用户名: 密码: 验证码:
双丝旁路耦合电弧高效GMAW过程稳定性与熔滴过渡行为的控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双丝旁路耦合电弧GMAW是旁路耦合电弧GMAW的高效化改进,通过特定的接法将两个GMAW焊枪相组合,使得熔化主路焊丝的焊接电流Im在电弧弧柱区分为两部分:一部分是熔化旁路焊丝的旁路电流Ibp,另一部是分熔化母材的电流Ibm,并且Ibm=Im-Ibp。双丝旁路耦合电弧高效GMAW过程中,用于熔化焊丝的电流较高,有利于提高焊丝的熔敷率;并通过旁路电弧的分流作用减小了流经母材的电流,有利于降低母材热输入与电弧压力。因此,双丝旁路耦合电弧高效GMAW可适用于高速、高熔敷率的焊接,薄板焊接或是耐磨、耐蚀材料的堆焊领域。
     文中针对双丝旁路耦合电弧焊的稳定性控制与熔滴过渡行为展开了三方面的研究:
     第一,焊接过程控制方面的研究
     针对双丝旁路耦合电弧高效GMAW过程中,焊接参数问耦合性干扰较强、稳定较差的问题,首先建立了描述焊接物理过程的动态数学控制模型;同时,提出了三种控制方案并进行了模拟仿真与焊接实验。结果表明:单路闭环控制可以通过调节旁路弧长有效地控制焊接过程的稳定性;双路闭环控制在保证焊接过程稳定性的同时,可以通过调节旁路电流有效地控制熔化母材的电流;解耦控制通过算法的改进,降低了双路闭环控制过程中旁路电流对旁路弧长的耦合影响,进一步提高了控制精度、响应速度与系统的稳定性。
     第二,熔滴过渡行为的控制研究
     针对双丝旁路耦合电弧高效GMAW过程中,由于主路、旁路电弧分别采用了直流反接(主路焊丝接正极)与直流正接(旁路焊丝接负极),并且两路电弧间相互作用,导致两路电弧熔滴过渡特性的行为并不相同。因此,通过建立的高速摄影采集系统,采用静力平衡理论分析了两路电弧熔滴过渡的特性,并对旁路熔滴过渡过程进行了控制:
     对于主路电弧,引入旁路电弧后会造成主路电弧弧根面积的扩展,产生“跳弧”的现象,此时促进旁路熔滴过渡的电磁收缩力随之显著增加,从而促进主路熔滴向熔池过渡,造成过渡过程中主路熔滴体积明显减小;
     对于旁路电弧,由于采用了正极性接法(焊丝接电源负极),旁路电弧会自动爬升到逸出功较低的旁路焊丝氧化膜上燃烧,此时电磁收缩力没有作用在旁路焊丝熔化区域,所以旁路熔滴只能依靠重力克服表面张力向熔池过渡,因此旁路熔滴尺寸较大且难以向熔池过渡;
     为了解决旁路熔滴过渡难的问题,提出向纯氩保护气体中添加氧元素来控制旁路熔滴过渡过程。当保护气体中含有氧元素后,由于焊接过程中旁路熔滴表面温度很高,氧元素会在旁路熔滴表面形成一层氧化膜,此时旁路电弧会在旁路熔滴表面的氧化膜燃烧,电磁收缩力会重新作用在旁路焊丝熔化区域,从而促进旁路熔滴向熔池过渡;同时,氧元素作为活性元素,会降低阻碍旁路熔滴过渡的表面张力。综上所述,当旁路保护气体中含有氧元素后,在选择正极性接法时,旁路熔滴由电磁收缩力与重力同时克服表面张力向熔池过渡,此时旁路熔滴尺寸明显减小。
     针对以上实验结果,采用“质量-弹簧”理论建立了双丝旁路耦合电弧高效GMAW熔滴过渡数学模型,通过数学计算验证了保护气体中氧元素对于旁路熔滴过渡行为的促进作用。
     第三,单电源双丝旁路耦合电弧高效GMAW过程控制研究
     提出采用单个平特性焊接电源实现双丝旁路耦合电弧高效GMAW的原理,并通过大量焊接工艺实验,获得了稳定焊接的工艺匹配范围;建立了相关控制数学模型并模拟了实际焊接过程;提出通过控制旁路送丝速度、调节旁路熔化速度、进而改变旁路电流、控制熔化母材电流的闭环控制方案并进行了仿真分析与焊接实验。结果表明,该方案可以实现母材电流的稳定控制。
     在此基础上,单电源双丝旁路耦合电弧高效GMAW方法进行了异种钢堆焊实验。通过对焊缝微观组织的分析,发现由于双丝旁路耦合电弧高效GMAW热输入较低,可以减缓碳元素的扩散行为,碳迁移层厚度明显降低;同时,由于较低的稀释率,焊缝中的合金元素稀释的问题得到了明显的缓解。
Consumable DE-GMAW (double-electrode gas metal arc welding, DE-GMAW) is the efficient improvement of DE-GMAW. This modification utilizes a GMAW torch to bypass part of the melting current in a conventional GMAW process as illustrated. It can be seen that the main current Im(which melts the main wire) is decoupled into base metal current Ibm(which determines base metal heat input and arc pressure) and bypass current Ibp(which melts the bypass wire), also Ibm=Im-Ibp.As a result, the main current Im can be increased while the base metal current Ibm can be controlled at the desired level. Thus, consumable DE-GMAW would be widely used in efficient welding, low heat input welding or overlay welding.
