用户名: 密码: 验证码:
焦炭塔鼓胀变形与开裂几个问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焦炭塔是炼油工业中延迟焦化的关键设备。由于延迟焦化工艺的特点,使焦炭塔经历循环的升温、降温,16至48小时内在室温与495℃之间循环变化,同时容器承载的介质由气态到液态至固态,工作环境复杂、恶劣,致使焦炭塔在运行若干年后普遍存在以下两方面的问题:筒体鼓胀以及筒体、焊缝和裙座等开裂。现场调查及有限元分析的研究结果表明塔壁内产生的循环热梯度是引起上述问题的主要原因。对焦炭塔问题进行合理的理论建模分析将有助于进一步弄清焦炭塔问题产生的热力学机理。本文以焦炭塔的热弹性问题为研究对象,对焦炭塔(单层/含衬里)的轴向、径向二维瞬态温度场、环焊缝和衬里与筒体材料之间的热机性能失配,以及焦炭塔热应力强度因子等关键问题进行了理论分析。
     首先,基于二维热传导理论,采用迭代法模拟了焦炭塔在进油和进水阶段由于液面不断上升引起的动态热边界条件,获得了轴向及径向二维瞬态温度场的解析解。数值计算中,分析了焦炭塔的温度场分布规律,并讨论了焦炭塔的半径及厚度、液体升速以及冷却水水温、塔壁热传导参数等对温度分布及温度梯度的影响。分析结果表明,液面升速对温度场的影响最大。
     基于经典的薄壳理论与热弹性理论,建立了焦炭塔的组合圆柱壳模型,研究了焦炭塔的筒体与环焊缝之间的相互作用。数值计算中,分析了含环焊缝焦炭塔的位移与应力随液面高度的变化规律,焊缝对应力的影响规律,以及筒体与焊缝材料的弹性模量、热膨胀系数等热机性能参数对塔壁应力分布的影响规律。分析结果表明,材料的热膨胀系数对应力分布的影响非常显著。
     基于二维热弹性理论与经典的层合薄壳理论,采用准静态假设研究了含衬里焦炭塔的热弹性问题,获得了解析解答。数值结果中,分析了衬里和基础金属层温度场的分布规律,以及衬里厚度对温度分布的影响,并与有限元结果进行了比较。讨论了含衬里焦炭塔的塔壁应力分布规律,以及衬里和基础金属材料的弹性模量及热膨胀系数对热应力的影响规律。
     基于线弹性断裂力学,分别采用权函数法、Reissner型板壳弯曲断裂理论对二维瞬态温度场下焦炭塔裂纹的热应力强度因子进行了初步的研究。首先,采用权函数法,提出了对焦炭塔含环向完全圆周裂纹的热应力强度因子进行分析的计算模型。同时,利用Duhamel-Neumann原理,将二维瞬态温度场下焦炭塔的热弹性问题转化为相应的等温弹性问题,根据Reissner型板壳弯曲断裂理论建立了二维瞬态温度场下Reissner型圆柱壳的基本方程,并应用摄动法给出了二维瞬态温度场下含环向穿透裂纹焦炭塔裂纹尖端位移及应力场的一般解。
Coke drums are important pressure vessels of the delayed coking process in the petroleum industry. During the delayed coking process, coke drums experience cyclic temperature variation from room temperature to 495℃in 16-48 h, with the content inside varying from gas to fluid and solid. Typically, after some years of operating thermal and pressure cycles, coke drums are subject to the following degradation:1) bulging of cylinder. 2) cracking in cylinder, weld seams and skirt. Studies based on the field survey and finite element analysis showed that the cyclic thermal gradient in the drum wall was believed to be the predominant mechanism for the above problems. The analysis based on theoretical models will help to increase our understanding of the thermal and mechanical mechanism. In this dissertation, with focus on the themoelasticity problem in a coke drum, the two-dimensional transient temperature distribution in both radial and axial directions, the thermal and mechanical properties mismatch between materials of the vessel and the circumferential weld or the cladding, as well as the themal stress intensity factors for a crack in a coke drum are studied theoretically.
