用户名: 密码: 验证码:
汽车风洞稳风速控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今世界,汽车空气动力特性已成为评价汽车造型优劣的重要依据,也是汽车在激烈的市场竞争中能否取胜的重要条件[1]。汽车风洞是进行汽车空气动力学研究的主要试验设备。要把本项研究的汽车风洞建成世界一流的风洞,关键在于测量与控制系统的设计。风洞稳风速控制系统是整个风洞测控系统的核心。它是一个大滞后、非线性的复杂系统,难以建立起精确的数学模型。设计具有良好的动态和稳态性能的风洞稳风速控制系统对提高汽车风洞试验的精度非常重要。
    本项研究的目的是:通过对国内外汽车风洞测控系统现状的研究,结合我国首座汽车风洞的建设提出风洞测控系统整体方案。通过对风洞稳风速控制系统研究,提出一个解决大滞后非线性复杂系统的控制方案。
    风洞测控系统是风洞的核心部分。它包括测量系统和控制系统。测量系统是风洞试验得以进行的执行部分,而控制系统则是保证风洞试验能够自动、顺利、安全进行的必要条件。良好的风洞测控系统总体设计,可使风洞达到测量控制的自动化,提高风洞测量精度,减少风洞测量过程中人为因素造成的误差。完善的测控系统还能提高风洞的运转效率,降低风洞的运转成本。为把本项研究的风洞建成具有世界一流水平的汽车风洞,在对当前国内外汽车风洞测控系统现状广泛调研的基础上,提出基于PC机的分布式网络化测控系统方案,并给出构建完善的风洞测控系统三阶段实施的计划。
    风洞稳风速控制系统主要由风洞稳转速控制系统和风洞稳速压控制系统构成。为保证风洞试验精度,试验段气流必须保持均匀稳定。风洞稳风速控制系统的控制对象正是试验段气流,控制目标是使试验段内风速稳态精度高,动态响应快,抗干扰能力强。
    国内部分风洞建设初期,普遍采用稳转速控制系统。由于空气动力试验所需要稳定的参数并不是电机的转速,而是风洞试验段的风速。电机转速稳定的条件下,试验模型姿态变化、风道的堵塞比变化都将引起试验段风速的
    