     In this paper, due to stability controlling and metal transfer behavior, researches have been carried out in three aspects:
     1. The research on stability control in consumable DE-GMAW process
     Due to the instability of consumable DE-GMAW process, a mathematical control model was established at first to descripe the physical welding process. Then, a SISO, MIMO, decoupling control scheme were proposed, simulated and carried out. The results show that:the SISO control scheme can solve the instablity of bypass arc, which adjusts bypass wire feedspeed to stablize the bypass arc; MIMO control scheme can keep the welding process and base metal current stable, which adjusts bypass wire feedspeed to control the bypass arc and bypass current to control the base metal current together; based on the result of MIMO control, a better stability, faster response and higher accuracy can be gotten by decoupling control.
     2. The research on metal transfer behavior in consumable DE-GMAW process
     Due to the variety of coupled arc and metal transfer behaviors, this paper applies static force balance theory to analyze the changes in the forces acting on the main and bypass droplets separately. For main torch, the bypass arc changes the forces affecting on the main droplet, and the main metal transfer becomes more desirable. For bypass torch, with direct current electrode negative polarity, the volume of droplet is big and not easily transfers to the weld pool. In order to improve the bypass metal transfer, a method has been proposed which adds CO2to pure argon shielding gas to change the forces affecting on the bypass droplet. Then, with80%Ar+20%CO2shield, the welding experiment is carried out to test the effectiveness of this method. It is found that bypass droplet transfers easily and the diameter of bypass droplet is decreased significantly. At last, based on "mass-spring" theory, the abover results were simulated and proved by mathematical analysis.
     3. The research on consumable DE-GMAW process with one power supply
     To decrease the welding costs, an innovation was put forward to realize a stable consumable DE-GMAW process with one power supply. With plenty of welding experimnets, the range of stable welding was fixed. Also the mathematical control model was established to descripe the welding process with one power supply. Then, a control scheme was proposed to control the base metal current stably, which adjusts bypass wire feedspeed to change the bypass current. Also the simulations and welding expriments were carried out to chech the control scheme. At last, to prove that the low heat input could improve tissues and quality in weld seam, expriments of overlay welding between stainless steel and low carbon steel was fullfilled.
引文
[1]林尚杨,关桥.我国制造业中焊接生产现状与发展战略研究[J].热加工,2004(5):10-15.
    [2]殷树言.高效弧焊技术的研究进展[J].焊接,2006(10):7-14.
    [3]中国焊接协会焊接材料分会.中国焊接协会焊接材料行业综述报告[J].机械制造文摘(焊接分册),12(3):1-9.
    [4]李连胜,栾敬岳,孙晓红,等.我国焊接材料发展状况浅析[J].市场透视2010(1):10-16.
    [5]尹士科,刘永刚,刘奇凡.焊接材料的需求量及日本对其使用情况的调查[J].北京:焊接分册,2012(15):14-17.
    [6]李连胜,栾敬岳,孙晓红,等.我国焊接材料发展状况浅析[J].市场透视2010(1):10-16.
    [7]杜兵,杨程,李春范,等.全球焊接市场的现状分析(1)[J].焊接分册,2012(1):1-6.
    [8]杜兵,杨程,李春范等.全球焊接市场的现状分析(2)[J].焊接分册,2012(2):1-7.
    [9]Harwig D, Gordon R. Proc 6th Int Conf Trends in Welding Research[C]. Materials Park, ASM International,2003:995.
    [10]American Welding Society. Vision for Welding Industry[C],2002.
    [11]石玗,李妍,黄健康,等.高效MIG/MAW焊的研究与发展[J].电焊机.2008,38(12):6-10.
    [12]许小平.高效焊接在船舶管系制造中的发展及应用[J].焊接技术,2011,40(4):5-8.
    [13]陈裕川.高效MIG/MAG焊的新发展(一)[J].现代焊接,上海市焊接协会,2008(12):4-8.
    [14]陈裕川.高效MIG/MAG焊的新发展(二)[J].现代焊接,上海市焊接协会,2009(1):7-14.
    [15]陈裕川.高效MIG/MAG焊的新发展(三)[J].现代焊接,上海市焊接协会,2009(2):5-11.
    [16]陈裕川.高效MIG/MAG焊的新发展(四)[J].现代焊接,上海市焊接协会,2009(3):4-11.
    [17]殷树言,徐鲁宁,丁京柱.熔焊极气体保护焊的高效化研究焊接技术[J].焊接技术,2000,(4):5-7.
    [18]庄建清,高效MAG焊的应用[J].焊接技术,1999,28(5):29-30.
    [19]陆志强,华学明,李芳,吴毅雄.铝合金P-MIG焊接电流对电弧形态的影响[J].焊接学报,12:105-108.
    [20]武传松,吴林,陈定华.MIG定点焊射流过渡时的熔池传热模型[J].焊接学报,1991,1:189-194.
    [21]冯雷,陈树君,殷树言.高速焊接时焊缝咬边的形成机理[J].焊接学报,1999,20(1):16-21.
    [22]邹德刚GMAW熔滴过渡及焊道咬边成形缺陷的初步分析[D].山东大学,2008.1-57.