     First, the transient temperature distribution in both radial and axial directions is derived analytically based on the two-dimensional heat conduction theory. The iteration technique is applied to simulate the dynamic boundary condition caused by a fluid surface level rising continuously during both heated feed filling and water quench steps. The temperature distribution in the drum wall is discussed numerically. Meanwhile, effects of the geometry of the coke drum, the temperature and rising velocity of quench water, the thermal properties of the vessel material on the axial temperature gradient are also discussed. The results show that the rising velocity of the fluid has the most significant effect on the temperature distribution in the drum wall.
     Based on the thermoelasticity and classical thin shell theory, a combined cylindrical shell model is presented to investigate the interation between the vessel and the circumferential weld. The variation of the displacement and thermal stresses with the fluid surface level rising, the effects of the circumferential weld, the Young's modulu and thermal expansion coefficient of the materials on the thermal stresses are discussed. The results show that, compared with the other parameters, the thermal expansion coefficient has more significant effect on the thermal stresses.
     The two-dimensional thermoelasticity and classical laminated thin shell theory are applied to solve the thermoelasticity problem in a coke drum with cladding based on the quasi-static assumption. In the numerical calculations, the temperature distributions in the cladding and base metal layers are analysized. The proposed solution is compared with finite element analysis. The thermal stresses in the drum wall, the effects of the Young's modulu and the coefficient of thermal expansion of the materials on the thermal stresses are discussed in detail.
     The theoretical analysis is carried out for the thermal stress intensity factor for a crack in a coke drum based on the weight function method and Reissner's cylindrical shell theory, respectively. First, the formulation is presented for the stress intensity factor evaluation of a circumferential crack in a coke drum by weight function. Second, a transient thermal fracture analysis based on Reissner's theory is developed by applying the Duhamel-Neumann analogy to replace thermoelastic problems with isothermal problems. The general solution for the displacement and stress fields at the crack tip of a coke drum with a circumferential through crack is obtained with the perturbation method.
引文
[1]Thomas J.W. API Survey of Coke Drum Cracking Experience [C]. In:Pressure Vessel and Tank Developments.American Petroleum Institute, Washington D.C.,1980:141-153.
    [2]Bagdasarian, A., Horwege, J., Kirk, S., et al. Integrity of Coke Drums (Summary of 1998 API Coke Drum Survey), ASME, Service Experience and Fitness-for-Service in Power and Petroleum Processing, PVP-Vol,2000,411:265-270.
    [3]Penso J.A. Fundamental study of failure mechanisms of pressure vessels under thermo-mechanical cycling in multiphase environments [D]. The Ohio state University, 2001.
    [4]Holst, J. M. F. G., Rotter, J.M., Calladine C.R. Imperfections and buckling in cylindrical shells with consistent residual stresses [J]. Journal of Constructional steel Research,2000, 54(2):265-282.
    [5]Rotter, J.M. Local inelastic collapse of pressurized thin cylindrical steel shells under axial compression [J]. Journal of structural engineering, ASCE,2000,116(47):1955-1970.
    [6]Rotter, J.M. Calculated buckling strengths for the cylindrical wall of 10,000 tonnes silos at Port Kembla[R]. Investigation report S663, School of Civil and Mining Engineering, University of Sydney,1988.
    [7]Teng, J.G. Plastic collapse at lap-joints in pressurized cylinders under axial load [J]. Journal of Engineering Mechanics, ASCE,1994,120(1):23-45.
    [8]Ignaccolo S., Cousin M., Jullien J.F., et al. Interaction of mechanical thermal stresses on the instability of cylindrical shells [J]. Res Mechanica:International Journal of structural mechanics and materials science,1988,24(1):25-33.
    [9]Allevato C., Richard S. Boswell, P.E. Assessing the structural integrity and remaining life of coke drums with Acoustic emission testing, strain gaging, and finite element analysis. Engineering Sources Technology Conference & Exhibition,1999, Houston, Texas. http://www.stress.com/pdf/coke/integrity.pdf
    [10]李一玮.延迟焦化装置焦炭塔的变形、开裂机理和安全分析[J].压力容器,1989,6(4):61-66.
    [11]赵莹,周鸿.焦炭塔的鼓凸损伤分析[J].西安石油学院学报,1998,13(6):38-41.
    [12]Penso J.A., Lattarulo Y.M., Seijas A.J., et al. Understanding failure mechanisms to improve reliability of coke drums [J]. ASME, Operations, Applications, and Components-1999, PVP-Vol.,395:243-253.
    [13]Jones D.P., et al. Residual Stresses in Weld Deposited Clad Pressure Vessels and Nozzles [J]. Journal of Pressure Vessel Technology,1999,121(4):423-429.
