用户名: 密码: 验证码:
废旧线缆和电机绕组热解技术与设备的研发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文是在天津市科委“科技创新专项基金”的资助下完成的,目的是研发出一种绿色环保的废旧电线电缆及电机绕组回收利用新技术和装备。由于废旧电缆中含有易于造成二次污染的PVC分子,传统的焚烧处理法尾气污染严重,处理成本高。热解技术作为一种可替代焚烧技术的新型热化学处理技术,具有降低尾气污染物排放,固化有害物质,并有效回收原料中的金属组分等优势。因此,我们应用有机分子高温热解的原理,研发出适用于处理废旧机电产品的清洁工艺与绿色装备。具体的研究内容为:
     (1)废旧线缆热解的基础性实验
     应用热失重分析方法(TGA),针对两种主要线缆绝缘材料—PVC绝缘材料和PE绝缘材料,分析测量了它们热分解过程中主要的特征温度,并计算得到了PVC绝缘材料和PE绝缘材料的热解反应动力学参数,建立了两者热解反应的动力学模型。实验结果表明,PVC绝缘材料和PE绝缘材料的活化能分别为152kJ/mol和160kJ/mol。这部分属于基础性的实验研究。
     (2)设计研发了废旧线缆和电机绕组的热解回收中试装置
     以基础性实验的实验参数为依据,结合废旧线缆和电机绕组的特点,综合考虑了便捷的操作性能、高效的传热性能、良好的保温性能、低成本的尾气处理成本等因素,设计并制造了新型的废旧线缆和电机绕组热解回收装置。
     本台热解装置的主要创新工艺是热解气在高温状态下的二次燃烧。传统的废弃物热解装置将热解产物分为气、液、固三部分分别回收。我们认为高温热解气的冷凝不仅增加了装置的复杂性,而且冷凝会带来大量的物理热损失。从以往的运行经验看出,冷凝得到的焦油必须通过深加工才可能成为燃料补充热解所需能量。因此,本台装置设计了高温热解气的二次燃烧系统,实现了热解气在高温状态下的二次燃烧。不仅简化了工艺,热解气的热值可达到50.94MJ/m3。
     (3)废旧线缆热解的中试试验
     重点考察了高温热解气的成分和热值随温度变化的规律;热解产物分布的特点;热解残炭的成分和热值。结果表明,废旧线缆热解分为两个阶段,第一阶段为脱出HCl反应,第二阶段产生可燃热解气。可燃热解气的热值50.94MJ/Nm3。热解残炭中固定碳含量为23%,其热值为1776kJ/kg。
     应用静态经济分析和动态经济分析指标,对废旧线缆热解回收方案进行了经济性评价。方案的内部收益率达到40%,具备进一步工业化的基础。
This paper aims to develop a green technology and equipment for recycling scrapcables and motors, funded by Tianjin Science and Technology Innovation fund.Because of the existing of PVC molecules in scrap cables, traditional incinerationmethods pollution will exhaust lots of pollutant gas, so the cost of the exhaust gastreatment processing is very high. Pyrolysis technology as a new thermochemicalmethod, has advantages in reducing the harmful substances in exhaust emissions, andthe effective recovery of raw materials and the metal component, which is consideredas a potential alternative of incineration. Therefore, appling organic molecularpyrolysis principle, we developed a suitable cleaning technology for recycling usefulmaterials and metals in waste machinery and electronic products. The specificresearch contents:
     (1) TGA analysis of scrap cable insulations
     Application of thermogravimetric analysis (TGA), we analyzed the characteristicsof the two main insulation materials—PVC and PE; measured the characteristictemperature; calculated the kinetic parameters, and established the dynamics model ofthe pyrolysis reaction of the two materials. Results show that, the activation energy ofPVC and PE insulation materials were152kJ/mol and160kJ/mol. This part is thebasis experimental study.