    
    改变。当大气压力、温度发生变化时,试验段风速也将发生变化。姿态角由小到大,阻塞比增加,能量损失也增加,要保持风速“不变”,就必须使电机升速,增大风扇驱动电机的输出功率,反之亦然。过去,风洞操作人员必须通过改变电动机转速的给定值,使电机转速增加或者减少,以保持试验段风速不变。这种操作实际上是一种开环控制,由于洞体及系统的惯性等原因,操作很费时,误差也很大[2]。针对这种情况,提出三闭环反馈控制方案——在稳转速控制系统采用电机转速和电流双闭环反馈控制的基础上增加稳速压反馈控制环节。
    针对风洞稳风速控制系统是一个大滞后、非线性的复杂系统,难以建立起精确的数学模型的问题,根据对国内外风洞稳风速控制系统各种控制原理的分析,提出基于Fuzzy-PID控制的稳速压反馈控制环节。稳速压控制器采用Fuzzy-PID(模糊PID)调节器,即系统在大偏差时采用基于专家经验的模糊控制,在小偏差时才投入PID调节。应用LabVIEW软件对Fuzzy-PID调节器和采用传统PID调节器的两种控制方案进行的仿真对比表明:采用Fuzzy-PID调节器的控制方案可以使风速快速达到设定值,同时在稳态时具有较高的精度,实现了大滞后风速参数的高精度控制。
    本项研究的主要研究工具是LabVIEW软件和Fuzzy-PID控制理论。LabVIEW是一个划时代的图形化编程语言(被称为G语言)。它提供了一种全新的程序编写方法,即对称之为“虚拟仪器”的软件对象进行图形化的组合操作。用户只需将各个图标连在一起创建各种流程图表,即可完成虚拟仪器程序的开发,而这也正好符合工程师和科学家们的原始设计理念。利用图形化编程,在保持系统的功能与灵活性的同时,大大加快了系统的开发速度。Fuzzy-PID控制将模糊控制和PID控制两者结合起来,扬长避短,它既具有模糊控制灵活且适应能力强的优点,又具有PID控制精度高的特点。这种复合型控制器,对复杂控制系统和高精度伺服系统具有良好的控制效果。
    最后,本文对今后汽车风洞测控技术的发展进行了展望,还对基于Fuzzy-PID控制的风洞稳风速控制系统的进一步优化改进提出了新的见解。
Nowadays, automotive aerodynamics has been an important basis to evaluate automotive style and is also an important condition to get victory in drastic market competition. And automotive wind tunnel is a main test equipment to research automotive aerodynamics. It’s key to design measurement and control system in order to build the studied automotive wind tunnel into the high- class wind tunnel. Wind tunnel steady wind velocity control system is the core of wind tunnel measurement and control system. It’s a big lag, nonlinear and complex system and it’s difficult to set up an accurate mathematics model. It’s very important for increasing the experiment precision to design wind tunnel steady wind velocity control system with good dynamic and steady performance.
    The purpose of the research is to put forward the whole project of wind tunnel measurement and control system through research on domestic and international present situation in automotive wind tunnel measurement and control system in combination with the building of the domestic first automotive wind tunnel; put forward a control project to resolve the big lag, nonlinear and complex system.
    The wind tunnel measurement and control systems are the core part of the wind tunnel. It includes measurement system and control system. Measurement system is the executive part to carry out wind tunnel experiment. And control system is the essential condition to ensure wind tunnel experiment operation automatically, smoothly and safely. A perfect measurement and control system can increase wind tunnel operation efficiency, lower the wind tunnel cost and enhance measurement accuracy. To set up the research wind tunnel with the high class level, on the
    
    
    foundation of extensive investigation into the present condition of domestic and international automotive wind tunnel measurement and control systems, put forward the distributed network measurement and control system based on PC, and present the project to set up the perfect wind tunnel measurement and control system with three stages.
    The wind tunnels steady wind velocity control systems are composed of wind tunnel rev control system and wind tunnel velocity and pressure control system. During the wind tunnel operation, we must guarantee the uniformity and stability of airflow in the test section. The control object of the wind tunnel steady wind velocity control system is the airflow in the test section. The control target is to make the steady wind in the test section steady accuracy high, dynamics response quick and anti- interference ability strong.
    For a part of domestic wind tunnels, they usually adopted steady rev control system in their construction early stage. Since the parameter that aerodynamics experiment needs to stabilize is not the rev of motor but the wind velocity in test section. Under the condition of stable motor rev, with the change of test model attitude and blockage, the wind velocity in test section will change. With the change of atmospheric pressure and temperature, the wind velocity will also change. Since the attitude angle changes from small to big, the blockage will increase and energy loss will also increase. In order to keep wind velocity constant, we must increase the rev of motor and output power of drive motor and vice versa. In the past, in order to keep wind velocity in test section constant, operator must change the given value of motor rev to increase or decrease motor rev. This kind of operation is virtually a sort of loose loop control. For some reasons such as the tunnel body and the inertia of the system, it will take much time and the error is also big. According to the situation, put forward
    
