用户名: 密码: 验证码:
木材顺纹压缩与多维弯曲技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木材顺纹压缩与多维弯曲技术蕴涵着多学科知识的交叉融合,具有一定的理论深度和显明的应用性,是当今备受关注的研究热点之一。该项研究,特别是在木材顺纹压缩应力.应变本构关系的建立、多维弯曲和定型技术等方面,可以填补迄今为止,尚无相关研究报道的缺憾。该技术可以拓宽木材应用领域,是一项科学、合理地利用木材资源,有利于环保的新技术。在未来的木制品设计和生产中,实体木材的多维弯曲可以改变木制品的造型和结构特征,为有效地利用木材创造了更加广阔的空间。
     本文以木材顺纹压缩与多维弯曲技术的研究为总目标,首先将木材进行软化处理,优化软化处理方法;其次,对软化处理后的木材进行顺纹压缩,建立木材顺纹压缩中应力一应变的本构关系,分析压缩和回弹中木材的弹性、弹塑性的变化规律;第三,对顺纹压缩木材在允许的应变范围内以获得较小弯曲曲率半径和实现多维弯曲,分析木材弯曲后的弹性、弹塑性的变化规律,初步建立木材单维弯曲中应力-应变的本构关系,确定木材单维和多维弯曲的最小曲率半径;第四,对于弯曲的曲线形零件进行定型处理,分析定型方法、定型过程中的各种条件变化对木材弯曲定型的影响。通过上述研究确定木材顺纹压缩与多维弯曲的技术。
     论文以东北重要的商品材榆木和水曲柳为试材,进行了木材顺纹压缩与多维弯曲技术的试验研究:
     (1)在软化处理试验中,分别对幼龄材与成熟材进行探索性试验,最终确定水热、水热-微波以及复配碱液处理作为本试验的软化处理方法,通过后续试验(顺纹压缩率、PDR以及弯曲曲率半径等)的结果,对软化后的木材,通过X-射线衍射仪测定相对结晶度、FTIR测试木材表面性质以及测定木材化学组分的变化等,探讨幼龄材、成熟材在三种软化处理后木材化学组成成分、相对结晶度等方面的变化规律。
     结果表明,三种软化处理均使木材各个化学组分产生不同程度的变化,特别是木质素、半纤维素和抽提物发生了不同程度的降解,总的降解趋势是复配碱液处理的降解幅度最大,水热处理的降解幅度最小;成熟材的各自化学组分的降解幅度小于幼龄材;相对结晶度由于抽提物的抽出和相应的化学组分降解均有不同程度的提高;尽管幼龄材的PDR大于成熟材,但是后续试验结果表明成熟材顺纹压缩效果好于幼龄材;水热-微波处理中B方案更适合木材顺纹压缩。
     (2)在顺纹压缩试验中,配备特制压缩模具与力学实验机结合,对软化后的木材进行顺纹压缩。测定了应力、应变、顺纹压缩率和PDR等指标,采用X射线微密度仪测定木材顺纹压缩前后密度变化,扫描电子显微镜观察木材顺纹压缩后细胞壁褶皱的变化情况等。
     分析得出,水热-微波处理的顺纹压缩率较大,复配碱液软化处理的顺纹压缩率较小;顺纹压缩应力是榆木小于水曲柳,各自的成熟材小于幼龄材:在同一顺纹压缩率下,各自幼龄材的PDR都大于成熟材;建立的顺纹压缩应力-应变本构关系中,各自分段区域符合线形的力学关系;压缩后木材的密度变化为成熟材密度大于幼龄材,而幼龄材的密度波动较大:分析压缩和回弹中的木材的弹性、弹塑性、密度变化以及顺纹压缩后细胞壁内形成褶皱的变化规律,揭示了木材顺纹压缩机理;得出适宜的木材顺纹压缩的工艺条件。
     (3)在多维弯曲的试验中,采用圆形和S型弯曲模具与力学试验机配合使用,分别对木材的弦向、径向进行了单维和多维弯曲,扫描电子显微镜观察弯曲后木材细胞壁褶皱的变化,通过调整圆形模具的半径及采用多维弯曲模具,求出单维和多维弯曲的最小曲率半径。
     研究表明,木材的材性、顺纹压缩率、PDR等因素对弯曲曲率半径有显著的影响,幼龄材的弯曲性能不如成熟材;在弯曲过程中,弯曲拉伸面的褶皱开始展平,而压缩面的褶皱开始恢复到木材压缩时的压缩率,而最终破坏点是在弯曲试材拉伸面的中间部位;从初步建立的单维弯曲应力-应变本构关系中,得出弯曲的初始阶段符合线形的力学关系;榆木单维和多维弯曲曲率半径远远小于水曲柳,而各自成熟材的弯曲曲率半径都小于幼龄材,木材弦向弯曲曲率半径小于径向:水热-微波软化处理获得的弯曲曲率半径最小,得出了木材多维弯曲的工艺参数。
     (4)在木材弯曲定型试验中,采用直接干燥、水热-干燥、微波-干燥定型方法。通过快速检测弯曲木材曲率回弹性,定点监测弯曲木材的含水率,采用预埋式探针式温度计和点测温度计,测定微波定型处理过程中木材温度的变化。
     综合分析得出,纤维饱和点是弯曲木材回弹的分界点,在纤维饱和点以下时,回弹速度几乎成直线上升,当超过纤维饱和点时,回弹速度开始缓慢增加;复配碱液软化处理的弯曲试材,后期定型效果最好,水热软化处理的试材,后期定型效果最差;幼龄材的定型效果通常好于成熟材;微波-干燥定型效果最好,直接干燥定型效果最差;揭示了弯曲定型机理,讨论了应力释放与定型的关系,分析定型过程中的各种条件变化对木材弯曲定型的影响。确定了木材弯曲的定型工艺。
     通过木材软化处理、顺纹压缩、木材单维弯曲和多维弯曲以及弯曲定型机理和工艺研究,确定了木材顺纹压缩与多维弯曲技术,为有限的木材资源科学地、合理地、高效地利用提供理论依据和实践指导。