    [23]郑虹,唐海燕,张青.咬边缺陷分析及对策[J].机械设计与制造,2002,(1):73-74.
    [24]卢振洋.焊缝咬边形成机理及高速焊工艺研究[D].北京:北京工业大学,2006.1-118.
    [25]杨战利,张善保,杨永波,唐麒龙.粗丝高速9GP焊驼峰焊道形成机理分析[J].焊接学报,2013,34(1):61-65.
    [26]陈姬,武传松.高速GMAW驼峰焊道形成过程的数值分析[J].金属学报,2009,45(9):1070-1076.
    [27]胡志冲,武传松.高速MG电弧焊驼峰焊道产生过程的实验研究[J].金属学报,2008,44(12):1445-1449.
    [28]叶定剑,华学明,吕艳丽,吴毅雄.高速焊接驼峰形成机理综述[J].热加工工艺,2011,11:147-154.
    [29]JTusek. Raising arc welding productivity[J]. Weld Review International,1996, (8):102-105.
    [30]中国焊接产业论坛.高效焊接技术及应用[J].焊接,2013,2:2-4.
    [31]Harwig D D, Dierksheide J E, Yapp D, etal. Arc behavior and melting rate in the GMAW process [J]. Welding Journal,2006,85(3):52-62.
    [32]包晔峰,周昀,吴毅雄,等.熔化极气体保护焊熔滴过渡研究[J].电焊机,2006,36(3):55-58.
    [33]Zhang Y M, Liguo E, Kovacevic R, etal. Active metal transfer control by monitoring excited droplet oscillation [J]. Welding Journal,1998,77(9): 388-395.
    [34]华爱兵,殷树言,陈树军,等.直流正接MAG焊电弧及熔滴过渡特性[J].焊接学报,2010,46(6):134-138.
    [35]B. Ogunbiyi, J. Norrish. Monitoring indices for metal transfer in the GMAW process [J]. Science and technology of welding and joining,1997,2(1):33-35.
    [36]R Lahnsteiner. The T.I.M.E. process-an innovative MAG welding process[J]. Welding Review International,1992, (2).
    [37]J.Chruch, T.I.M.E. process produces fracture-proof welds [J]. Welding Design and Fabrication,2001(74):17-20.
    [38]肖川.T.I.M.E.高速气保焊性能与应用研究[J].工艺与新技术,2012,41(9): 23-25.
    [39]徐鲁宁,殷树言,卢振洋,黄勇.T.I.M.E.焊工艺特点及其发展现状[J].焊接,1998,(9):2-7.
    [40]包晔峰,周昀,吴毅雄,楼松年.多元气体大电流MAG焊试验系统[J].材料开与应用,2003,18(3):15-17.
    [41]Brown, Crossley, Rudy, etal. The effect of electromagnetic stirringand mechanical vibration on arc welds [J]. Welding Journal,1962.
    [42]MatthewsJR, PorterJF, Churchjetal. An Evaluation of T.I.M.E. Welding of HY80 Plate[J]. Welding Journal,1991(2).
    [43]王加友,国宏斌,杨峰.新型高速旋转电弧窄间隙MAG焊接[J].焊接学报,2005,10:65-67.
    [44]华爱兵,殷树言,陈树君,等.纵向磁场对MAG焊电弧及熔滴过渡的控制作用[J].机械工程学报,2010,14:95-100.
    [45]常云龙,李多,李大用,等.纵向磁场作用下MIG焊熔滴过渡过程的分析[J].焊接学报,2009,3:21-24.
    [46]包晔峰,周昀,吴毅雄,等.大电流MAG焊旋转喷射过渡中的熔滴失稳分析[J].焊接学报,2003,6:73-76.
    [47]刘忠保,华爱兵,殷树言,等.磁致旋转射流过渡MAG焊接工艺分析[J].焊接学报,2008,9:71-74.
    [48]T.Ueyama, T.Uezono, T.Era, M.Tanaka, K.Nakata) Solition to problems of arc interruption and arc length control in tandem plused gas metal arc welding[J]. Science and Technology of Welding and joining,2009,14(4):81-85.
    [49]赵博,范成磊,杨春利,张良锋.双丝共熔池窄间隙MAG焊方法的工艺研究[J].焊接试验研究Research Paper,2007(1):34-38.
    [50]范成磊,孙清洁,赵博,杨春利,张良峰.双丝窄间隙熔化极气体保护焊的焊接稳定性[J].机械工程学报,2009,45(7):266-269.
    [51]杨秀芝,余圣甫,姚润刚.双丝焊温度场算法的程序优化设计[J].焊接学报,2010,31(10):53-56.
    [52]FANG Chenfu, MENG Xiaohui, HU Qingxian, etal. TANDEM and GMAW Twin Wire Welding of Q690 Steel Used in Hydraulic[J]. Journal of iron and steel research, international.2012,19(5):79-85.
    [53]T. Ueyama, T. Ohnawa, M. Tanaka, K. Nakata. Occurrence of arc interaction in tandem pulsed gas metal arc welding[J]. Science and Technology of Welding and Joining,2007,12(6):523-529.
    [54]黄石生,蒋晓明,薛家祥,等.双丝高速软开关脉冲MAG焊装备[J].焊接学报,2007,28(3):6-8.
