用户名: 密码: 验证码:
Plasma-MIG电弧耦合机制及2219铝合金焊接工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2219铝合金为Al-Cu系高强铝合金,由于其具有良好的力学性能,是制造火箭贮箱的理想材料之一。针对常规熔化极惰性气体保护焊(MIG)焊接2219铝合金气孔多、焊接接头质量差、焊接效率低等问题,本文以Plasma-MIG复合热源耦合机制及对应的焊接工艺为研究对象,采用实验研究及理论计算的方法,系统的研究复合热源焊接条件下,外层等离子弧与内层MIG弧的相互耦合机理、复合电弧特性、复合电弧光谱诊断、熔滴的受力模型。通过研究揭示了复合电弧空间温度分布规律,复合电弧耦合机理及各参数对于焊缝质量的影响。本研究丰富了复合热源焊接电弧理论,为2219铝合金进行稳定的高效高质量化Plasma-MIG复合焊接提供了实验基础与理论依据。
     本文根据Plasma-MIG复合电弧焊要求,对焊枪进行了改进。依靠于PLC及人机工程搭建了Plasma-MIG复合电弧焊接控制系统,实现了复合电弧焊接及焊接过程控制。设计了Plasma-MIG复合电弧焊起弧过程控制程序,解决了复合电弧难起弧的问题。
     本文利用光谱仪、高速摄像CCD、窄带滤光片、中性减光片和透镜建立了电弧光谱图谱同步采集系统,该系统能够准确的获得电弧信息。系统结构简单,具有较高的精度和采集效率。基于Bockasten三次多项式插值方法设计了离散Abel变换算法,通过将水平方向辐射强度信息恢复为径向发射系数信息,从而来获得Plasma-MIG复合电弧全信息,得到了Plasma-MIG复合电弧等温线分布。实验表明:Plasma-MIG复合电弧外层等离子弧由于受到内层MIG弧的影响,中心最高温度发生了偏移,复合电弧温度的最高区域在外层等离子弧区域。外层等离子弧与内层MIG电弧之间存在着一个明显的最低温度,该最低温度为内层MIG弧与外层等离子弧的分界区;Plasma-MIG复合电弧等温线分布趋势为先升高再降低再升高,整个电弧等温线呈中心对称分布;Plasma-MIG复合电弧,外层等离子弧由于受到喷嘴的压缩对于内层MIG弧具有一定的压缩作用。MIG电弧由于电流流入等离子弧,使得MIG弧的热作用减弱,从而降低了内部MIG电弧温度。
     结合传统MIG焊接熔滴过渡力学理论,进一步分析了外层等离子弧介入所产生的熔滴受力情况的变化,建立了复合热源焊接熔滴过渡的力学物理模型。计算了不同参数下的熔滴受力,结合电弧热作用机理揭示了焊接参数与熔滴受力的内在联系。对熔滴及电弧图像、电参数的进行同步采集,对Plasma-MIG复合电弧焊接过程中的电弧特性、熔滴过渡形式,熔滴受力,复合电弧特性的影响因素,电弧熔池行为进行了系统的分析。与常规MIG焊相比,复合电弧焊接过程更稳定,可实现不同熔滴过渡形式下的无飞溅焊接。
     本文设计了二次五元回归模型,系统的研究了单一焊接参数及多参数交互作用对接头抗拉强度的影响。分析结果表明:单因素的影响作用均呈现抛物线规律,焊接速度对抗拉强度影响最大,其次为熔化极电压和等离子弧电流,送丝速度对接头抗拉强度的影响最小。焊接参数范围内存在最佳工艺参数之间相互匹配,其中焊接速度和送丝速度的交互作用最强,MIG电压和焊接速度交互作用影响最小,两者为近似独立。通过对二次五元回归模型进行数学处理,优化了2219铝合金Plasma-MIG焊接工艺参数,优化后焊接接头抗拉强度为285MPa(未去除正反面余高),强度系数达到了70.3%。
     本文系统的研究了2219铝合金在Plasma-MIG焊接下的热循环曲线。分析了五种参数下的高温时间、温度梯度、高温停留时间、过冷度等方面的变化规律。研究了等离子电弧对熔池运动的影响规律:等离子电弧的加入一方面抑制了电弧气氛中氢质子向液态金属溶解,另一方面改变了熔池运动形式,加快了过饱和气体的析出。当焊接参数匹配合理,焊缝中气孔缺陷明显减少,甚至消失。与常规MIG相比, Plasma-MIG复合电弧焊接改善了2219铝合金接头力学性能及焊缝组织。
2219aluminum alloy, a kind of high strength Al-Cu alloys, is an ideal materialfor the fabrication of the rocket fuel storage box. Aiming at solving the problems ofhigh porosities and low welding efficiencies in the conventional MIG weldingmethod of2219aluminum alloy welding process, plasma-MIG hybrid arc weldingis introduced, and the coupling mechanism of the hybrid arcs and the weldingprocedure are investigated. During the plasma-MIG hybrid arc welding process, thecoupling mechanism of outer plasma arc and inner MIG arc, hybrid arccharacteristics, spectral diagnostics information of hybrid arcs and the force modelof droplets are systematically studied by experimental and theoretical methods. Thetemperature distributions in the arc zones, the coupling mechanism of hybrid arcsand the effects of various welding parameters on the weld properties are disclosed,which enrich the theory of the plasma-MIG hybrid arc welding and provide theexperiment and theory basis for high quality welds of2219alloy with stableplasma-MIG hybrid arc welding procedure.