    [14]Ohta Akihiko, et al. Effect of Residual Stress on Fatigue of Weldments [C]. IIW International Conference on Performance of Dynamically Loaded Welded Structures, Welding Research Council. San Francisco, CA, July14-15,1997:108-122.
    [15]Kim, D.S., Mcfarland, D. B., Reynolds, J. T. Fitness for Service Assessment Utilizing Field Residual Stress Measurements [A]. PVP-ASME Conference Proceedings[C], Vol.315: 327-334.
    [16]Kim, D.S., Richard S. Boswell, P.E. Residual Stress measurements of coke drum welding coupon[C]. ASME-PVP conference proceedings, Fatigue, Fracture, and Residual Stresses, 1998,373:405-409.
    [17]Richard, S. Boswell, P. E., Ferraro T., Sober M. J. Remain Life Evaluation of Coke Drums[C]. Plant Engineering, Operations, Design & Reliability Symposium, Energy engineering Conference, Stress Engineering Services Inc., Houston, Texas,1997. http://www.stress.com/pdf/coke/remainlife.pdf.
    [18]Dunham C., Clark R. Laser mapping of coke drums-what has been learned. AIChE Spring National Meeting, New Orleans, Louisiana,1998. http://www.cia-inspection.com/aiche 98.PDF
    [19]Weil N.A., Rapasky F.S. Experience with vessels of delayed coking units.23rd Midyear Meeting of API Division of Refining,1958, May 13-19.
    [20]Ellis P.J., Hardin E.E., How Petroleum Delayed Coke Forms in a Drum [C]. Light Metals, The Minerals, Metals and Materials Society,1993.
    [21]Ellis P.J., Paul C.A. Delayed Coking Fundamentals. AIChE Spring National Meeting, New Orleans, Louisiana,1998.
    [22]Taler J., et al. Analysis of thermal stresses in a boiler drum during starting-up [J]. Journal of Pressure vessel Technology. Transaction of the ASME,1999,121:84-93.
    [23]Satapathy A.K. Thermal analysis of an infinite slab during quenching [J]. Communications in numberical methods in engineering,2000,16(8):529-536.
    [24]Antalffy L.P. Innovations in delayed coking coke drum design [J]. American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP,1999,388: 207-217.
    [25]Lee, C.W. Thermoelastic Stresses in Thick-Walled Cylinders under Axial Temperature Gradient [J]. Journal of Applied Mechanics,1966,88:467-469.
    [26]Yang, K.W., Lee, C.W. Thermal Stresses in Thick-Walled Circular Cylinders under Axisymmetric Temperature Distribution [J]. ASME Journal of Engineering for Industry, 1971,16:969-975.
    [27]Sherief, H. H., Anwar, M. N. A problem in generalized thermoelasticity for an infinitely long annular cylinder [J]. International Journal of Engineering Science,1988,26(3):301-306.
    [28]Stasynk, S.T., Gromovyk, V.I., Bichuya, A.L. Thermal-stress analysis of hollow cylinder with temperature-dependent. Acad. of Sciences of the Ukrainian SSR, LVOV.USSR,1979, 11(1):1-43. Translated in:Strength of material,1979,11(1):50-52.
    [29]Vollbrecht, H. Stress in cylindrical and spherical walls subjected to internal pressure and stationary heat flow [J]. Verfahrenstechnik,1974,8:109-112.
    [30]Kandil, A. Investigation of stress analysis in compound cylinders under high pressure and temperature[C]. In:(4th ed.), M.Sc. Thesis, CIT Helwan,1975.
    [31]Naga, S.A.R. Optimum working conditions in thick walled cylinders [J]. Journal of Engineering Materials and Technology, Transaction of ASME,1986,108(4):374-376.
    [32]Sinha, R.N. Thermal stress analysis of a hollow thick cylinder by the finite element method [J].Journal of the Institution of Engineers (India), Mechanical Engineering Division,1978, 59:131-133.
    [33]Zukhova, V.N., Pimshtein, P.G. Thermally stressed state of a laminated cylinder exposed to internal pressure and steady-state external heating [J]. International Applied Mechanics,1990, 25(8):808-813.
    [34]Yang, Y., Chen, C. Thermoelastic transient response of an infinitely long annular cylinder composed of two different materials [J]. International Journal of Engineering Science,1986, 24(4):569-581.