    [55]李远波,黄石生.基于DSP的软开关逆变式双丝高速脉冲焊装备[J].焊接学 报,2010,31(5):2-5.
    [56]杨秀芝,余圣甫,张锐.双丝焊热循环对Ni-Cr钢粗晶热影响区组织性能的影响[J].金属铸锻焊技术,2009,9:1-4.
    [57]曹梅青.双丝间接电弧气体保护焊研究[D].济南,山东大学,2006.
    [58]Zhang Shunshan, Zou Zengda, Qu Shiyao, Wang Xinhong. Arc characteristics of twin-wire indirect arc shielded welding[J]. China welding,2010.19(1)-.32-36.
    [59]Cao Meiqing, Zou Zengda, Zhang Shunshan, Qu Shiyao. Metal Transfer of Twin-wire Indirect Arc Argon Welding[J]. Rare Metal Materials and Engineering, 2011,40(3):156-159.
    [60]曹梅青,邹增大,王春茂,等.焊接电流对双丝间接电弧焊电弧特性的影响[J].焊接学报,2005,26(12):47-50.
    [61]曹梅青,邹增大,杜宝帅,等.双丝间接电弧氩弧焊的熔滴过渡[J].焊接学报,2006,27(1):45-48.
    [62]曹梅青,邹增大,张顺善,曲仕尧.双丝问接电弧气体保护焊工艺研究[J].山东科技大学学报(自然版),2009,28(5):58-62.
    [63]曹梅青,邹增大,张顺善,等.双丝问接电弧气体保护焊工艺研究[J].山东科技大学学报,2009,28(5):58-62.
    [64]曹梅青,邹增大,曲仕尧.双丝间接电弧氩气保护焊的熔滴过渡与电弧形态[J].焊接学报,2012,33(6):47-50.
    [65]张顺善,吴东亭,邹增大,曲仕尧.磁场对双丝间接电弧形态的影响[J].焊接学报,2010,31(7):87-90.
    [66]Campana G., Fortunato A, Ascari A, Tani G., and Tomesani L. The influence of shielding gas in hybrid LASER-MIG welding[J]. Science Direct,2001(253): 8050-8053.
    [67]樊丁,中田一博,牛尾诚夫.YAG激光与脉冲MIG复合焊接[J].焊接学报,2002,23(5):81-83.
    [68]Chen Y.b., Lei Z.I., Li L q. Influence of shielding gas pressure characteristics in CO2 laser-MIG hybrid on welding welding process[J]. CHINESE OPTICS LETTERS,2006January10,4(1):33-35.
    [69]刘西洋,孙凤莲,王旭友,等.Nd:YAG激光+CMT复合热源电弧形态和熔池形貌[J].焊接学报,2011,32(3):81-85.
    [70]Kocheny SA, Miller. Laser Welding:It's Not Just for Metals Anymore[J]. WELDING JOURNAL,2009,88(3):28-30.
    [71]Ali MOARREFZADEH. Finite-Element Simulation of Aluminum Temperature Field in Laser Welding[J]. WSEAS Transactions on Information Science and Applications,2012,9(4-6):1790-0832.
    [72]Casalino G. Statistical analysis of MIG-laser CO2 hybrid welding of Al-Mg alloy[J]. Journal of Materials Processing Technology, 2007(191):106-110.
    [73]Shao Y., Wang Z.Z.. Zhang Y.M. Monitoring of liquid droplets in laser-enhanced GMAW[J]. The International Journal of Advanced Manufacturing Technology, 2011(57):203-214.
    [74]Lei Z.I., Chen Y.B., Wu L. Characteristics of Droplet Transfer in CO2 Laser·MIG Hybird Welding With Short-Circuiting Mode[J]. Chinese Journal of Mechanical Engineering,2006,19(2):172-175.
    [75]Avilov V.V., Vicanek M., Simon G. Thermal diffusion in laser beam welding of metals[J]. Journal of Physics. D:Applied Physics,1996,29(5):1146-1156
    [76]樊丁,刘红涛,张建斌.304不锈钢表面激光熔覆FeNiCrAl涂层的研究[J].应用激光,2010,4.
    [77]樊丁,蒋锴,余淑荣.5052铝合金/镀锌钢涂粉C02激光熔钎焊工艺特性[J].焊接学报,2014,1:1-4.
    [78]余淑荣,樊丁.异厚度铝合金薄板激光拼焊应力应变场数值模拟[J].焊接学报,2008,10:81-83.
    [79]陈彦宾,李俐群,吴林.电弧对激光吸收与散焦的定量测量[J].焊接学报,2003,24(3):56-60.
    [80]传松,胥国祥,秦国梁,等.电弧功率对Laser+GMAW-P复合热源焊热场特征的影响[J].金属学报,2009,45(8):1000-1005.
    [81]胥国祥,武传松,秦国梁,等.激光十GMAW复合热源焊焊缝成形的数值模拟[J].金属学报,2009,45(1):107-112.
    [82]李午申.我国合金结构钢的新发展及其焊接性[J].焊接学报,2001,22(5):82-86
    [83]张祝喜,赵卫东,侯利锋.超纯超细晶粒钢的研制进展[J].机械管理开发,2003(6):5-6.
    [84]张学锋,张方,郭芳芳.超级钢焊接工艺试验研究[J].焊接与切割,2006(11):37-38.