     The special welding torch is developed to meet the requirement of plasma-MIGhybrid arc welding, and the control system for the plasma-MIG hybrid arc weldingis also constructed to control the welding parameters by the use of PLC andhuman-machine engineering. Furthermore, a well designed arc starting system isrealized to solve the difficulty at arc starting during plasma-MIG hybrid arcwelding.
     The spectrum and image acquisition system for hybrid arcs, which is made upof the spectrometer, high-speed CCD digital cameras, narrow bandpass filters,Neutral filters and optical lens, can get the accurate full-field information of thearcs, and this system is simple in constructions with high accuracy and dataacquisition efficiency. Discrete Abel transfer algorithm is designed based onBockasten cubic polynomial interpolation method. The plasma-MIG hybrid arcfull-field information is available by converting the horizontal radiation strength toradial emitting coefficiency, and base on which the isothermal lines can be got inplasma-MIG hybrid welding process. The experimental results show that the highesttemperature zone in the arc center shifts due to the influence of inner MIG arc on outer plasma arc, and thus the highest temperature zone locate at the outer plasmaarc in plasma-MIG hybrid arc welding. There is a lowest temperature zone betweenthe outer plasma arc and the inner MIG arc, which locates at the interface of the twoarcs. The distributions of isothermal lines increase firstly, and then decrease, finallyincrease again, and they are centrosymmetrically distributed. The inner MIG arc iscompressed by the outer plasma arc for the constrict effect of the nozzle. The heateffect of MIG arc is weakened because of the bypass flow of the MIG current intothe plasma arc, and thus the temperature of MIG arc is lowered.
     With referencing to the mechanical theory of droplet transfer in conventionalMIG welding, the influence of outer plasma arc on the changing of droplet transferbehavior is further analyzed and a mechanical physical model is developed in thePlasma-MIG welding process. According to the theory of arc heating effect and thestatic force balance, the force actions on the droplets are calculated and the relationsbetween welding parameters and force are also revealed. The Plasma-MIG hybridarc characteristic, droplet transfer behavior, the influencing factors of arccharacteristic are studied systematically by adopting droplet photos andsynchronous acquisition of electrical parameters. Compared with conventional MIGwelding, the hybrid arc welding process is further stability, and thus non-spatterwelding process with difference of droplet transfer modes can be achieved.