The longtitudinal compressing and muti-dimensional bending technology of wood is a inter-disciplinary forefront hot issue with enough applicational and theoretical values.This research,particularly the constitutive relationship established of wood's stress and strain on the process of longtitudinal compressing and the research of multi-dimensional bending deformation technology,will fill in the blank of relevant research that having been reported. The technology can expand the field of wood's application,and it is a new technology of scientific and rational use of timber resources and helpful to environmental protection.The multi-dimensional technology can change the shape and structure of wood products in design, and can create an even wider space of the effective use of wood.
     The final aim of this paper is to research the longtitudinal compressing and mutidimensional bending technology of wood.The first thing is to soften the wood,and find the best softening method.The next thing is to compress the softened wood on longtitudinal direction,establish the constitutive relationship of wood's stress and strain on the process of longtitudinal compressing and analysis the change of flexibility and elastic-plastic properties on the process of compressing and rebounding.The third is to get smaller curvature radius, realize multi-dimensional bending,analysis the change of flexibility and elastic-plastic properties after bending,establish the constitutive relationship of wood's stress and strain, preliminarily establish the constitutive relationship of wood's stress and strain on the process of single dimensional bending,and assure the single and muti-dimensional bending minimal curvature radius.The forth one is to mold the bended curve parts and analysis the impact of different molding conditions on deformation.Through the research above,the longtitudinal compressing and muti-dimensional bending of wood are determined.
     The samples of this paper are elm and ash which is all important commodity lumbers, researching the longtitudinal compressing and muti-dimensional bending technology.
     (1) On the process of softening test,exploring experiments to young and mature wood were carried on separately to make sure the softening mothods of hydrothermal, hydrothermal- microwave and compound lye softening treatments finally.Through the results of the following up tests(ratio of longtitudinal Compressing,PRD,bending curvature radius, ect),properties of the softened wood were tested,for example the relative crystallinty tested by X-ray diffractometer,the surface properties as well as chemistry component's changes and so on tested by FTIR to discuss the chemistry component and the changes of relative crystallinity.