    [85]Kikuchi M. Integrated production technologies for ultra-fine grained steel sheet[J]. ISIJ International,2008,48(8):1133-1141.
    [86]Nagai K. Ultrafine grained steels:basic researches and attempts for application [J]. Canadian Metallurgical Quarterly,2005,44(2):187-194.
    [87]田志凌,何长红,张晓牧,等.400MPa级超细晶粒钢的焊接[J].焊接学报,2001,22(6):1-3.
    [88]宋立秋.800MPa级超细晶粒钢研究现状和发展趋势[J].特殊钢,2005,26(5):1-6.
    [89]高惠临,董玉华,周好斌.管线钢的发展趋势与展望[J].焊管,1999,22(3):4-8.
    [90]翁宇庆.超细晶粒钢-钢的组织细化理论与控制技术[J].北京:冶金工业出版 社,2003.
    [91]陈蕴博,张福成,褚作明,等.钢铁材料组织超细化处理工艺研究进展[J].中国工程科学,2003,5(1):74-81.
    [92]Weng Yuqing. New Generation of Iron and Steel M aterial in China[J]. 新一代钢铁材料重大基础研究论文集(上册).北京,2000,1.
    [93]雷毅,许晓锋,余圣甫,等.面向高性能结构材料的超细晶粒钢研究现状及发展方向[J].中国石油大学学报,2007,31(2):155-162.
    [94]大谷太夫.21世纪的环境问题和超级钢材[M].上海钢研,1999,3:17.
    [95]张贵锋,张建勋.日本关于超细晶粒钢制备与焊接新工艺的研究进展[J].材料导报,2005,19(9):94-96.
    [96]Nagai K. An Introduct ion of New Organization for Advanced Steel Research at NIMS[J]. The Sino-Japan Seminar on Advanced Steels,2002,1.
    [97]Tsujin, Uejir, Minamno, etal. A new and simple process to obtain nano-structrued bulk low-carbon steel with superior mechanical property[J]. Scripta Materialia,2002,46(4):305-310.
    [98]Choo Wung Yong. First Stage Achievement of HIPERS-21 Project and Plan of Second Stage[J]. Second International Conference on Advanced Structural Steels,2004,23.
    [99]陈蕴博,张福成,褚作明,等.钢铁材料组织超细化处理工艺研究进展[J].中国工程科学,2003,5(1):74-81.
    [100]李平瑾,章小浒,卜华全,等.细晶粒高强度钢在氧气球罐上的应用:钢材和焊材的性能试验和评定[J].压力容器,2002,19(10):13-16.
    [101]李久林.国家体育场(鸟巢)工程钢结构焊接概述[J].电焊机,2008,38(4):1-3.
    [102]吴始栋.航空母舰用新型钢种HSLA-115及其焊接技术[J].中外船舶科技,2012,(2):18-21.
    [103]陈戈萍,钟浩,孙杰清.超细晶粒HRB400热轧带肋钢筋的研制[J].山东冶金,2005,27(4):14-16.
    [104]赵洪运,王国栋,刘相华,等.400MPa级超细晶粒钢电弧焊焊接接头组织与性能[J].金属学与热处理,2005,30(8):8-10.
    [105]吴巍,高洪明,程广福,等.细晶粒钛合金热影响区晶粒长大规律[J].焊接学报,2008,29(10):57-64.
    [106]郭慧英,许红梅,张宇,等.Q345超细晶粒钢的焊接性能[J].金属热处理,2013,38(6):9-14.
    [107]张富巨,王燕,张国栋,等.超细晶粒钢低热输入CO2气体保护焊接头行为分析[J].焊接学报,2008,29(2):77-80.
    [108]G.PADMANABAN, V.BALASUBRAMANIAN. Effects of laser beam welding parameters on mechanical properties and microstrutrure of AZ31B magniesium alloy[J]. Transactions of Nonferrous Metals Society of China,2011, (9): 1917-1924.
    [109]周水亮,陶军,郭德伦.细晶粒钛合金GTAW焊缝成形性能分析[J].焊接学报,2009,30(7):25-28.
    [110]王维斌,史耀武,雷永平.400MPa超细晶粒钢直流电阻闪光对焊接头组织的数值模拟平[J].机械工程学报,2005,41(1):77-81.
    [111]彭云,王成,陈武柱,等.两种规格超细晶粒钢的激光焊接[J].焊接学报,2001,22(1):31-35.
    [112]彭云,田志凌,何长红,等.400MPa级超细晶粒钢板焊接热影响区的组织和力学性能[J].焊接学报,2003,24(5):21-24.
    [113]吴世凯,杨武雄,肖荣诗,等.电站锅炉用HR3C新型奥氏体耐热钢的激光焊接[J].焊接学报,2008,29(6):93-96.
    [114]刘文斌,李书瑞.我国核电承压设备用钢的发展现状与研究方向[J].钢铁研究,2011,39(5):58-62.
    [115]杨富.1000MW级超超临界火电机组锅炉用新型耐热钢的焊接[J].中国电力,2005,38(8):48-52.
    [116]李云良,张汉谦,彭碧草.核电压力容器用钢的发展及研究现状[J].压力容器,2010,27(5):36-43.
    [117]Kjaer S, Klauke F, Vanstone R, etal. The Advanced Supercritical 700℃ Pulverised Coal-Fired Power Plant [J]. VGB Power Tech,2002,82(7):46.