     The quadratic regression mode with five factors is used to study the effects ofsingle factor and interactions multi-factor on tensile strength. The results show thatthe effect of single factor on tensile strength display parabola rules, welding speedis the greatest impact on the tensile strength, MIG voltage and Plasma current issubsequent effect, and the wire feed plays minimal role to tensile strength. The bestof interaction weld parameter is existed; the interactions between welding speed andwire feed are the greatest impact on the tensile strength, and meanwhile theinteractions between MIG voltage and welding speed which are mutuallyindependent play minimal role to tensile strength. The welding process parametersof2219aluminum are optimized by the mathematical treatment of the quadraticregression mode with five factors, the tensile strength of weld joint is285Mpawhich is the70.3%of base metal.
     The thermal cycling curve of Plasma-MIG welding for2219aluminum alloy isinvestigated. In the condition of five different kinds of parameters, the temperature gradient, residence time of high temperature and super cooling are analysised. Theinfluence of plasma arc on the motion of weld pool has been researched. It wasfound that the process of proton in arc atmosphere dissolving into liquid metal hasbeen controlled, the motion form of weld poor behavior is changed and theevolution of saturated gas has been accelerated due to introduction of outer plasmaarc. Compared with conventional MIG welding, the joint properties and weldmicrostructure of2219aluminum alloy are improved by Plasma-MIG hybrid arcwelding.
引文
[1]潘际銮.二十一世纪焊接科学研究的展望[J].第九次全国焊接会议论文集.黑龙江人民出版社,1999:1~17.
    [2]崔旭明,李刘合,张彦华.高效焊接工艺研究现状[J].新技术新工艺,2004,(7):32~34.
    [3] W. Lucas, D. S. House. Activating Flux-increasing the Performance andProductivity of the TIG and Plasma Processes. Welding and Metal Fabrication.1996,64(1):11~17.
    [4]张志勇,田志凌,彭云.铝合金先进焊接技术[J].焊接,2003,(7):5~9.
    [5]韩永全,陈树君,殷树言,等.变极性等离子电弧稳定性及其控制[J].焊接学报,2008,29(4):18~20.
    [6] A.L. Phillips.铝合金焊接手册[M].四川科学技术出版社,1985.
    [7] G. Jelmorini, G. W. Tichelaar, W. G. Essers, A. M. Willems, H. Coops. WeldingCharacteristics of the Plasma-MIG Process[J]. Metal Construction.1975,7(11):568~572.
    [8] A. A. Schevers. Plasma-MIG Welding of Aluminium[J]. Welding and MetalFabrication.1976,(1):17~20.
    [9] W. G. Essers. New Process Combines Plasma with GMA Welding[J]. WeldingJournal.1976,55(5):394~400.
    [10] A. Mudde. Plasma-MIG Offers Benefits for Welding Aluminium[J]. Weldingand Metal Fabrication.1980,(10):521~526.
    [11] Y. Sugiyama, et al. Diminishing of Smut in Aluminum Alloy Welds-PreventionUsing Double Wire MIG Welding[J]. Welding International.1993,7(6):431~437.
    [12]魏占静.德国CLOOS TANDEM高效MIG/MAG双丝焊技术[J].现代焊接,2006,41(5):53.
    [13]杨春利,刚铁,林三宝.高强铝合金厚板双丝MIG焊工艺初步研究[J].中国有色金属学报,2004,14(1):259~264.
    [14]崔洪波.铝合金厚板双丝MIG焊熔滴过渡与工艺研究[J].哈尔滨工业大学工学硕士学位论文,2003.
    [15]殷树言.高效弧焊技术的研究进展[J].焊接,2006,(10):7~14.
    [16]美国金属学会.金属手册[M].北京:械工业出版社,1994,6..
    [17]周方明,于治水,王宇,等. TIG-MIG双面对称焊焊缝成形机理研究[J].机械工业学报,2004,40(4):58-61.
    [18]周方明,于治水,王宇,等.铝合金TIG-MIG双面双弧焊接技术[J].造船技术,2003(5):22-25.