    
    a control project with three closed loops. On the basis of applying motor rev and current closed loops to steady rev control system, add a steady velocity and pressure feedback closed-loop to form the control project with three closed loops.
    Since the wind tunnel steady wind velocity control system is a big lag, nonlinear and complex system, it's difficult to est
引文
[1] 傅立敏著,汽车空气动力学,机械工业出版社,1998.11
    [2] 施洪昌等,高低速风洞测量与控制系统设计,国防工业出版社,2001.11
    [3] 施洪昌等,风洞数据采集技术,国防工业出版社,2004.1
    [4] 叶吉成,刘国强,高业芝,8m×6m 风洞测控处系统,流体力学实验与测量,1998.12,第12卷第4期
    [5] 袁辉靖,徐月亭,盛森芝,近十年来流动测量技术的新发展,力学与实践,2002 Vol.24 No.5
    [6] 张毅,龙凤乐,测控系统中三种最新软件的比较,化工自动化及仪表,1998,25(3):25-27
    [7] 陈宏,金心宇,测控系统总线技术的现状与分析,机电工程,2003年第20卷第2期
    [8] 陈振民,低速风洞测控自动化应用技术,数据采集与处理,1997.9,第12卷第3期
    [9] 李杰,马建国,李群山,基于PXI总线的分布式网络化测控系统,计算机测量与控制,2003.11(6)
    [10] 查美生,陈实,沈健,韦源,基于LabVIEW和PXI技术的热工水力学测控平台,仪表技术,2002年第5期
    [11] 王红,刘旺开,魏东波,多用途低速水洞测控系统设计,华北工学院学报,2000年第21卷第4期
    [12] 康虎,施洪昌,祝汝松,戚刚,郭守春,CG-01风洞测控系统改造,流体力学实验与测量,2002年9月第16卷第3期
    [13] 庞加斌,林志兴,余卓平,王宏雁,TJ-2风洞汽车模型试验的修正方法,汽车工程,2002年(第24卷)第5期
    
    [14] 杨满忠,于雷,肖明清,基于VXI总线的综合测控系统研究,计算机测量与控制,2002.10(8)
    [15] 姜志玲,虚拟仪器技术在测控领域中的应用,测控技术与设备,2003年第29卷第8期
    [16] Robert Hennessey, HugoLoya, Bull Dilong, Ryan Wicker, Using LabVIEW to Develop an Automatic Control System, www.ni.com, 2002
    [17] Gary W. Johnson, Richard Jennings著,武嘉澍、陆劲昆译,LabVIEW图形编程,北京大学出版社,2002.1
    [18] 美国NI公司著,汪敏生等译著,LabVIEW基础教程,电子工业出版社,2002.1
    [19] 石博强,赵德勇,李畅,雷振山译著,LabVIEW6.1编程技术实用教程,中国铁道出版社,2002.10
    [20] 杨乐平,李海涛,赵勇,杨磊,安雪滢编著,LabVIEW高级程序设计,北京:清华大学出版社,2002.9
    [21] 美国NI公司,虚拟仪器白皮书,2004
    [22] 美国NI公司,LabVIEW用于分布式测量与控制系统,2004
    [23] 刘君华主编,基于LabVIEW的虚拟仪器设计,北京:电子工业出版社,2003.1
    [24] 姜玉宪等编著,控制系统仿真,北京航空航天大学出版社,1998.8
    [25] 诸静等著,模糊控制原理与应用,机械工业出版社,1995
    [26] 戎月莉编著,计算机模糊控制原理及应用,北京航空航天大学出版社,1995.4
    [27] 邓星钟主编,电力拖动及其控制系统,高等教育出版社,1992.8
    [28] 陈伯时主编,电力拖动自动控制系统(第2版),机械工业出版社,2002.6
    [29] 王立新著,自适应模糊系统与控制——设计与稳定性分析,国防工业出版社,1995(2000.10重印),第3-4页
    