    [118]赵成志,魏双胜,高亚龙,等.超临界与超超临界汽轮机耐热钢的研究进展[J].钢铁研究学报,2007,19(9):1-5.
    [119]王勇,王长顺,孙殿东等.核电用钢的开发与展望[J].鞍钢技术,2012(6):6-9.
    [120]杨富,李为民,任永宁.超临界、超超临界锅卿用钢[J].电力设备,2004,5(10):41-46.
    [121]罗新洲,宋树森,焦金华.马氏体热强钢ZCr12MoNIV的研制[J].特殊钢,16(1):41-42.
    [122]Miyashita K. Overview of Advanced Steam Plant Development in Japan[J]. Advanced Steam Plant,1997,17-30.
    [123]范长信,张红军,周荣灿,等.超超临界机组锅炉用新型耐热钢的焊接[J].电力设备,2006,7(4):11-14.
    [124]陈春香. ZG15Cr1M01V热强钢热处理工艺的改进[J].金属热处理,1995(10):35.
    [125]王燕秋.12Cr2MoWVTiB热强钢的焊接[J].江西能源,2005(4):31-32
    [126]吴世凯,杨武雄,肖荣诗,等.电站锅炉用耐热钢激光焊接工艺[J].焊接技术,2008,37(3).
    [127]史晓强,王大承.耐热钢材料的激光焊接试验研究[J].激光杂志,2004,25(3):76-77.
    [128]陈路,唐光昕,朱张校,等.马氏体热强钢多弧离子镀表面改性层的组织分析[J].金属热处理,2003,28(5):33-35.
    [129]罗伟中.异种热强钢摩擦焊接头的韧化和应用研究[J].造船技术,1995(2):35-37.
    [130]黄维,高真凤,张志勤.Ni系低温钢现状及发展方向[J].鞍钢技术,2013,(1):10-14.
    [131]李平瑾,李贤芬,张勇纪,遵义.低温压力容器用钢及其焊接技术的开发[J].压力容器,1985,2(3):69-74.
    [132]Shin H S, Lee H M. Impact tensile behavior of 9% nickel steel at low temperature[J]. Internation Journal of Impact Engineering,2000,24:571-581.
    [133]邱正华,张桂红,吴忠宪.低温钢及其应用[J].材料与焊接,2004,25(2):43-46.
    [134]张勇.低温压力容器用钢的现状与发展概况[J].压力容器,2006,23(4):31-34.
    [135]严春妍,李午申,薛振奎,等.LNG储罐用9%Ni钢及其焊接性[J].焊接学报,2008,29(3):49-52.
    [136]Manabu HOSHINO, Naoki SAITOH, Hirohide MURAOK, etal. Development of Super-9Ni Steel Plate with Superior Low Temperature Toughness for LNG Storage Tanks[J]. Nippon Steel Technical Report,2004,90:20-24.
    [137]陈建平,迟红艳,时焱,等.钢混合气体保护半自动焊焊接工艺[J].焊接技术,2009,38(9):56-57.
    [138]高立峰.3.5%Ni低温钢塔的焊接及热处理[J].煤炭技术,2003,22(3):9-10.
    [139]张丽红,陈芙蓉.07MnNiCrMoVDR低温钢的焊接及其低温冲击韧性分析[J].焊接学报,2008,29(6):69-72.
    [140]李雅娣.低温钢A333Gr.3的焊接[J].化工建设工程,2002,24(5):48-49.
    [141]Faber G, Goosh T G. Welding joints between stainless and low alloy steels current position[J]. Welding in World,1982(20):87-98.
    [142]H. Utsunomiya, ectl. Three dimensional topography of the matt surface in pack rolling[J]. International Journal of Mechanical Sciences,2004,46:1093-1096.
    [143]马志新,胡捷,李德富.层状金属复台板的研究和生产现状[J].稀有金属,2003,27(6):55.
    [144]郑红霞,李宝宽,昌泽舟.金属基复合板的发展现状研究[J].炼钢,2001,17(2):49-50.
    [145]任爱,赵灿,范长信等.电站高温锅炉管奥氏体异种钢焊接接头失效方式研究[J].热力发电,2003.
    [146]Bauhaus, Mahanoy O N. Structure Study of Colorized Coating on Mild Steel[J]. Material Transactions,1990,31(11):948-953.
    [147]杜兵,李彦.异种钢熔合区的脆化与断裂行为[J].焊接学报,1998(4):24-28.
    [148]张心保.电站锅炉过热管异种钢焊接性研究[D].太原,太原理工大学材料学院,2002.
    [149]Boutros K K. Character is of the Wavy interface and the mechanism of its formation in high-Velocity Impact welding[J]. J. Appl. Phys,2000,51(7): 3715-3721.
    [150]李德军.2.25Cr-1Mo钢堆焊奥氏体不锈钢堆焊层组织与性能的研究[J].焊接1989,(8):5.
    [151]忻云彪.奥氏体不锈钢焊条焊接Cr5Mo工艺管线接头长期高温服役前后熔合区的组织和性能[J].压力容器,1992,9(2):22-30.
    [152]黄文长,潘春旭,付强珠.珠光体-奥氏体异种钢焊接接头中碳迁移的跟踪观测[J].机械工程材料,2006(4).