     The results show that:the three softening methods can all change chemistry components of wood,particularly the lignins,hemicelluloses,and extracts of wood degradate with a different degree by the three softening methods.In all the softening degree through compound lye softening treatments is the most obvious and the softening degree through hydrothermal treatments is smallest.And the degradating degree of mature wood's chemistry components is lower than the young one.The relative crystallinty increases because extracts of wood have gone and the degradating degree of chemistry components goes up.Though the PRD of the young wood is higher than mature one,the results of tests show that the longtitudinal compressive results of mature wood will be better than the young one.The B method of hydrothermal-microwave treatments is more suitable for longtitudinal compressing.
     (2) In the longtitudinal compressing tests,the softened wood were compressed on the longtitudinal direction through special compressive mold and mechanical testing machine together.The stress,strain,ratio of longtitudinal compressing and PRD were determined,and the density changes of wood before and after longtitudinal compressing were tested by Micro-X-ray mechine.The changes of cell wall's folding situations after longtitudinal compressing were observed by the scanning electron microscopy.
     Analysis shows that the longtitudinal compressive degree of hydrothermal-microwave treatments is lager,and the one of compound lye softening treatments is smaller.The longtitudinal compressive stress of elm is less than ash's,and the indicators above of mature wood is less than the young wood.If the longtitudinal compressive degree is the same,the PRD of young wood is all higher the mature wood.When establishing the constitutive relationship of wood's stress and strain on the process of longtitudinal compressing,each region all obeys the mechanical linear relationship.The density changes of the mature wood are higher than the young one,but the density fluctuation of young wood is higher.Through analysising the the change of flexibility,elastic-plastic properties,density as well as the change of folding,mechanism of wood's longtitudinal compressing is revealed and the suitable processing conditions of wood's longtitudinal compressing are drawn.
     (3) In the multi-dimensional bending test,the circular and S-type curving molds were used to bend the wood on the longtitudinal and string direction.The folding changes of wood's cell wall were observed by the scanning electron microscopy.The single and muti-dimensional bending minimal curvature radius was known by adjusting the radius of curving molds and using the multi-dimensional bending molds.
     The research indicates that the characters of wood,the ratio of longtitudinal compressing, the ratio of rebounding and other factors all impact on the bending curvature radius of wood obviously.The bending properties of young wood are worse than the mature one.On the process of bending,the folded cell wall on the stretched side becomes smooth,and the folded cell wall on the compressive side become the former compressive ratio,finally the broken point lies on the middle section of the stretched side of the bended wood.From the preliminary establishment of the constitutive relationship of wood's stress and strain on the process of single dimensional bending,the bending preliminary stage conforms to the linear mechanics relations.The single and muti-dimensional bending curvature radius of elm is lower than ash, and the property of mature wood is lower than young wood.The curvature radius on the string direction of wood is lower than the longtitudinal one.The curvature radius through micro-wave softening treatment is the smallest.Finally the processing parameters of wood's mutidimensional bending are known.
     (4) In the test of wood's deformation after bending,directly drying,hydrothermal-dry, and microwave-dry deformations were used.The rebounding ratios of bending wood were detected quickly.The moisture content of bended samples was tested on the specific points. Temperature changes of the samples on the process of micro-wave deformation treatments are tested by the buried probe-type thermometer and the spot-type thermometer.
     The generalized analysis shows that boundary point of samples is the fiber saturation point (FSP).Below FSP,the rebounding ratio goes up in line;above FSP,the rebounding speed increased slowly,the deforming result of bending wood by compound lye softening treatments is the best,but the one by hydrothermal softening treatments is the worst.The deforming result of young wood is better than the mature one.The microwave-dry deforming result is the best; the directly drying deforming is the worst.Mechanism of wood's bending deformation was revealed,the relationships of stress release and deformation were discussed,and the impacts of diffrerent conditions on bending deformation were analysised.Finally,the deformation craft of bending wood was determined.