    [19] Fangming Zhou, Zhishui Yu. Numerical Analysis of Heat Transfer Process forDouble Sided Tungsten Inter Gas-Metal and inert Gas-Weld Pool [J]. Scienceand Technology of Welding and Joining,2003,8(l):76-79.
    [20] W. M. Steen, M. Eboo. Arc Augmented Laser Welding. Metal Construction[J].1979,11(7):332~335.
    [21] W. M. Steen. Arc Augmented Laser Processing of Materials[J]. J.Appl.Phys.1980,51(11):5636~5641.
    [22] T. P. Diebold, C. E. Albright.“Laser-GTA” Welding of Aluminum Alloy5052[J]. Welding Journal,1984,63(6):18-24.
    [23]雷正龙. CO2激光-MIG复合热源焊接铝合金的熔滴过渡行为研究[D].哈尔滨工业大学工学博士学位论文,2006.
    [24] Tishide, M. Nayama. Coaxial TIG-YAG&MIG-YAG Welding Methods[J].Welding International.2001,15(12):940~945.
    [25]王威,王旭友,赵子良.激光-MAG电弧复合热源焊接过程的影响因素[J].焊接学报,2006,27(2):6~10.
    [26] Ono,Kohei,Liu Zhongjie,Era,Tesuo,Uezono,Toshiro,Ueyama,Tomoyuki,Tanaka, Manabu and Nakata, Kazuhiro. Development of a plasma MIGwelding system for aluminum [J]. Welding International,2003,23(11):805~809.
    [27] W. G. Essers, A. C. Liefkens. Plasma-MIG Welding Developed by Philips.Machinery and Production Engineering[J].1972,121(3129):632~633.
    [28] B. Rring. Shielding Gases Are the Key to Innovations in Welding[J]. WeldingJournal.1999,78(1):37~41.
    [29] J. Zawodny. Welding with the Right Shielding Gas[J]. Welding Journal.2001,80(12):49~50.
    [30] L.J. Stares, D. Hilton. Two Shielding Gases Are Not Enough[J]. WeldingDesign and Fabrication.1994,(10):42~43.
    [31] W. G. Essers, G. Jelmorini, G. W. Tichelaar. Arc Characteristics and MetalTransfer with Plasma-MIG Welding[J]. Metal Construction.1972,4(12):439~447.
    [32] B.E. Pinfold, J.E.M. Jubb. Plasma-MIG Welding[J]. Welding and MetalFabrication.1974,(12):417~419.
    [33] A.I. Akulov, V.L. Ronski. Special Features of Melting Electrode Metal inPlasma-Arc Welding with Axial Feed of the Consumable Electrode[J]. WeldingProduction.1986,33(11):31~33.
    [34] M. Kusch. Anlagentechnische Aspekte der Plasma-MIG-Technologie[J]. ShakerVerlag,2003:37~41.
    [35] Bai Yan, Gao Hong-ming, Wu Lin. Plasma-gas Metal Arc Welding Procedureon Low Carbon Steel[J]. Transactions of the China Welding Instiution,2006,27(9):59-62.
    [36]董晓强,于跃.等离子-MIG焊熔滴过渡的研究[J].热加工工艺,2009,38(3):121-123.
    [37]白岩.铝合金Plasma-MIG焊接电弧特性及工艺研究[D].哈尔滨:哈尔滨工业大学,2007.
    [38] W. G. Essers. Method of Device for Arc Welding: U. S Patent,4039800[P],1977.
    [39] W. G. Essers,G. Jelmorini,G. W. Tichelaar. Device and Welding Torch forplasma-MIG Welding:U. S Patent,4122328[P],1978.
    [40] Gerardus Jelmorini,Enidhoven. Method and Device for Plasma-MIG Welding:U. S Patent,4146772[P],1979.
    [41] S. Asai,T. Ogawa. Appliaction of Plasma-MIG Hybrid Welding to DissimilarJoint between Copper and Steel[J]. IIW Doc.XII,1972.
    [42] R. Draugelates,B. Bouaifi. Investigations on Underwater Welding by ThePlasma-MIG Method[J],1992.