    [35]Sherief, H. H., Anwar, M. N. A problem in generalized thermoelasticity for an infinitely long annular cylinder composed of two different materials [J]. Acta Mechanica,1989, 80(1-2):137-149.
    [36]Wu, N., Rauch, B. J., Kessel, P. G. Perturbation solution to the response of orthotropic cylindrical shells using the generalized theory of thermoelasticity [J]. Journal of Thermal Stresses,1991,14(4):465-477.
    [37]Wang, X. Thermal Shock in a Hollow Cylinder Caused by a Rapid Arbitrary Heating [J]. Journal of Sound and Vibration,1995,183(5):899-906.
    [38]Cho, H., Kardomateas, G. A., and Valle, C. S. Elastodynamic Solution for the Thermal Shock Stresses in an Orthotropic Thick Cylindrical Shell [J]. ASME, Journal of Applied Mechanics,1998,65(1):184-193.
    [39]Kandil, A., EL-Kady, A. A., and EL-Kafrawy, A. Transient Thermal Stress Analysis of Thick-walled Cylinders [J]. International Journal of Mechanical Science,1995,37(7): 721-732.
    [40]Chen, P. Y. P. Axisymmetric Thermal Stresses in an Anisotropic Finite Hollow Cylinder [J]. Journal of Thermal Stresses,1983,6(6):197-205.
    [41]Goshima, T., and Miyao, K. Transient Thermal Stress in a Hollow Cylinder Subjected to y-Ray Geating and Convective Heat Losses [J]. Nuclear Engineering and Design,1991, 125(2):267-273.
    [42]Kardomates, G. A. Transient Thermal Stresses in Cylindrically Orthotropic Composite Tubes [J]. ASME Journal of Applied Mechanics,1989,56(2):411-417.
    [43]Kardomates, G. A. The Initial Phase of Transient Thermal Stresses due to General Boundary thermal Loads in Orthotropic Hollow Cylinders [J]. ASME Journal of Applied Mechanics, 1990,57(3):719-724.
    [44]Yee, K. C., Moon, T. J. Plane Thermal Stress Analysis of an Orthotropic Cylinder Subjected to an Arbitrary, Transient, Asymmetric Temperature Distribution [J]. ASME Journal of Applied Mechanics,2002,69(5):632-640.
    [45]Jane, K. C., Lee, Z. Y. Thermoelastic Transient Response of an Infinitely Long Annular Multilayered Cylinder [J]. Mechanics Research Communications,1999,26(6):709-718.
    [46]Lee, Z. Y. Hybrid Numerical Method Applied to 3-D Multilayered Hollow Cylinder with Periodic Loading Conditions [J]. Applied Mathematics and Computation,2005,166(1): 95-117.
    [47]Segall, A. E. Thermoelastic Analysis of Thick-walled Vessels Subjected to Transient Thermal Loading [J]. ASME Journal of Pressure Vessel Technology,2001,123(1):146-149.
    [48]Mcneill, D., and Brock, J. Engineering Data File Charts for Transient Temperatures in Pipes [J]. Heat/Piping/Air Condition Eng.,1971,43:107-119.
    [49]Marie, S. Analytical Expression of the Thermal Stresses in a Vessel or Pipe with Cladding Submitted to any Thermal Transient [J]. International Journal of Pressure Vessels and Piping, 2004,81(4):303-312.
    [50]Segall, A. E. Useful Polynomials for the Transient Response of Solids under Mechanical and Thermal Excitations [J]. International Journal of Mechanical Science,2002,44(4):809-823.
    [51]Segall, A. E. Transient Analysis of Thick-walled Piping under Polynomial Thermal Loading [J]. Nuclear Engineering and Design,2003,226(3):183-191.
    [52]Segall, A. E.Thermoelastic Stresses in an Axisymmetric Thick-walled Tube under Arbitrary Internal Transient [J]. ASME Journal of Pressure Vessel. Technology,2004,126(3):327-332.
    [53]Shahani, A. R., and Nababi, S. M. Analysis of the thermoelasticity problem in thick-walled cylinders[C]. Proceedings of the 10th Annual (international) Mechanical Engineering Conference, Tehran, Iran,2002,4:2056-2062 (in Persian).