     Through researching the softening treatments,longtitudinal compressing,single and multi-dimensional bending as well as bending deformation mechanism and craft of wood, wood's longtitudinal compressing and multi-dimensional bending technology were determined. It provides theoretical and applicational instruction to use the limited timber resources effectively and reasonably.
引文
[1]李坚.木材科学.哈尔滨:东北林业大学出版社,1994:16-70 71-105 253-281333-341 428-431
    [2]刘中传.木制品生产工艺学.北京:中国林业出版社,1993:125-134
    [3]宋魁彦.家具设计制造学.哈尔滨:黑龙江人民出版社,2006:283-292
    [4]陆文达.木材改性工艺学.哈尔滨:东北林业大学出版社,1993:4-8 52-73
    [5]李青.国产榆木压缩木的研制.木材工业,2000,14(4):38-39
    [6]丁肇新.多向弯曲的实木.家具,2000,1:58
    [7]宋魁彦.木材压缩多向弯曲技术.东北林业大学硕士论文.2003:20-36
    [8]宋宇宏.水曲柳多向弯曲的研究.东北林业大学硕士论文.2003:13-35
    [9]宋魁彦,王逢瑚,宋宇宏.榆木顺纹压缩弯曲技术.林业科学,2004,40(2):126-130
    [10]刘君良.木材流变学研究综述.吉林林学院学报,1998,14(1):48-53
    [11]李大纲.意杨木材弯曲蠕变特性的初步研究.四川农业大学学报,1998,16(1):99-101
    [12]李大纲.木材细胞壁细观断裂及其损伤机理.科学技术与工程,2004,4(1):24-27
    [13]刘一星,李坚,刘君良,沈隽.水蒸气处理法制作压缩整形木的研究(Ⅱ).东北林业大学学报,2000,28(4):13-15
    [14]李雨红.中外家具发展史.哈尔滨:东北林业大学出版社,2000:161-162
    [15]W.P.Abasolo,M.Yoshida,H.Yamamoto and T.Okuyama.Thermal softening of rattan canes:influence of the hemi cellulose-lignin matrix.Journal of Bamboo and Rattan,2002,1(4):317-331
    [16]Derya Sevim Korkut,Bilgin Guller.The effects of heat treatment on physical properties and surface roughness of red-bud maple(Acer trautvetteri Medw.) wood.Bioresource Technology,2008,99(8):2846-2851
    [17]G(o丨¨)khan G(u丨¨)nd(u丨¨)z,S(u丨¨)leyman Korkut and Derya Sevim Korkut.The effects of heat treatment on physical and technological properties and surface roughness of Camiyan1Black Pine(Pinus nigra Arn.subsp,pallasiana var.pallasiana) wood.Bioresource Technology,2008,99(7):2275-2280
    [18]S(u丨¨)leyman Korkut,M.Samil K(o丨¨)k,Derya Sevim Korkut and Tu(?)ba G(u丨¨)rleyen.The effects of heat treatment on technological properties in Red-bud maple(Acer trautvetteri Medw.)wood.Bioresource Technology,2008,99(6):1538-1543
    [19]A.Oloyede,P.Groombridge.The influence of microwave heating on the mechanical properties of wood.Journal of Materials Processing Technology,2000,100(1-3):67-73
    [20]李坚等.木材保护学.北京:科学出版社,2006:19-22 154-166 184-202
    [21]S(u丨¨)leyman Korkut,Mehmet Akg(u丨¨)l and Turker D(u丨¨)ndar.The effects of heat treatment on some technological properties of Scots pine(Pinus sylvestris L.) wood.Bioresource Technology,2008,99(6):1861-1868
    [22]S(u丨¨)leyman Korkut.The effects of heat treatment on some technological properties in Uluda(?) fir(Abies bornmuellerinana Mattf.) wood.Building and Environment,2008,43(4):422-428