     (2) Design of a new type semi-pilot scale device for recycling scrap cables andmotors
     Considered of the basis parameters of insulation materials, combined with thecharacteristics of scrap cables and motors, we designed and manufactured a new typesemi-device for recycling scrap cables and motors, which has advantages ofconvenient loading, efficient heat transfer and good insulation performance, low costand low cost of flue gas treatment.
     The main innovation of this process is that the sythesis gas produced by pyrolysisof insulations combusted under high temperature, with no condensation process. Webelieve that condensation process of high temperature sythesis gas will not onlyincrease the complexity of the device, and cause a lot of heat loss. From previousexperience, we see that the obtained tar must pass through a deeper processing tobecome a supplemental fuel. Therefore, the device is designed with a high temperature sythesis gas combustion system. The calorific value of sythesis gas canreach50.94MJ/m3.
     (3) Semi-pilot scale experiment
     The vatiation discipline of the composition and calorific value of sythesis gaswith pyrolysis temperature was tested. Product distribution characteristics weremeasured, and the composition and calorific value of residue char were tested. Resultsindicate that, pyrolysis process of scrap cables is divided into two stages, the firststage for the emergence of HCl, the second stage for producing a combustible sythesisgas. The calorific value of combustible sythesis gas is50.94MJ/Nm3. The content offixed carbon in residue char is23%, and the calorific value of the char is1776kJ/kg.
     Application of static economic analysis and dynamic economic analysis index,pyrolysis scheme for scrap cables and motors is evaluated. The program's internalincome rate reached40%, which indicates a great potential of further industrialization.
引文
[1]王军.循环经济的理论与研究方法[M].北京:经济日报出版社,2007.
    [2] Tom Tietenberg.环境与自然资源经济学(Environmental and NaturalResource Economics)[M].北京:经济科学出版社,2003.
    [3]王立红.循环经济:可持续发展战略的实施途径[M].北京:中国环境科学出版社,2005.
    [4]李文霆,王合成.循环经济:再造“生态城市”新模式[M].北京:中国环境科学出版社2007.
    [5]罗荣渠.现代化新论—世界与中国的现代化进程[M].北京:商务印书馆,2006.
    [6]张颖,吴志文.循环经济与绿色核算[M].北京:中国林业出版社.2006.
    [7]曲向荣,李辉,王俭.循环经济[M].北京:机械工业出版社,2012.
    [8]邱定蕃.有色金属资源循环利用[M].北京:冶金工业出版社,2006.
    [9] Jae-chun Lee, Hyo Teak Song, Jae-Min Yoo. Present status of the recyclingof waste electrical and electronic equipment in Korea[J]. ResourcesConservation and Recycling,2007,50:380-397.
    [10]马洪亭,张于峰. PCDD/F从头合成的影响因素和抑制方法[J].化工进展,2006,25(5):557~562.
    [11]张宇,邓娜,周欣,等.城市垃圾焚烧中二噁英产生机理与控制[J].环境卫生工程,2005,13(3):37~40.
    [12] Wenzhi He, Guangming Li, Xingfa Ma. WEEE recovery strategies and theWEEE treatment status in China[J]. Journal of Hazardous Materials,2006,B136:502-512.
    [13] Jianxin Yang, Bin Lu, Cheng Xu. WEEE flow and mitigating measures inChina[J]. Waste Management,2008,28:1589-1597.
    [14]李新禹.城市生活垃圾热解设备与特性研究[D].天津:天津大学,2006.
    [15]陈静,张于峰,邓娜,等.医疗垃圾外热式固定床热解气化技术[J].煤气与热力,2006,26(11):26~30.
    [16] Mohammad Nahid Siddiqui. Conversion of hazardous plastics wastes intouseful chemical products[J]. Journal of Hazardous Materials,2009,167:28-735.
    [17] Malkow T. Novel and innovative pyrolysis and gasification technologies forenergy efficient and environmentally sound MSW disposal[J]. WasteManagement,2003,24:53-79.