    [153]黄明亮,王来.异质焊头Cr5Mo/Cr21NI12碳扩散的研究[J].金属学报,2000,31(9):902-906.
    [154]郑阳,沈士.Cr-Mo钢焊接接头中碳迁移现象研究的现状与进展[J].机械设计与制造工程,2002(1):55-57.
    [155]V Y Malin. The state of the art of narrow gap welding I[J]. WELDING JOURNAL, 1983,4.
    [156]V Y Malin. The state of the art of narrow gap welding II[J]. WELDING JOURNAL,1983,6.
    [157]日本焊接学会.窄间隙焊接[M].尹士科,王振家,译,北京:机械工业出版社,1988.
    [158]Ulrieh Drangelates, AnioniaSehram. Narrow-gap gas-shielded metal-are welding of fine-grained structural steels [J]. Sehweissen Sehneiden,1999:37-41.
    [159]王朋,张富巨.窄间隙焊接技术及其新进展[J].电力建设,1999(8):12-14.
    [160]张富巨,罗传红.窄间隙焊及其新进展[J].焊接技术,2000,29(6):33-36.
    [161]Ando Seiichi, Ohkubo Michnori. Narrow gap automatic gas shielded arc welding of high carbon steel[J]. Quarterly Journal of the Japan Welding Society,1996, 14(4):654-659.
    [162]Tsushima Sadao, Horii Yukihiko, Yurioka Nobutaka) Application of AC-MIG narrow gap welding process for butt joints of 980Mpa high strength steels[J]. Quarterly Journal of the Janpan Welding Society,1994,12(1):51-57.
    [163]Lassa line E, Zajaczkowski B. N arrow g roove wt in-wire GMAW of high-streng th steel[J]. Weld ing Journal 1989,68(9):53-58.
    [164]朱亮,金将,苗红丽,等.焊剂带约束超窄间隙焊接母材熔化及熔池形成[J].焊接学报,2010,9.
    [165]朱亮,苗红丽,金将,等.超窄间隙焊剂带约束电弧电压及电流波形特征[J].焊接学报,2010,8.
    [166]郑韶先,朱亮,张旭磊,等.焊剂带约束电弧特性的试验分析[J].焊接学报,2007,8.
    [167]郑韶先,朱亮,张旭磊,等.焊剂带在其约束电弧中的位置与其电位相关性分析[J].焊接学报,2008,1.
    [168]李渊博,朱亮等.绝缘片约束TIG电弧在窄间隙中的加热特性[J].焊接学报,2013,7.
    [169]Zhang YM, Jiang M, Lu W. Double electrodes improve GMAW heat input control [J]. Welding Journal,2004,83(11):39-41.
    [170]K.h.Li, J.s.Chen, and Y. M. Zhang. Double-Electrode GMAW process and control[J]. Welding Journal,2007,86(7):231-237
    [171]Kehai Li, Y. M. Zhang. Metal Transfer in Double-Electrode Gas Metal Arc Welding[J]. Journal of Manufacturing Science and Engineering,2007,129(11): 991-999.
    [172]Kehai Li. Double-Electrode Gas Metal Arc Welding [D]. University of Kentucy, 2007.
    [173]Wu C S, Xu G X, Li K H, etc. Analysis of double-electrode gas metal arc welding [J]. Trends in Welding Research,2005:15-17.
    [174]武传松,张明贤,李克海,张裕明DE-GMAW高速电弧焊工艺机理的研究[J].金属学报,2007,43(6):663-667.
    [175]张明贤,武传松,李克海,张裕明.基于有限元分析对新型DE-GMAW焊缝尺寸预测[J].焊接学报,2007,28(2):34-37.
    [176]樊丁,朱明,石玗,等.旁路耦合电弧高效焊接工艺的数字化与智能化[J].电焊机,2013,35(4):42-47.
    [177]石玗,薛诚,樊丁,钟浩.单旁路耦合电弧GMAW高速焊接工艺[J].上海交通大学学报,2010,44(s1):50-53.
    [178]石玗,韩日宏,樊丁,等.旁路耦合电弧焊温度场模拟及验证[J].物理学报,2012,2.
    [179]朱明,石玗,樊丁,等.旁路耦合电弧焊GMAW方法及建模[J].上海交通大学学报,2012,46(S1):65-68.
    [180]薛诚,石玗,樊丁,吴亮.镀锌板单旁路耦合电弧GMAW高速焊接方法[J].电焊机,2012,42(1):10-13.
    [181]薛诚,石玗,樊丁,李卫东.双旁路耦合电弧GMAW熔池图像边缘提取算法[J].上海交通大学学报,2010,44(s1):4-7.
    [182]石玗,陈作雁,薛诚,等.双旁路耦合电弧铝合金MIG焊熔滴过渡形态研究[J].机械工程学报,2010,46(20):76-79.
    [183]黄健康,韩日宏,石玗,等.双旁路耦合电弧MIG焊熔滴过渡受力分析[J].机械工程学报,2012,48(8):4448.
    [184]石玗,石铭霄,薛诚,等.双旁路耦合电弧MIG焊工艺研究[J].电焊机,2010,40(6):30-33.
    [185]SHI Yu, LIU X, ZHANG Y, etal. Analysis of metal transfer and correlated influences in dual-bypass GMAW of aluminum [J]. Welding Journal,2008,87: 229-236.