    [23]S.Nami Kartal,Won-Joung Hwang and Yuji Imamura.Combined effect of boron compounds and heat treatments on wood properties:Chemical and strength properties of wood.Journal of Materials Processing Technology,2008,198(1-3):234-240
    [24]李坚等.木材科学.北京:高等教育出版社,2002:84-177 304-341 368-377485-489
    [25]李坚.加热、水蒸气处理对木材横纹压缩变形的固定作用.东北林业大学学报,2000,28(4):4-8
    [26]李军.浅谈曲木工艺中的蒸煮软化机理.家具,1997,4:4-6
    [27]曹上秋.木材的软化处理与弯曲技术.中国林业产业,2006,2:26-28
    [28]张帝树,梅瑞仙,李启岭.白桦及毛白杨小径材木方软化工艺的研究.北京林业大学学报,1994,16(1):47-52
    [29]李军.浅析实木弯曲机理及影响因素.林业科技开发,1998,6:16-18
    [30]李坚.新型木材.哈尔滨:东北林业大学出版社,1993:318-341
    [31]张力平,张求慧,姚春丽.木材软化技术的初步.木材工业,1994,5:21-23
    [32]赵钟声.木材横纹压缩恢复率的变化规律与影响机制.东北林业大学博士研究论文.2003:40-60 62-77 79-93
    [33]程万里.木材高温高压蒸汽干燥过程中的应力释放机理和平衡含水率.东北林业大学博士研究论文.2006:34-70
    [34]Francis Mburu,St(?)phane Dumarcay,Jean Francois Bocquet,Mathieu Petrissans and Philippe G(?)rardin.Effect of chemical modifications caused by heat treatment on mechanical properties of Grevillea robusta wood.Polymer Degradation and Stability,2008,93(2):401-405
    [35]Elisabeth Windeisen and Gerd Wegener.Behaviour of lignin during thermal treatments of wood.Industrial Crops and Products,2008,27(2):157-162
    [36]J.Pastor-Villegas,J.M.Meneses Rodr(?)guez,J.F.Pastor-Valle and M.Garc(?)a Garc(?)a.Changes in commercial wood charcoals by thermal treatments.Journal of Analytical and Applied Pyrolysis,2007,80(2):507-504
    [37]陈太安,李大钢,王江.几种木材微波加热弯曲性能的比较研究.建筑人造板, 2000,3:24-26
    [38]李军.微波加热软化木材的弯曲工艺研究.林产工业,1998,25(6):4-6
    [39]牟群英,李贤军,盛忠志.木材微波加热厚度的确定.南林学院学报,2006,26(1):100-104
    [40]杨琳.利用微波改善落叶松木材的渗透性.东北林业大学硕士研究论文.2004:15-20
    [41]吕悦孝,薛振华,薛利忠.微波改性木材的超微观察.内蒙古林业科技,2001,4:31-34
    [42]江涛,周志芳,王清文.高强度微波辐射对落叶松木材渗透性的影响.林业科学,2006.42(11):87-92
    [43]P.Rattanadecho.The simulation of microwave heating of wood using a rectangular wave guide:Influence of frequency and sample size.Chemical Engineering Science,2006,61(14):4798-4811
    [44]薛振华,赵广杰.不同处理方法对木材结晶性能的影响.西北林学院学报,2007,22(2):169-171
    [45]王喜明,薛振华,石丽慧,张卫华.微波改性木材的初步研究.木材工业,2002,16(6):16-19
    [46]向仕龙,许俊.近代技术在木材工业中的应用.林业机械与木工设备,2002,30(11):28-30
    [47]刘志军,张璧光.木材微波干燥内部压力对水分移动的影响.林产工业,2006,33(2):17-19
    [48]李大纲.木材微波加热弯曲工艺学原理.哈尔滨:东北林业大学出版社,2004:36-59 144-173
    [49]王逢瑚.木质材料流变学.哈尔滨:东北林业大学出版社,1997:5-12 49
    [50]贾乃文.塑性力学.重庆:重庆大学出版社,1992:5-27,72-75
    [51]熊兆贤.材料物理导轮.北京:科学出版社,2001:1-8
    [52]涡国伟,王元淳.弹性力学.上海:上海交通大学出版社,1989:18-20,50-59,207-218
    [53]谢志成.材料力学.北京:清华大学出版社,1993:11-14
    [54]陈建桥.材料力学.武汉:华中科技大学出版社,2001:3-6
    [55]雷亚芳,冉鲁威,李增超,邱增处.色木径向、弦向、非标准向压缩木的主要力学性能.西北林学院学报,2000,15(2):29-32
    [56]曹金珍,赵广杰,鹿振友.木材的机械吸湿蠕变.北京林业大学学报,1998,20(5):94-100
    [57]刘一星等.木材横纹压缩大变形应力.应变关系的定量表征.林业科学,1995,31(5):436-442