    [18]张于峰,邓娜,李新禹.城市生活垃圾的处理方法及效益评价[J].自然科学进展,2004,14(8):863~869.
    [19]王艳.城市生活垃圾中低温热解特性研究[D].天津:天津大学,2005.
    [20]管延文.生物质制燃气及其城镇供应系统的研究[D].武汉:华中科技大学,2010.
    [21]李季.城市生活垃圾热解燃烧特性和氯转化机理[D].北京:中国科学院过程工程研究所,2003.
    [22]杨国清,刘康怀.固体废物处理工程[M].北京:科学出版社,2000.
    [23]张益,陶华.垃圾处理处置技术及工程实例[M].北京:化学工业出版社,2002.
    [24] Takahiro O., Tsutomu H., Shigeru K., el at. Formation of internally circulatingflow and control of overall heat-transfer coefficient in a gluidied-bed boiler.Heat Transfer,2003,35(5):345~351.
    [25]汪友碚.城市废弃物处理与垃圾发电[J].发电设备,1997,11(12):24-26.
    [26]袁振宏,吴创之,马隆龙,等.生物质能利用原理与技术[M].北京:化学工业出版社,2004.
    [27]刘均科.塑料废弃物的回收与利用技术[M].北京:中国石化出版社,2001.
    [28]王中民.城市垃圾处理与处置[M].北京:中国建筑工业出版社,1991.
    [29]包向军.城市垃圾高温热解试验研究[D].沈阳:东北大学,2003.
    [30]马洪亭.医疗废物热解特性实验研究[D].天津:天津大学,2006.
    [31]邓娜.医疗废物热解特性及动力学模型研究[D].天津:天津大学,2005.
    [32]郭晓娟.热解技术处理废弃印刷线路板的实验研究[D].天津:天津大学,2008.
    [33]温俊明.城市生活垃圾热解特性试验研究及预测模型[D].杭州:浙江大学,2006.
    [34]张于峰,陈鑫力,吴正胜,等.废旧乱线的热重分析及中试实验研究[M].华中科技大学学报,2011,39(9):129-132.
    [35] I. de Marco, B.M. Caballero, M.J. Chomon. Pyrolysis of electrical andelectronic wastes[J]. Journal of Analytical and Applied Pyrolysis,2008,82:179-183.
    [36] Chao-Hsiung, Ching-Yuan Chang, Jwo-Luen Hor. Two-stage pyrolysis modelof PVC[J]. The Canadian Journal of Chemical Engineering,1994,72:644-650.
    [37] Jimenez A, Lopez J, Vilaplana J, Dussel HJ. Thermal degradation of plastisols.Effect of some additives on the evolution of gaseous products[J]. Journal ofAnalytical and Applied Prolysis,1997,201:40-41.
    [38] M. Blazso, E. Jakab. Effect of metals, metal oxides, carboxylates on the thermaldecomposition process of poly(vinyl chloride)[J]. Journal of Analytical andApplied Prolysis,1999,49:125-143.
    [39] A. Aboulkas, K. El harfi. Thermal degradation behaviors of polyethylene andpolypropylene[J]. Part1: Pyrolysis kinetics and mechanisms. EnergyConversion and Management,2010,51:1363-1369.
    [40] H. Bockhorn, A.Hornung, U. Hornung. Kinetic study on the thermaldegradation of polypropylene and polyethylene[J]. Journal of Analytical andApplied Prolysis,1999,48:93-109.
    [41] J. Gersten, V. Fainberg, G. Hetsroni. Kinetic study of the thermaldecomposition of polypropylene, oil shale, and their mixture[J]. Fuel,2000,79:1679-1686.
    [42] E. Kissinger. Reaction kinetics in differential thermal analysis. AnalyticalChemistry[J].1957,29:1702-1706.
    [43]邓娜,张于峰,赵薇,等.聚氯乙烯(PVC)类医疗废物的热解特性研究[J].环境科学,2008,29(3):837~843.