    [54]Shahani, A.R., and Nababi, S.M. Analytical Solution of the Quasi-static Thermoelasticity Problem in a Pressurized Thick-walled Cylinder Subjected to Transient Thermal Loading [J]. Applied Mathematical Modelling,2007,31(9):1807-1818.
    [55]沈成康编著.断裂力学[M].上海:同济大学出版社,1996.
    [56]Labbens R., Pellissier-Tanon A., and Heliot J. Practical method for calculating stress-intensity factors through weight functions[C]. In:Mechanics of crack growth. Eighth national symposium, ASTM Special technical publication 590, American Society for Testing and Materials,1976:368-384.
    [57]Buchalet C. B., Bamford W. H. Stress intensity factor solutions for continuous surface flaws in reactor pressure vessels[C]. In:Mechanics of crack growth. Eighth national symposium, ASTM Special technical publication 590, American Society for Testing and Materials,1976: 385-402.
    [58]Harris D. O., Lim E. Y. Stress-intensity factors for complete circumferential interior surface cracks in hollow cylinders[C]. In:Fracture Mechanics.Thirteenth Conference, Roberts, R., Ed., ASTM Special technical publication 743, American Society for Testing and Materials, 1981:375-386.
    [59]Nied, H.F., Erdogan, F. The elasticity problem for a thick-walled cylinder containing a circumferential crack [J]. International journal of fracture,1983,22(4):277-301.
    [60]Tada, H., Paris, P. C., Irwin, G. R. The stress analysis of cracks handbook [M]. Del Research corp., Hellertown,1986.
    [61]Fett T., Munz D. Stress intensity factors and weight functions [M]. Southampton: Computational Mechanics Publications,1997.
    [62]Petersilge M., Varfolomeyev I. V. Stress intensity factor for internal circumferential cracks in thin-walled cylinders[C]. IWM.-report T10/96. Fraunhofer-Insitut fur Werkstoffmechanik, 1996.
    [63]Varfolomeyev I. V., Petersilge M., and Busch M. Stress intensity factors for internal circumferential cracks in thin- and thick-walled cylinders [J]. Engineering Fracture Mechanics,1998,60(5-6):491-500.
    [64]Mettu, S. R., Forman, R. G. Analysis of circumferential cracks in circular cylinders using the weight-function method[C]. In:Fracture Mechanics. Twenty-Third Symposium, ASTM STP 1189, Chona, R., Ed. American Society for Testing and Materials,1993:417-440.
    [65]Bryson, J. W., Dickson, T. L. Stress-intensity-factor influence coefficients for axial and circumferential flaws in reactor pressure vessels [C]. In:Pressure vessel integrity. ASME Pressure vessel and piping conference,1993,250:77-87.
    [66]Varfolomeyev I V, Hodulak L. Improved weight functions for infinitely long axial and circumferential cracks in a cylinder [J]. International Journal of Pressure Vessels Piping, 1997,70(2):103-109.
    [67]Meshii T, Watanabe K. Closed-form stress intensity factor for an arbitrarily located inner circumferential surface crack in a cylinder subjected to axisymmetric bending loads [J]. Engineering Fracture Mechanics,1998,59(5):589-597.
    [68]Meshii T, Watanabe K. Stress intensity factor of an arbitrarily located circumferential crack in a thin-walled cylinder with axisymmetrically loaded ends [J]. Engineering Fracture Mechanics,1999,62(4-5):371-382.
    [69]Meshii T, Watanabe K. Stress intensity factor evaluation of a circumferential crack in a finite-length thin to thick-walled cylinder under an arbitrary biquadratic stress distribution on the crack surfaces [J]. Engineering Fracture Mechanics,2001,68(8):975-986.
    [70]Meshii T, Watanabe K. Stress intensity factor for a circumferential crack in a finite-length thin to thick-walled cylinder for arbitrarily distribution stress on crack surfaces by weight function method [J]. Nuclear Engineering and Design,2001(1),206:13-20.
    [71]Wu X J, Liu C T. The stress strain fields at crack tip in a circumferentially cracked cylindrical shell and calculation of stress intensity factors[C]. Proc.6th int. conf. on Pressure Vessel Technology, Vol.Ⅰ,1988:439-446
    [72]Raju I S, Newman Jr J C. Stress intensity factors for internal and external surface crack in cylindrical vessels [J]. Journal of Pressure vessel technology, Transactions of the ASME, 1982,104(4):293-298.