    [58]赵钟声,孟令联,刘一星,沈隽.波谱分析在高温高压水蒸气处理压缩矩形木材中的应用.林业机械与木工设备,2001,29(10):31-32
    [59]齐华春,程万里,刘一星.高温高压过热蒸汽处理木材的力学特性及化学成分变化.东北林业大学学报,2005,33(3):44-46
    [60]Andrey Shipsha,Lars A.Berglund.Shear coupling effects on stress and strain distributions in wood subjected to transverse compression.Composites Science and Technology,2007,67(7-8):1363-1369
    [61]Sheldon Q.Shi,Douglas J.Gardner.Hygroscopic thickness swelling rate of compression molded wood fiberboard and wood fiber/polymer composites.Composites Part A:Applied Science and Manufacturing,2006,37(9):1276-1285
    [62]C.Adalian,P.Morlier.A model for the behaviour of wood under dynamic multiaxial compression.Composites Science and Technology,2001,61(3):403-408
    [63]Andre Da Silva and Stelios Kyriakides.Compressive response and failure of balsa wood.International Journal of Solids and Structures,2007,44(25-26):8685-8717
    [64]Tadashi Ohtani,Akira Inoue,Chiaki Tanaka.Abrasive wear properties of compressed sugi wood.The Japan Wood Research Society,2002,48:473-478
    [65]Jonas Blomberg,Bengt Persson.An algorithm for comparing density in CT-images taken before and after compression of Pinus sylvestris.Holz als Roh- und Werkstoff,2005,63:23-29
    [66]S.P.S.Rawat,M.C.Breese,D.P.Khali.Chemical kinetics of stress relaxation of compressed wood blocks.Wood Science and Technology 32,1998,95-99
    [67]Eiichi Obataya,Hidefumi Yamauchi.Compression behaviors of acetylated wood in organic liquids.Part Ⅱ.Drying-set and its recovery.Wood Sci Technol,2005,39:546-559
    [68]Md Iftekhar Shams,Hiroyuki Yano,Keijirou Endou.Compressive deformation of wood impregnated with low molecular weight phenol formaldehyde(PF) resin Ⅰ:effects of pressing pressure and pressure holding.The Japan Wood Research Society,2004,50:337-342
    [69]王洁瑛,赵广杰.空气介质中热处理杉木压缩木材的蠕变.北京林业大学学报,2002,(24)2:52-56
    [70]Md Iflekhar Shams,Hiroyuki Yano.Compressive deformation of wood impregnated with low molecular weight phenol formaldehyde(PF) resin Ⅱ:effects of processing parameters.The Japan Wood Research Society,2004,50:343-350
    [71]Md.Iftekhar Shams,Hiroyuki Yano,Keijirou Endou.Compressive deformation of wood impregnated with low molecular weight phenol formaldehyde(PF) resin Ⅲ:effects of sodium chlorite treatment.The Japan Wood Research Society,2005,51:234-238
    [72]W.Dwianto,M.Norimoto,T.Morooka,F.Tanaka,M.Inoue,Y.Liu.Radial compression of sugi wood(Cryptomeria japonica D.Don)(Radiale Kompression von Sugiholz).Holz als Rob- und Werkstoff,1998,56(6):403-411
    [73]Hiroyuki Yano.Potential strength for resin-impregnated compressed wood.Journal Of Materials Science Letters 20,2001,1127-1129