    [43] W. G. Essers, R. Walter. Heat Transfer and Penetration Mechanisms with GMAand Plasma-GMA Welding[J].1981,60(2):37~42.
    [44] G. Jelmorini,G. W. Tichelaar,W. G. Essers,A. M. Willems,H. COOPS.Welding Characteristics of the Plasma-MIG Process[J]. Metal Construction,1975,7(1):568-572.
    [45] Y. B. Chen, L. Q. Li, J. F. Fang, X. S. Feng, L. Wu. Temperature FieldSimulation of Laser-TIG Hybrid Welding. China Welding[J].2003,12(1):62~66
    [46]孟庆国,方洪渊,徐文立,等.双丝焊热源模型[J].机械工程学报,2005,41(4):110~113.
    [47] H.M. Gao, L. Wu, H.G. Dong. Current Density Distribution in Double-SidedGTAW Process. Journal of Materials Science and Technology[J].2001,17(1):187~188.
    [48] H.G. Dong, H.M. Gao, L. Wu. Numerical Simulation of Heat Transfer andFluid Flow in Double-Sided GTAW Process. Journal of EngineeringManufacture[J]. Proceedings of the Institute of Mechanical Engineers Part B.2003,217:87~97.
    [49] H.G. Dong, H.M. Gao, L. Wu. Numerical Simulation of Fluid Flow andTemperature Field in Keyhole Double-Sided Arc Welding Process on StainlessSteel[J]. International Journal for Numerical Methods in Engineering.2006,65(10):1673~1687.
    [50] H.M. Gao, L. Wu, H.G. Dong. Numerical Simulation for Temperature Field andFluid Flow Field in Double-Sided GTAW Process[J].7thInternational WeldingSymposium. Kobe, Japan,20~22November2001.
    [51] C.S. Wu, J.S. Sun, Y.M. Zhang. Numerical Simulation of DynamicDevelopment of Keyhole in Double-Sided Arc Welding[J]. Modelling andSimulation in Materials Science and Engineering.2004,12(3):423~442.
    [52]孙俊生,武传松,董博玲. PAW+TIG电弧双面焊接小孔形成过程的数值模拟[J].金属学报,2003,39(1):79~84.
    [53]孙俊生,武传松.等离子与钨极双面电弧焊接热过程的数值模拟[J].金属学报,2003,39(5):499~504.
    [54]张义顺,蔡静,李德元,等.等离子-MIG焊接温度场的有限元仿真[J].沈阳工业大学学报,2004,26(3):258~260.
    [55]张义顺,董晓强,李德元,等.等离子弧-MIG焊双电弧作用下的焊接熔池形态分析[J].焊接技术,2005,34(5):21~22.
    [56]张义顺,董晓强,李德元.等离子枪体内部流场及温升的模拟[J].焊接学报.2005,26(9):77~80.
    [57]徐菁华,李德元,张义顺,等.等离子-MIG枪体内流场、温度场的仿真分析[J].沈阳工业大学学报,2005,27(1):12~15.
    [58]王伟明,王保华,李大永,等.等离子枪体中冷却水流动与换热的数值模拟[J].计算物理,2005,22(1):83~87.
    [59] Jackson. The Science of Arc Welding[J]. Welding Journal.1960,37:129~140,177~190,225~230.
    [60] E. Smars, K. Acinger. Material Transport and Temperature Distribution in ArcBetween Melting Aluminum Electrodes. IIW Document,212-162-68.1968.
    [61] G.N. Haddad, A.J. Farmer. Temperature Determinations in a Free-Burning Arc:I. Experimental Techniques and Results in Argon[J]. Journal of Physics D:Applied Physics.1984,17(6:):1189-1196.
    [62] G.N. Haddad, A.J. Farmer. Temperature Measurements in Gas TungstenArcs[J]. Welding Journal.1985,64(12):339~342.
    [63] A.J. Farmer, G.N. Haddad, L.E. Cram. Temperature Determinations in aFree-Burning Arc: III. Measurements with Molten Anodes[J]. Journal ofPhysics D: Applied Physics.1985,19(9):1723-1730.