    [30] 宋智罡,郁其祥,王益明,陆殷健,基于LabVIEW的PID参数自适应模糊控制器设计,机械设计与制造,2003年8月第4卷
    [31] 沈国江,衷卫声,刘翔,孙优贤,典型大时变时滞系统的鲁棒fuzzy-PID控制及应用,控制理论与应用,2002年12月第19卷第6期
    [32] 汤东胜,吴光强,董华林,电动汽船矢量控制的模糊-PID复合控制方式,汽车工程,2003年(第25卷)第1期
    [33] 黎启柏,陈刚,朱建辉,二次调节液压系统的开关-模糊-PID控制,机床与液压,2003年第5期
    [34] 任碧莹,孙向东,余健明,同向前,混合式模糊PID在直流变换器中的应用,西安理工大学学报,2002
    [35] 雷建军,朱华,祝磊,顾德英,基于Fuzzy-PID的电阻炉温度控制系统,控制系统,2003
    [36] 胡晖,刘建国,魏彦,基于MATLAB的DY发生器热源Fuzzy-PID控制仿真研究,先进制造与智能控制,2003
    [37] 刘爽,模糊PID控制器用于直流电机的控制,哈尔滨理工大学学报,1997年10月第2卷第5期
    [38] 贾东耀,曾智刚,基于模糊控制的直流电机调速系统MATLAB仿真,电机电器技术,2002年第5期
    [39] 张春,郭兴众,双环模糊调速系统的设计与仿真研究,安徽工程科技学院学报,2003年6月第18卷第2期
    [40] 李辉,谭常清,何蓓,直流电动机调速系统模糊控制的仿真,中小型电机,2003,30(1)
    [41] 刘春华,谢宗安,模糊控制调速系统性能研究,贵州工业大学学报(自然科学版),2002年6月第31卷第3期
    [42] 刘兆妍,岳树盛,PID控制研究与应用,河北理工学院学报,2002年5
    
    
    月,第24卷增刊
    [43] 薛志斌,Matlab在Fuzzy-PID智能混合控制系统仿真中的应用,青海大学学报(自然科学版),2003年6月第21卷第3期
    [44] Nizar Al-Holou, Kashyap H. Shah, Fuzzy logic based-system to control climate in automobile, SAE 940601
    [45] S. Ganesan, Pat Dessert, R. P. Sharma, S. Yasin, An idle speed controller using analytically developed fuzzy logic control law, SAE 2002-01-0138
    [46] P. Bortolet, S. Boverie, A. Titli, Fuzzy modeling and control of an automotive engine air inlet, SAE 980797
    [47] Guangqiang Wu, Shuiwen Shen, Guozheng Yan, Stability analysis for the fuzzy control of clutches, SAE 972773
    [48] Mohammad Durali, Ali Reza Kassaiezadeh, Fuzzy and neuro-fuzzy controller for active suspension, SAE 2002-01-2204
    [49] Shuiwen Shen, Changqi Wu, Sicheng Qin, Guangqiang Wu, An expert fuzzy control of automatic mechanical transmission clutch, SAE 1999-01-2814
    [50] Feng Jinzhi, Yu Fan, Li Jun, An investigation to controller design for active vehicle suspension by using GA-based PID and fuzzy logic, SAE 2002-01-0983
    [51] Yu Fan, Li Jun, Feng Jinzhi, Zhang Jianwu, A new control strategy for vehicle active suspension system using PID and fuzzy logic control, SAE 2001-01-2519
    [52] Li Jun, Zhang Jianwu, Yu Fan, An investigation into fuzzy control for anti-lock braking system based on road autonomous identification, SAE 2001-01-0599
    
    [53] Durh Wuh, Design and comparison of autonomous intelligent cruise control systems, SAE 942405
    [54] Shuiwen Shen, Guozheng Yan, Jianwu Zhang, Guangqiang Wu, An intelligent controller for the vehicle standing starts based on the rules and knowledges, SAE 973280
    [55] Mark Page, John Winkler, Neil Roberts, Tom Huschilt, Doug Smyth, Brian Kane, Recent upgrades to the swift 8 ft x 9 ft rolling-road wind tunnel, SAE 2002-01-3341
    [56] Daniel Aceituna, Algorithm design using LabVIEW, SAE 2002-01-1465
    [57] Moo-Sang Kim, Jung-Ho Lee, Jung-Do Kee, Jin-Hyuck Chang, Hyundai full-scale aero-acoustic wind tunnel, 2001-01-0629
    [58] H. A. Mergen, Simplified indicated engine performance data acquisition and analysis using LabVIEW, SAE 983044
    [59] S. A. A. Abdul Ghani, A. Aroussi, E. Rice, Development of a closed-loop, full-scale automotive climatic wind tunnel, SAE 2000-01-1375
    [60]李洪兴,模糊控制器与PID调节器的关系,中国科学,1999年第2期

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700