    [186]石玗,温俊霞,黄健康,等,基于旁路耦合电弧的铝钢MIG熔钎焊研究[J].机械工程学报,2011,47(16):25-29.
    [187]卢立晖.铝-钢异种金属脉冲旁路耦合电弧MIG熔钎焊方法及机理研究[D].兰州理工大学.
    [188]石玗,王钊,董天兵,等.铝-钢脉冲DE-GMAW与CMT熔钎焊热循环曲线测试与对比[J].兰州理工大学学报,2012,38(4):23-26.
    [189]Kehai Li, Yuming Zhang. Consumable Double-Electrode GMAW Part 1:The Process [J]. Welding journal,2008,87(1):11-17.
    [190]K.h.Li, Y. M. Zhang. Consumable Double-Electrode GMAW Part II: Monitoring, Modeling, and Control[J]. Welding Journal,2008,87:44-50.
    [191]石玗,朱明,黄健康,等.双丝旁路耦合电弧高效MIG焊方法及控制系统[J].焊接学报,2012,33(3):17-20.
    [192]朱明,石玗,黄健康,等.双丝旁路耦合电弧高效熔化极气体保护焊过程模拟及控制[J].机械工程学报,2012,48(10):45-49.
    [193]黄健康,朱明,石玗,等.旁路耦合电弧焊建模与仿真[J].焊接学报,2012,33(6):63-67.
    [194]朱明,石玗,王桂龙,等.双丝旁路耦合电弧高效熔化极气体保护焊双变量解耦控制模拟及试验分析[J].机械工程学报,2012,48(22):46-51.
    [195]朱明,樊丁,石玗,等.双丝旁路耦合电弧高效熔化极气体保护焊“弧长-电流”双路闭环控制模拟与试验分析[J].焊接学报,2013,34(8):71-75.
    [196]Ming Zhu, Ding Fan, Yu Shi. Metal Transfer Behavior of Consumable DE-GMAW[J]. Applied Mechanics and Materials,2013,395-396:1110-1113.
    [197]朱明,石玗,樊丁,等.双丝旁路耦合电弧GMAW熔滴过渡特性分析[J].机械工程学报,2013,49(12):50-54.
    [198]朱明.双丝旁路耦合电弧高效MIG焊过程建模仿真及控制[D].兰州理工大学,2011.
    [199]Ming Zhu, Ding Fan, Yu Shi. Multi-input Multi-output Control of Consumable DE-GMAW[J]. Applied Mechanics and Materials,2013,395-396:1114-1117.
    [200]F.C, Teng Man, and Cybernetics.Real-time control using Matlab Simulink Systems[J]. IEEE International Conference,2000,4(8):2697-2702.
    [201]P.S., Shiakolas, and D.Piyabongkarn. On the development of a real-time digital control system using xPC-Target and a magnetic levitation device [J]. Decision and Control,2001.Proceedings of the 40th IEEE Conference on,2001,2(4): 1348-1353.
    [202]徐国政,陈勇.基本Mat1ab/xPCTarget的数据采集系统[J].微计算机信息,2005,21(1):63-64.
    [203]李兴玮,叶磊.基于Matlab/xPC Target构建实时仿真系统[J].计算机仿真,2003,(8):113-114.
    [204]张江滨,姚辉,杨晓萍.构建基于XPC目标的实时仿真测试系统[J].水利水电技术,2005,36(1):70-76.
    [205]DickensM. Rapid Prototyp ing and Hardw are in Loop Industry Trends [J].2005. 1.
    [206]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M].北京:清华大学出版社,2002.
    [207]刘金琨.先进PID控制Matlab仿真[M].北京:电子工业出版社,2004.
    [208]柴天佑.多变量自适应解耦控制及应用[M].北京:科学出版社,2001.
    [209]刘晨晖.多变量过程控制系统解耦理论[M].北京:水利水电出版社,1984.
    [210]王永初.解耦控制系统[M].成都:四川科学技术出版社,1985.
    [211]史忠科,郑永安.控制系统分析及设计方法[M].西安:西北工业大学出版社,2010.
    [212]WASZINK J H, GRAAT L H J. Experimental investigation of the force acting on a drop of weld metal[J]. Welding Journal,1983.
    [213]KIM Y S, EAGER T W. Anaysis of metal transfer in gas metal arc welding[J]. Welding Journal,1993.
    [214]LANCASTER J F. The physics of welding[M]. Oxford,1984.
    [215]JAE H C, JIHYEL L, CHOONG D Y. Dynamic force balance model for metal transfer analysis in arc welding[J]. Journal of Physics D:Applied Physics,2001, 34:2658-2664.
    [216]武传松,陈茂爱,李世凯GMAW焊接熔滴长大和脱落动态过程的数学分析[J].机械工程学报,2006,42(2):76-81.
    [217]R SAHOO, T. DEBROY, M.J. McNALLAN. Surface tension of binary metal surface active solute systems under conditions relevantto welding metallurgy[J]. METALLURGICAL TRANSACTIONSB,1998,19:483-490.
    [218]T. Hibiya, K. Morohoshi, S. Ozawa. Oxygen partial pressure dependence of surface tension and its temperature coefficient for metallic melts:a discussion from the viewpoint of solubility and adsorption of oxygen[J]. J Mater Sci,2010, 45:1986-1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700