    [73]Lee Y S, Raymund M. Stress intensity factor solutions for internal longitudinal semi-circular surface flaws in a cylinder under arbitrary loading [J]. Journal of Pressure vessel technology, Transactions of the ASME,1983,105(4):309-315.
    [74]Ma C C, Huang J I, Tsai C H. Weight functions and stress intensity factors for axial cracks in hollow cylinders [J]. Journal of Pressure vessel technology, Transactions of the ASME, 1994,116(4):423-430.
    [75]Mattheck C, Munz D, Stamm H. Stress-intensity factor for semi-elliptical surface crack loaded by stress gradient [J]. Engineering Fracture Mechanics,1983,18(3):633-641.
    [76]Niu X. Some requirements on the reference loading with large stress gradient for the calculation of the weight function using the Petroski-Achenbach method [J]. Engineering Fracture Mechanics,1990,36(1):167-172.
    [77]Zheng X J, Glinka G, Dubey R N. Calculation of stress intensity factors for semielliptical cracks in a thick-wall cylinder [J]. International journal of pressure vessel piping,1995, 62(3):249-258.
    [78]Wang X, Lambert S B. Stress-intensity factors and weight functions for longitudinal semi-elliptical surface crack in thin pipes [J]. International journal of pressure vessel & piping,1996,65(1):75-87.
    [79]Kiciak A, Glinka G, Burns D J. Calculation of stress intensity factors and crack opening displacements for cracks subjected to complex stress fields [J]. Journal of Pressure vessel technology, Transactions of the ASME,2003,125(3):260-266.
    [80]柳春图,吴犀甲.含轴向裂纹柱壳裂纹尖端应力应变场及应力强度因子计算[J].力学学报,1987,19(2):125-135.
    [81]Nied, H.F., Erdogan, F. Transient thermal stress problem for a circumferentially cracked hollow cylinder [J]. Journal of thermal stresses,1983,6(1):1-14.
    [82]Jayadevan K R. Critical stress intensity factors for cracked hollow pipes under transient thermal loads [J]. Journal of thermal stress,2002,25(10):951-968.
    [83]Jones I S. Impulse response model of thermal striping for hollow cylindrical geometries [J]. Theoretical and applied fracture mechanics,2005,43(1):77-88.
    [84]Meshii T, Watanabe K. Closed form stress intensity factor of an arbitrarily located inner-surface circumferential crack in an edge-restraint cylinder under linear radial temperature distribution [J]. Engineering Fracture Mechanics,1998,60(5-6):519-527.
    [85]Meshii T, Watanabe K. Maximum stress intensity factor for a circumferential crack in a finite-length thin-walled cylinder under transient radial temperature distribution [J]. Engineering Fracture Mechanics,1999,63(1):23-38.
    [86]Meshii T, Watanabe K. Analytical approach to crack arrest tendency under cyclic thermal stress for an inner-surface circumferential crack in a finite-length cylinder [J]. Journal of Pressure vessel technology, Transactions of the ASME,2001,123(2):220-225.
    [87]Meshii T, Watanabe K. Stress intensity factor of a circumferential crack in a thick-walled cylinder under thermal striping [J]. Journal of Pressure vessel technology, Transactions of the ASME,2004,126(2):157-162.
    [88]Meshii T, Watanabe K. Normalized stress intensity factor range solutions of an inner-surface circumferential crack in thin to thick-walled cylinder under thermal striping by semi-analytical numerical method [J]. Journal of Thermal Stresses,2004,27(3):253-267.
    [89]Meshii T, Shibata K, Watanabe K. Simplified method to evaluate upper limit stress intensity factor range of an inner-surface circumferential crack under steady state thermal striping [J]. Nuclear Engineering and Design,2006,236(10):1081-1085.
    [90]Wu X R. Application of approximate weight functions in fracture analyses of thermally stressed structures [J]. International journal of pressure vessel & piping,1984,16(1):53-66.
    [91]Oliveira R, Wu X R. Stress intensity factors for axial cracks in hollow cylinders subjected to thermal shock [J]. Engineering Fracture Mechanics,1987,27(2):185-197.
    [92]Dalale F, Kolluri S P. Fracture of thick-walled cylinders subjected to transient thermal stresses [J]. Journal of thermal stresses,1985,8(2):235-248.