    [64] G.N. Haddad, A.J. Farmer. Temperature Measurement for High-CurrentFree-Burning Arcs in Nitrogen[J]. Journal of Physics D: Applied Physics.1993,26(8):1224-1229.
    [65] P. Kovitya, L.E. Cram. Two-Dimensional Model of Gas-Tungsten WeldingArcs[J]. Welding Journal.1986,65(12):34~39.
    [66] M.F. Thornton. Spectroscopic Determination of Temperature Distributions forTIG Arc[J]. Journal of Physics D: Applied Physics.1993,26(9):1432-1438.
    [67] M.F. Thornton. Spectroscopic Determination of Temperature Distributions for aTIG Arc[J], Ph.D Thesis, Cranfield University,1993.
    [68] S. Akbar, K. Etemadi. Temperature Profiles in Argon Arcs by Optical EmissionSpectroscopy[J]. Pakistan Journal of Scientific and Industrial Research.1995,38(7):271-276.
    [69] L.O. Vilarinbo, A. Scotti. Proposal for a Modified Fowler-Milne Method toDetermine the Temperature Profile in TIG Welding at Low Currents[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering.2004,26(1):34-39.
    [70] K.C. Hsu, K. Eternadi. Study of the Free-burning High-intensity Argon Arc[J].Journal of Applied Physics.1983,54(3):1293~1301.
    [71]邵其鋆,何煜,等.直流等离子体弧温度测量与模拟计算结果的比较[J].物理学报,1999,48(9):1691-1701.
    [72] P. Kovitya, L.E. Cram. Two-Dimensional Model of Gas-Tungsten WeldingArcs[J]. Welding Journal.1986,65(12):34~39.
    [73] J.J. Lowke, P. Kovyta. Theory of Free-Burning Arc Columns Including theInfluence of the Cathode[J]. Journal of Physics D: Applied Physics.1992,25(11):1600-1606..
    [74] P. Y. Zhu, J.J. Lowke. Prediction of Anode Temperatures of Free BurningArc[J]. Journal of Physics D: Applied Physics.1995,28(7):1369-1376.
    [75] A.E.F. Gick. The Use of Electrostatic Probes to Measure the TemperatureProfiles of Welding Arcs[J]. Journal of Physics D: Applied Physics.1973,6(16):1941-1949.
    [76] R.M. Clements, P.R. Smy. Comments on “The Use of Electrostatic Probes toMeasure the Temperature Profiles of Welding Arcs”[J]. Journal of Physics D:Applied Physics.1974,7(12): L133-L134.
    [77] P. Vervisch, B. Cheron and J.F. Lhuissier. Spectroscopic Analysis of a TIG ArcPlasma[J]. Journal of Physics D: Applied Physics.1990,23(8):1058-1063.
    [78] D. Degout, A. Catherinot. Spectroscopic Analysis of the Plasma Created by aDouble-flux Tungsten Inert Gas(TIG) Arc Plasma Torch[J]. Journal of PhysicsD: Applied Physics.1986,19(5):811-823.
    [79] W.H. Zhao, J.Q. Li, J.D. Yan. Temperature Measurement of Nonsteady Arcs[J].IEEE Transactions on Plasma Science.1997,25(5):828-832.
    [80] A.W. Pasternak, A.A. Offenberger. Probe and Spectroscopic Measurements ina High-Density DC Argon Arc Plasma[J]. Journal of Applied Physics.1975,46(3):1136-1140.
    [81]唐玉国,李福田.壁稳氩弧等离子体光谱诊断.光谱学与光谱分析,1996,16(1):11-14.
    [82]赵文华,唐皇哉,田阔,等.存在空气卷吸时等离子体射流光谱诊断应做的修正[J].光谱学与光谱分析,2004,24(4):388-391.
    [83]王国荣,等.光谱法水下焊接电弧温度的研究[J].机械工程学报,1997,33(2):9398.
