及进展[J].真空与低温,2002,8(3):130~134.
    [20]胡汉华.深井高温矿山通风与降温技术研究动态[J].金属矿山,1999(7):39~41.
    [21]瓦斯通风防灭火安全研究所.矿井降温技术的50年历程[J].煤矿安全,2003,34(增)28~32.
    [22]冯兴隆,陈日辉.国内外深井降温技术研究和进展[J].云南冶金,2005,34(5):7~10.
    [23]何满潮,徐敏HEMS深井降温系统研发及热害控制对策[J].岩石力学与工程学报,2008,27(7)1353~1361.
    [24]何满潮.HEMS深井降温系统研发及热害控制对策[J].中国基础科学,2008,2:11~16.
    [25]LI C C. Disturbance of mining operations to a deep underground workshop [J]. Tunneling and Underground Space Technology,2006,21(1):1~8.
    [26]SRACEK O, GELINAS P, LEFEBVRE R, et al. Comparison of methods for the estimation of pyrite oxidation rate in a waste rock pile at Mine Doyon Site, Quebec, Canada[J]. Journal of Geochemical Exploration,2006,91(1/3):99~109.
    [27]VANANTWERPEN H J, GREYVENSTEIN G P. Use of turbines for simultaneous pressure regulation and recovery in secondary cooling water systems in deep mines [J]. Energy Conversion and Management,2005, 46(4):563~575.
    [28]HU Y, Koroleva O I, KRSTIC M, et al. Nonlinear control of mine ventilation networks [J]. Systems and Control Letters,2003,49(2):239-254.
    [29]Sheer T J, Correia R M. Research into the use of ice for cooling deep mines [A]. In Third International Mine Ventilation Congress [C], Harrogate,1984.
    [30]Sheer T J, Chaplain E J, Correia R M. Some recent development in the use of ice for cooling mines [J]. Journal of the Mine Ventilation Society of South Africa, 1985,(6):18-24.
    [31]Sheer T J. Pneumatic conveying of ice particles through mine shaft pipelines. Power Technology,1995,85 (3):203-219.
    [32]SHEER T J, BUTTERWORTHMD, RAMSDENR. Ice as a coolant for deep mines [C]//Proceedings of the 7th International Mine Ventilation Congress (Krakow, Poland):2001:354-360.
    [33]Dohmen A, Hagen G. Strategies for improvement of the thermal environment in deep coal mines [A].4th US Mine Ventilation Symposium [C]. Berkeley, CA (USA),1993:121~128.
    [34]冯如彬,李惠娟.深井降温技术中的新方法-冰冷却系统[J].河北煤炭建筑工程学院学报.1995(2):62~65.
    [35]周峰.煤矿深井开采低温辐射降温技术问世[J].煤矿机械,2005(10):131~131.
    [36]王景刚,乔华,冯如彬.深井降温冰冷却系统的应用[J].暖通空调,2000,30(4):76~77.
    [37]乔华,王景刚,张子平.深井降温冰冷却系统融冰及技术经济分析研究[J].煤炭学报,2000,25(增):122~125.
    [38]王景刚,冯如彬,乔华.粒状冰的融解实验研究[J].暖通空调,2001,31(2)5~8.
    [39]胡春胜,周秀隆.压缩空气制冷技术在孟加拉国Barapukuria煤矿的应用[J].煤炭工程,2005(11):35~37.
    [40]赵国彦,古德生等.压缩空气对井下热环境的降温效果研究[J].安全与环境学报,2001,1(6):56~58.
    [40]陈平.采用压气供冷的新型矿井集中空调系统[J].矿业安全与环保,2004,31(3):1~4.
    [41]宋桂梅,张朝昌.高温矿井独头掘进面空气调节的一种新系统[J].制冷与空调,2006,(3):5-8
    [42]吴超主编.矿井通风与空气调节[M].长沙:中南大学出版社,2008,236~268.
    [43]吴中立主编.矿井通风与安全[M].徐州:中国矿业大学出版社,1989,259~270.
    [44]严荣林,侯贤文主编.矿井空调技术[M].北京:煤炭工业出版社,1994.
    [45]石建中,刘堂文.高温矿井空调冷负荷计算[J].工业安全与防尘,2001,27(3)24~25.
    [46]左金宝,吕品,程国军.高温矿井热源分析与制冷降温技术应用[J].煤矿安全,2008,(11):46~49.
    [47]毛淑丽.冰输冷降温系统原理及设计计算研究:[硕士论文].山东泰安:山东科技大学,2007.