    [44]马洪亭,张于峰,邓娜,等.影响医疗垃圾热解特性的主要因素[J].化工进展,2007,26(12):1783~1789.
    [45]邓娜,张于峰,牛宝联,等.医疗废物典型组分的热重分析及动力学模型[J].环境科学学报,2005,25(11):1484~1490.
    [46]马洪亭,张于峰,邓娜.升温速率对医疗垃圾热解机理的影响[J].环境科学研究,2008,21(5):190~194.
    [47]张于峰,郝斌,郭晓娟,等.废弃印刷线路板热重分析和动力学模型[J].燃烧科学与技术,2008,14(6):506~510.
    [48]邓娜,张于峰,马洪亭.医疗废物中输液管与纱布的混合热解动力学模型.天津大学学报2008,41(2):147~152.
    [49]郭晓娟,张于峰,魏莉莉,等.聚四氟乙烯印刷线路板的热解实验[J].2008,36(10):123~124.
    [50]邓娜,张于峰,谢慧,等.城市固体废弃物热解气化处理气化段模型[J].天津大学学报,2006,39(4):463~468.
    [51]王乔力,张于峰,马洪亭,等.医疗垃圾的热解特性[J].环境卫生工程,2006,14(3):40~42.
    [52]胡荣祖,史启祯主编.热分析动力学[M].北京:科学出版社,2001.
    [53] S. Kim. Pyrolysis of PVC pipe[J]. Waste Management,2001,21:609-616.
    [54] A. Marcilla, M. Beltran. Thermogravimetric kinetic study of poly(vinylchloride) pyrolysis[J]. Polymer Degradation and Stability,1995,48:219-229.
    [55] N. Kiran, E. Ekinci, C.E. Snape. Recycling of plastic wastes via pyrolysis.[J].Resources Conservation and Recycling,2000,29:273-283.
    [56]连之伟.热质交换原理与设备[M].北京:中国建筑工业出版社,2001.
    [57]周少奇.固体废物污染控制原理与技术[M].北京:清华大学出版社,2009.
    [58] Zhang Yufeng, Deng Na, Ling Jihong. A new pyrolysis technology andeuquipment for treatment of municipal household garbage and hospital waste[J].Renewable energy,2003,28:2383-2393.
    [59]池涌,张志霄,阎大海,等.综合流动和传热的废轮胎回转窑热解模型[J].工程热物理学报,2004,25(2):333~335.
    [60]陈静,张于峰,邓娜等.医疗垃圾外热式固定床热解气化技术[J].煤气与热力,2006,26(11):26~30.
    [61]蒋家玲.废轮胎热裂解设备的开发[J].化工进展,2002,21(9):681~684.
    [62]刘阳生,白庆中,李迎霞.废轮胎的热解及其产物分析[J].环境科学,2000,21(5):85~88.
    [63]中国国家环境保护总局. GB18485-2001生活垃圾焚烧污染控制标准[S].北京:中国标准出版社,2001.
    [64]童钧耕,吴孟余,王平阳.高等工程热力学[M].北京:科学出版社,2006.
    [65]李爱民.城市固体废弃物在回转窑内热解特性和运动特性研究[D].杭州:浙江大学,1999.
    [66]刘昌业.生物质气燃烧特性及火焰结构的相关研究[D].天津:天津大学,2010.
    [67]李权柄,汪华林,张振华,等.两段式热解厨余垃圾实验研究[J].环境工程学报,2009,3(1):175-178.
    [68]韩雷,池涌,温俊明,等.城市固体废弃物典型组分的快速热解产气特性研究[J].能源与环境,2004,6:49~53.
    [69]王艳,张书廷,张于峰,等.城市生活垃圾低温热解产气特性的实验研究[J].燃料化学学报,2005,33(1):62~67.
    [70]张巍巍,曾国勇,傅海燕,等.稻秆热解固体产物的性能[J].华东理工大学学报,2007,33(2):219~222.