    [84]董春林.等离子弧焊小孔行为的弧光传感研究[D].哈尔滨工业大学博士论文,2001.
    [85] A. Marotta, Determination of Axial Thermal Plasma Temperatures withoutAbel Inversion[J]. Journal of Physics D: Applied Physics.199427(9):268-272.
    [86] N.K. Joshi, S.N. Sahasrabudhe, K.P. Sreekumar, N. Venkatramani. Variation ofAxial Temperature in Thermal Plasma Jets[J]. Measurement Science andTechnology.1997,8(10):1146-1150.
    [87] P. Sforza, D. de. Blasiis. On-line Optical Monitoring System for ArcWelding[J]. NDT and E International.2002,35(1):37-43.
    [88] H. Ton. Physic properties of the plasma-MIG welding arc[J]. Journal ofPhysics D: Applied Physics,1975,8(8):922-933.
    [89] H. Ton. Physical Properties of the Plasma-MIG Welding Arc[J]. AppliedPhysics.1975,8(4):922~933.
    [90] Mosie Alves de Oliveira, Jair Carlos Dutra. Electrical Model for theplasma-MIG hybrid welding process[J]. Welding and cutting,2005,6(6):324-328.
    [91]周大中,孙军,黄子平.单电源等离子-MIG焊方法[J].焊接学报,1990,11(3):1-3.
    [92]刘磊.等离子MIG复合电弧的起弧及稳弧特性的分析[D].沈阳:沈阳工业大学,2006.
    [93]张义顺.等离子-MIG焊接方法及其双弧复合特性的研究[D].沈阳:沈阳工业大学,2006.
    [94]马国红.等离子MIG焊接控制系统的研制[D].沈阳:沈阳工业大学,2002.
    [95] W. G. Essers, G. Jelmorini, G. W. Tichelaar. Arc Characteristics and MetalTransfer with Plasma-MIG Welding[J]. Metal Construction.1972,4(12):439~447.
    [96] W. G. Essers, G. Jelmorini, G. W. Tichelaar. The Plasma-MIG WeldingProcess[J]. Tool and Alloy Steels.1978,12(8):275~277.
    [97] R. Vennekens. Plasma-MIG Welding. Revue de la Soudure[J].1975,31(1):36~43.
    [98] N. Hirokazu, S. Y.Ji. Narrow Gap MIG Welding Process with High SpeedRotating Arc[J]. Chinese Mechanical Engineering Society.1984,4(16):1~6.
    [99] A. Lesnewich. Control of Melting Rate and Metal Transfer in Gas-ShieldedMetal-Arc Welding[J]. Welding Journal.1958,37(9):418~425.
    [100]过增元,赵文华.电弧和热等离子体[M].科学出版社,1986:7784.
    [101] L.M. Ignjatovic, A.A. Mihajlov. The Realization of Abel’s Inversion in theCase of Discharge with Undetermined Radius[J]. Journal of QuantitativeSpectroscopy and Radiative Transfer.2002,72(5):677-689.
    [102] P. Tomassini, A. Giulietti. A Generalization of Abel Inversion toNon-Axisymmetric Density Distribution[J]. Optics Communications.2001,199(1-4):143-148.
    [103] S. Nakamura. Estimating Measurement Error Values Resulting from the PeakPosition Error, When Using the Abel Inversion and the Numerical Method inArgon Inductively Coupled Plasma Diagnostics[J]. Spectrochimica Acta PartB.1999,54(13):1899-1902.
    [104] L.M. Smith. Nonstationary Noise Effects in the Abel Inversion[J]. IEEETransactions on Information Theory.1988,34(1):158-161.
    [105] H.K. Park. A New Asymmetric Abel-Inversion Method for PlasmaInterferometry in Tokamaks[J]. Plasma Physics and Controlled Fusion.1989,31(13):2035-2046.
    [106] F. Yousefian, M. Lallemand. Inverse Radiative Analysis of High-ResolutionInfrared Emission Data for Temperature and Species Profiles Recoveries inAxisymmetric Semi-Transparent Media[J]. Journal of QuantitativeSpectroscopy and Radiative Transfer.1998,60(6):921-931.