    [48]王英敏.矿井通风与防尘[M]北京:冶金工业出版社,1997.
    [49]孔祥强,谢方静,陈喜山等.围岩对矿井入风流温度的影响分析[J].金属矿山,2009,5:164~167.
    [50]何启林,任克斌.深井建井期入风井筒风温的预测[J].煤炭工程,2002,8:47~48.
    [51]高建良,张学博.潮湿巷道风流温度与湿度变化规律分析[J].中国安全科学学报,2007,17(4):136~139.
    [52]胡军华.高温深矿井风流热湿交换及配风量的计算:[硕士论文].山东泰安:山东科技大学,2004.
    [53]王景刚,冯如彬,乔华.粒状冰的融解实验研究[J].暖通空调,2001,31(2)5-8.
    [54]王景刚,乔华,李福勤等.粒状冰的融解数学模型[J].河北建筑科技学院学报,2000,17(2):7~10.
    [55]周文桐,周晓泉.水斗式水轮机基础理论与设计[M].北京:中国水利水电出版社,2007.
    [56]余波肖,惠民编.水轮机原理与运行[M].北京:中国电力出版社,2008.
    [57]黄锐,卢宇鹏,李亚威等.水力通风换热机在矿山深部开采环境中的应用研究[J].大连:2010年中国矿山安全管理与技术装备大会,2010:144~148.
    [58]商景泰主编.通风机实用设计手册[M]北京:机械工业出版社,2005.
    [59]离心式与轴流式通风机编写组.离心式与轴流式通风机[M].北京:水利电力出版社,1980.
    [60]沈阳鼓风机研究所,东北工学院流体机械教研室编著.离心式通风机[M].北京:机械工业出版社,1984.
    [61]王菲.新型双喷射制冷系统关键影响因素及性能研究:[博士论文].大连:大连理工大学,2010.
    [62]苒胜军,卢向华.矿用轴流通风机设计及性能探讨[J].煤矿机械,2008,29(10):74~76.
    [63]Butterworth, MD; Sheer, TJ. High-pressure water as the driving fluid in an ejector refrigeration system APPLIED THERMAL ENGINEERING.27. (11-12):2145-2152.
    [64]Middleton, N. T.; Viljoen, A.; Wymer, D.G HYDRO-POWER AS A SOURCE OF ENERGY IN MINES. Journal of the Mine Ventilation Society of South Africa,1985.38 (6):61~ 64.
    [65]潘黎.煤矿工作面冷却除尘设备的性能实验研究:[硕士论文].天津:天津大学,2007.
    [66]杨天麟.煤矿工作面专用空气冷却器的研究与开发:[硕士论文].天津:天津大 学,2007.
    [67]李孜军,吴超,周勃.独头工作面通风降温新方法及效果分析[J].金属矿山,2002(1):51~53.
    [68]胡汉华,古德生.矿井移动空调室技术的研究[J].煤炭学报,2008,33(3):318~321.
    [69]黄锐.螺旋结构冷却塔的塔板设计方法[J].中国工程科学,2008,(11):43~46.
    [70]李荫堂,李安平,王双等.烟气脱硫喷淋塔气体旋流实验研究[J]环境技术,2005,(1):25~28.
    [71]刘岭梅,陆卫平.螺旋板换热器在SPVC装置汽提系统中的应用[J]化工科技市场,2004,(5):38~39.
    [72]史美中,王中铮.换热器原理与设计[M]南京:东南大学出版社,1989.
    [73]朱聘冠.换热器原理及计算[M]北京:清华大学出版社,1987.
    [74]刘玉峰,杨文裴,丛小春.深井水喷淋处理中喷水系数的确定[J].建筑热能通风空调,2006,25(6):38~40.
    [75]汤文华,张昌,汪秀清.深井水_冷水机组联合供冷系统的研究[J].制冷,2003,22(2):54~57.
    [76]张学学,李贵馥.热工基础[M]北京:高等教育出版社,2000.
    [77]周亨达.工程流体力学[M]北京:冶金工业出版社,1988.
    [78]卓宁,孙家庆.工程对流换热[M]北京:机械工业出版社,1991.
    [79]陶文铨.数值传热学[M].2版.西安:西安交通大学出版社,2001.
    [80]姚仲鹏,王瑞君编.传热学[M].2版北京:北京理工大学出版社,2003.
    [81]赵荣义.空气调节[M].3版.北京:中国建筑工业出版社,1994.
    [82]薛殿华.空气调节[M]北京:清华大学出版社,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700