    [74]W.Sonderegger,P.Niemz.The influence of compression failure on the bending,impact bending and tensile strength of spruce wood and the evaluation of non-destructive methods for early detection.Holz Roh Werkst,2004,62:335-342
    [75]王洁瑛,赵广杰.木材变定的产生、回复及永久固定.北京林业大学学报,1999,21(3):71-77
    [76]杨霞.不同处理方法对人工林杨木压缩变形恢复率的研究.辽宁林业科技,2006,5:19-21
    [77]刘君良,刘一星,罗志刚.杨木、柳杉表面压密材的研究.吉林林学院学报,1998,14(3):125-128
    [78]陶俊林,蒋平,余作生.木材静压大变形本构关系研究.力学与实践,2000,22(5):25-27
    [79]Yoshitaka Kubojima,Takeshi Okano,Masamitsu Ohta.Bending strength and toughness of heat-treated wood.The Japan Wood Research Society,2000,46:8-15
    [80]Antonios N.Papadopoulos,George A.Ntalos,Kostas Soutsas,Vyron Tantos.Bonding behaviour of chemically modified wood particles for board production.Holz als Roh- und Werkstoff,2006,64:21-23
    [81]Yukie Saito,Takanori Arima.Deformation under a repetition of moisturizing and drying of bamboo subjected to a set in bending.The Japan Wood Research Society,2002,48:114-118
    [82]H.Herajarvi.Static bending properties of Finnish birch wood.Wood Sci Technol,2004,37:523-530
    [83]D.Sandberg,M.Stehr.Bending strength of I-beams with webs of wood-fibre board and flanges of star-sawn triangular profiles.Holz als Roh- und Werkstoff,1997,55(5):292
    [84]叶翠仙,陆继圣,刘经榜.荷木小径材弯曲工艺.福建林学院学报,2001,21(2):135-138
    [85]李大纲,徐永吉,蒋本浩.温度对意杨木材弯曲性能的影响.林业科技开发,1994,2:29-31
    [86]周志芳,江涛,王清文.高强度微波处理对落叶松木材力学性质的影响.东北林业大学学报,2007,35(2):7-8
    [87]D.S.Thomas,K.D.Montagu and J.P.Conroy.Changes in wood density of Eucalyptus camaldulensis due to temperature-the physiological link between water viscosity and wood anatomy.Forest Ecology and Management,2004,193(1-2):157-165
    [88]M.J.Negro,P.Manzanares,J.M.Oliva,I.Ballesteros and M.Ballesteros.Changes in various physical/chemical parameters of Pinus pinaster wood after steam explosion pretreatment.Biomass and Bioenergy,2003,25(3):301-308
    [89]F.Hammoum and P.Audebert.Modeling and smiulation of(visco)-plastic behavior of wood under moisture change.Mechanics Research Communications,1999,26(2):203-208
    [90]李大纲,李坚,刘一星.热处理对消除水曲柳木材弯曲变形的影响.南京林业大学学报(自然科学版),2004,28(3):23-26
    [91]刘志佳,李黎,王瑞娟,于洪志,张双保.弯曲木材尺寸稳定性与陈化时间的关系.中国人造板,2007,1:35-37
    [92]徐永吉.三、木材尺寸稳定的处理.林业科技开发,1996,4:55-57
    [93]钱俊,沈哲红,金永明,严建敏.人工林杉木压缩整形过程中的定形工艺.木材工业,2005,19(4):25-27
    [94]刘一星,李坚,刘君良,沈隽.水蒸气处理法制作压缩整形木的研究(Ⅰ).东北林业大学学报,2000,28(4):9-12
    [95]Norimoto M.Permanent fixation of bending deformation in wood by heat treatment.Wood Research,1993(79):23-33
    [96]Dwianto W,Ioue M.Norimoto M..Permanent Fixation of Compressive Deformation of Albizia Wood(Paraserianthes Falcata)by Heat Treatment[J].Journal of Tropical Forest Products,1998,4(1):59-67.