    [107] X.Y. Liu. G.Q. Li. et al. Gauss Numerical Inversion for Use in Computing theRadiation Field from a Cylindrically Symmetric Radiation Source[J].Radiation Physics and Chemistry.2001,61(2):93-98.
    [108]江少恩,刘忠礼,唐道源等.基于快速傅里叶变换和汉克耳变换的逆阿贝尔变换[J].光学学报,1999,19(5):660-664.
    [109] S. Mijovic, M. Vuceljic. Comparisons Between Direct and Inverse Approachesin Problems of Recovering the True Profile of a Spectral Line[J]. Journal ofQuantitative Spectroscopy and Radiative Transfer.2003,77(1):79-86.
    [110] L. Luizova. Abel’s Inversion Applied to Array of Spectral Line Profiles[J].Journal of Quantitative Spectroscopy and Radiative Transfer.2000,66(3):277-283.
    [111]马税良,高洪明,张广军,等.阿贝尔逆变换数据处理算法在电弧诊断中的应用[J].光学学报,2007,27(9):1633~1638.
    [112] Mosie Alves de Oliveira, Jair Carlos Dutra. Electrical Model for thePlasma-MIG hybrid welding process [J]. Welding and cutting,2005,6(6):324-328.
    [113]袁志发,周静芋.实验设计与分析[M].北京:高等教育出版社,2000.
    [114] Douglas C. Montgomery著,傅钰生,张健,等译.实验设计与分析[M].北京:人民邮电出版社,2009.
    [115]胡建文. GMAW快速成形熔敷焊道尺寸神经网络建模和参数预测[D].哈尔滨:哈尔滨工业大学,2012.
    [116]李云雁,胡传荣.实验设计与数据处理(第二版)[M].北京:化学工业出版社,2008.
    [117]张文钺.焊接冶金学(基本原理)[M].北京:机械工业出版社,1995.
    [118]武传松.焊接热过程与熔池形态[M].北京:机械工业出版社,2007.
    [119]赵玉珍.焊接熔池的流体动力学行为及凝固组织模拟[D].北京:北京工业大学,2004.
    [120]郭景杰,傅恒志.合金熔体及其处理[M].北京:机械工业出版社,2005.
    [121]袁章福,柯家骏,李晶.金属及合金的表面张力[M].北京:科学出版社,2006.
    [122]李志宁,都东,王力,等.变极性等离子弧焊换向过程的变阻尼现象[J].焊接学报,2006,27(11):9-12.
    [123]丁坤,姚河清,范兴辉,等.变极性TIG焊电弧负载特性及换向控制策略[J].焊接学报,2008,29(9):31-34.
    [124] Kou S, Wang Y H. Weld Pool Convention and Its Effect [J].Welding Journal,1986,65(3):63-70.
    [125] Kou S, Sun D K. Fluid Flow and Weld Penetration in Stationary Arc Welds[J].Metallurgical Transactions A,1985,16A:203-213.
    [126]丛保强,齐铂金.电流换向速率对2219铝合金VPTIG焊缝的影响[J].焊接学报,2010,31(8):21-24.
    [127] Gutierrez A, Lippold J C. A proposed Mechanism for Exequial Grain Formationa Long the Fusion Boundary In Aluminum-copper Lithium Alloy [J]. WeldingJournal1998,77(3):123-132.
    [128] J.W.Hutchinson. Sigula Behavior At The End of a Tensile Crack in a HardeningMaterial[J]. J. Mech.Phy.Solid,1968,16:13-16.
    [129] J.R.Rice, G.F.Rosengrl. Plane Deformation Near a Crack Tip in a Power-lawHardening Material[J]. J. Mech.Phy.Solid,1968,16:1-12.
    [130] Edwards.L, Martin.J.W. Strength of Metals and AlloysIM]. Oxford: PergamonPress,1982:26-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700