    [93]Grebner H, Strathmeier U. Stress intensity factors for longitudinal semi-elliptical surface cracks in a pipe under thermal loading [J]. Engineering Fracture Mechanics,1985,21(2): 383-389.
    [94]Kotousov A, Price JWH. Elastic analysis of semi-elliptical axial cracks in cylinders under thermal shock using the BS 7910 framework [J]. International journal of pressure vessel & piping,1999,76(12):831-837.
    [95]Brighenti R. External longitudinal flaws in pipes under complex loading [J]. Journal of Pressure vessel technology, Transactions of the ASME,2001,123(1):139-145.
    [96]Lu Yan-lin, Zhang Shu-jia, Huang Xian-ping, Huang Jun. Determination of histories of SIF distributions for axial semi-elliptical surface cracks in hollow cylinders subjected to thermal shock [J]. International journal of pressure vessel & piping,2003,80(3):167-178.
    [97]Shahani A R, Nabavi S M. Closed form stress intensity factors for a semi-elliptical crack in a thick-walled cylinder under thermal stress [J]. International journal of fatigue,2006,28(8): 926-933.
    [98]Shahani A R, Nabavi S M. Transient thermal stress intensity factors for an internal longitudinal semi-elliptical crack in a thick-walled cylinder [J]. Engineering Fracture Mechanics,2007,74(16):2585-2602.
    [99]Ma C C, Liao M H. Analysis of axial cracks in hollow cylinders subjected to thermal shock by using the thermal weight function method [J]. Journal of Pressure vessel technology, Transactions of the ASME,1996,118(2):146-153.
    [100]Bueckner H F. A novel principle for the computation of stress intensity factors [J]. ZAMM, 1970,50:529-546.
    [101]Rice J R. Some remarks on elastic crack-tip stress field [J]. International journal of solids and structures,1972,8(6):751-758.
    [102]柳春图,胡互让,吴犀甲.圆柱壳孔边裂纹应力强度因子计算和分析[J].计算结构力学及其应用,1992,9(1):7-15.
    [103]柳春图,蒋持平.板壳断裂力学[M].北京:国防工业出版社,2000.
    [104]刘人怀,宁志华.焦炭塔鼓胀与开裂变形机理及疲劳断裂寿命预测的研究进展.压力容器,2007,27(1):1-8.
    [105]陈孙艺,林建鸿,吴东棣等.焦炭塔塔壁温度场特性的研究(一)——塔壁二维瞬态温度场及热弹塑性有限元计算分析[J].压力容器,2001,18(4):16-21.
    [106]陈孙艺.焦炭塔防变形设计的数值分析方法及应用[J].石油机械,2003,31(10):29-32.
    [107]王正,游进,王磊等.焦炭塔瞬态传热过程的数值模拟及应力特性分析[J].压力容器,2005,22(10):23-27.
    [108]姜根明,常安定,王拉省.零阶贝塞尔函数组成的两个正交系[J].纯粹数学与应用数 学,2002,18(2):126-129.
    [109]Spiegel M R.数学手册[M],杨维哲编译.台湾:正中书局,1979.
    [110]刘人怀.板壳力学[M].北京:机械工业出版社,1990.
    [111]沈惠申.板壳后屈曲行为[M].上海:上海科学技术出版社,2002.
    [112]蔡四维.复合材料结构力学[M].北京:人民交通出版社,1987:242.
    [113]韩强,黄小清,宁建国.高等板壳力学[M].北京:科学出版社,2002:167.
    [114]中国航空研究院编著.应力强度因子手册[M].北京:科学出版社,1993.
    [115]Tada H, Paris P C, Irwin G R. In:The stress analysis of cracks handbook,2nd ed. Hellertown:Del Research,1985.
    [116]Takahashi J. Research on linear and non-linear fracture mechanics based on energy principle. Ph.D.Dissertation, University of Tokyo,1991 (in Japanese).
    [117]Timoshenko S P. In:Strength of materials. Part Ⅱ,2nd ed. NJ:Princeton:D.Van Nostrand, 1934.
    [118]Fung, Y. C. Foundations of solid mechanics. New Jersey:Prentice-Hall, Inc., Englewood Cliffs,1965.
    [119]柳春图,吴犀甲.含轴向裂纹柱壳裂纹尖端应力应变场及应力强度因子计算.力学学报,1987,19(2):125-135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700