    [97]Wahyu Dwianto,et al.Crystalling Changes of Wood by Heat of Steam Treatment[J].Wood Research,1996,83:47-49
    [98]陈瑞英,刘景宏,魏萍.杉木间伐材压缩密化与回复变定的研究.福建林学院报,2005,25(4):294-298
    [99]杨霞.异氰酸酯树脂固定人工林杨木压缩变形的研究.吉林林业科技,2006,35(3):39-40
    [100]刘占胜,张勤丽,张齐生.压缩木制造技术.木材工业,2000,14(5):19-21
    [101]Mosafumi Inoue,Shigeyuki Ogata,Masanobu Nishikawa,et al.Dimentional stability,mechanical properties,and color change of a low molecular weight melamine formaldehyde resin impregnated wood.Mokuzai gakkaishi,1993,39(2):181-189
    [102]Mosafumi Inoue,Shigeyuki Ogata,Shuichi Kawai,et al.Fixation of compressed wood using melamine formaldehyde resin.Wood and Fiber Science,1993,25(4):404-410
    [103]井上雅文.压缩木研究现状与今后展望.人造板通讯,2002(9):3-10
    [104]顾继友等.刨花板厚度方向变形研究(Ⅰ):尺寸稳定之化学热力学研究初步.林业科学,2002,38(2):4-8
    [105]顾继友等.刨花板厚度方向变形研究(Ⅱ):刨花板厚度方向变形模型的建立及释因.林业科学,2002,38(3):161-166
    [106]顾继友等.刨花板厚度方向变形研究(Ⅲ):刨花板厚度方向变形模型及规律的确定.林业科学,2002,38,(4):135-140
    [107]Misato Norimoto,Yasushi Otsuka,et al.Surface compression of coniferous wood lumber Ⅱ:Permanent set of compression wood by low molecular weighy phenolic resion and some physical properties of the products.Mokuzai Gakkaishi,1991,37(3):227-233
    [108]Musafumi Inoue.Misato Norimoto,Yasushi Otsuka.Et al.Surface compression of coniferous wood lumberⅢ:Permanent set of the surface compressed layer by a water solution of low molecular weight phenolic resin.Mokuzai Gakkaishi,1991,37(3):234-240
    [109]Masafumi Inoue,Misato Norimoto.Surface Compreesion of Coniferous Wood Lumber Ⅱ.Mokuzai Gakkaishi,1993,39(3):227-240
    [110]Masafumi Inoue,Roger M.Rowell.Fixation of Compressed Wood Using Melamine Formalolehtde Resin.Wood and Fiber Science,1993,25(4):404-410
    [111]Masafumi Inoue,Kazuya MINATO,Misoto NORIMOTO.Permanent Fixation of Compressed Deformation of Wood BY Crosslinking.Mokuzai Gakkaishi,1994,40(9):931-936
    [112]Ikuho Iida,Yuji Imamura.Liquid Penetration of Precompressed Wood Ⅲ.Mokuzai Gakkaishi,1995,41(9):811-819
    [113]李大纲.李坚.刘一星.木材微波加热过程中的表面温度和干燥速度.东北林业大学学报,2003,31(6):18-19
    [114]Mitsuhiko Tanahashi.Steam or heat fixation of compressed wood.Wood and Fiber Science,1993,25(3):224-235
    [115]Wahyu Dwianto,Musafumi Inoue,Misato Norimoto.Fixation of compressive deformation of wood by heat treatment.Mokuzai Gakkaishi,1997,43(4):303-309
    [116]中国主要树种的木材物理力学性质.北京:中国林业出版社.1982:78-79
    [117]刘一星,赵广杰.木质资源材料学.北京:中国林业出版社,2004:23-26 57-90
    [118]李坚.木材波谱学.北京:科学出版社,2003:14-47

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700