    [71]高宁博,李爱民.固体废弃物热解产物的参数群神经网络预测模型[J].太阳能学报,2003,24(4):523~526.
    [72]熊思江.污泥热解制取富氢燃气实验及机理研究[D].武汉:华中科技大学,2010.
    [73]沈祥智.生活垃圾中主要可燃组分热解特性的试验研究[D].杭州:浙江大学,2006.
    [74]闫大海.废轮胎回转窑中试热解产物应用及热解机理和动力学模型研究[D].杭州:浙江大学,2006.
    [75] Belgiorno V., Feo G. D., Rocca C.D., el at. Energy from gasification of solidwastes[J]. Waste Management,2003,23:1-15.
    [76] Hall W. J., Williams P. T. Analysis of products from the pyrolysis of plasticsrecovered from the commercial scale recycling of waste electrical andelectronic equipment[J]. Journal of Analytical and Applied Pyrolysis,79:375-386.
    [77]张于峰,邓娜,张书廷,等.城市生活垃圾筛上物的热解研究及实验[J].天津大学学报,2005,38(6):556-560.
    [78]管延文.生物质制燃气及其城镇供应系统的研究[D].天津:天津大学,2006.
    [79]中国国家标准化管理委员会. GB/T212-2008煤的工业分析[S].北京:中国标准出版社,2008.
    [80]中国国家标准化管理委员会. GB/T213-2008煤的发热量测定方法[S].北京:中国标准出版社,2008.
    [81]曾政权,甘孟瑜,刘咏秋,等.大学化学[M].重庆:重庆大学出版社,2002.
    [82] A.F.Drummond, I.W.Drummond. Pyrolysis of sugar cane bagasse in awire-mesh reactor. Ind. Eng. Chemistry,1996,35:1263-1268.
    [83] W.S. Mok, M.J.Antal, Jr. Effects of pressure on biomass pyrolysis.Ⅱ. Heats ofreaction of cellulose pyrolysis. Thermochim. Acta,1983,68:164-186.
    [84]薛大明,赵雅芝,梁永坤,等.废旧轮胎热解过程的能耗分析[J].大连理工大学学报,1999,39(4):519~522.
    [85]陈超,李水清,岳长涛,等.含油污泥回转式连续热解—质能平衡及产物分析[J].化工学报,2006,57(3):650~657.
    [86] Khoo H.H. Life cycle impact assessment of various waste conversiontechnologies[J]. Waste Management,2009,29:1892-1900.
    [87]同济大学.锅炉及锅炉房设备[M].北京:中国建筑工业出版社,1991.
    [88]龙恩深.冷热源工程[M].重庆:重庆大学出版社,2004.
    [89]迈克尔.金斯利.创造性资本主义—破解市场经济悖论[M].北京:中信出版社,2010.
    [90]蒋景楠佘金凤陆雷.工程经济理论与实务[M].上海:华东理工大学出版社,2008.
    [91]高百宁,王凤科,郭新宝.技术经济学—方法、技术与应用[M].北京:北京理工大学出版社,2006.
    [92]黄有亮徐向阳谈飞,等.工程经济学[M].南京:东南大学出版社,2006.
    [93]吴易凤.当代西方经济学[M].北京:当代西方经济学,2004.
    [94] N.Gregory Mankiw.宏观经济学[M].北京:中国人民大学出版社,2009.
    [95]哈尔.R.范里安.微观经济学:现代观点[M].上海:格致出版社,2011.
    [96]赵德武.财务管理概论[M].北京:中国财政经济出版社,2005.
    [97]周天勇.发展经济学教程[M].北京:中国财政经济出版社,2004.
    [98]陈享光.当代中国经济[M].北京:当代世界出版社,2004.
    [99]张仲敏.投资经济学[M].北京:中国商务出版社,2004.
    [100]黄达.金融学[M].北京:中国人民大学出版社,2008.
    [101] Adam Smith.国富论(An Inquiry into the Nature and Causes of the Wealth ofNations),上海:世界图书出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700