用户名: 密码: 验证码:
四冲程单活塞式液压自由活塞发动机运动机理与特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压自由活塞发动机是一种新兴的动力装置,与传统的内燃机驱动液压泵结构相比,它的结构简单,零件数目少,具有较大的功率/重量比;活塞运动时无侧向力,减小了活塞的磨损,降低了维修成本,延长了活塞使用寿命;没有外部机构限制活塞的直线运动,活塞的止点位置是“自由”的,具有可变的压缩比,能够适应为缓解能源紧张而研制的多种替代燃料,燃料的适应范围广;且液压系统具有很好的能量回收功能,因此液压自由活塞发动机尤其适应于需要频繁起动的城市公交系统以及进行抓举的起重机等工程机械。液压自由活塞发动机涉及到内燃机技术、液压技术、传感与检测技术、控制技术等多学科领域,对其展开研究可以拓展新技术,推动相关学科的发展,具有广泛的工程应用前景和重要的学术研究价值。
     本学位论文提出一种两缸四冲程单活塞式液压自由活塞发动机新结构,该结构具有独立的排气、吸气冲程,使发动机的换气过程更加充分,改善了自由活塞发动机的燃油经济性和排放性能,仿真结果表明,该结构的换气效率比二冲程自由活塞发动机的换气率提高了15%。自由活塞组件是两缸四冲程液压自由活塞发动机的唯一运动部件,建立了其在燃烧腔高温气体、液压腔液压力、摩擦力等作用下的非线性振动方程,分析了活塞振动过程中,燃料燃烧释放能量与液压能之间的能量转化,揭示了活塞组件在压缩和膨胀冲程中振动存在差异性的根本原因是所受作用力不同。由于活塞组件在两个冲程中的振动特性存在差异,两个冲程的振动时间也不同。调节各工作参数保证发动机的膨胀与压缩时间之比约为0.65。为保证两个冲程中的平均输出流量相等以降低发动机的流量脉动率,设计发动机在膨胀与压缩冲程中泵腔的容积变化之比为0.65。仿真结果表明四冲程液压自由活塞发动机在两个冲程中输出的平均流量基本相等,一个工作循环内的流量脉动率约为1.7;对应于没有液压泵输出流量脉动控制的液压自由活塞发动机,其输出流量脉动率约为2.1。本文的研究结果对深入研究液压自由活塞发动机提供了理论分析和设计参考。
     本学位论文的基本结构如下:
     第一章,介绍了自由活塞发动机的特点、关键技术问题和发展历程,重点介绍了单活塞式液压自由活塞发动机的研究现状,论述了本学位论文的研究目的和意义,确定了本学位论文研究的主要内容。
     第二章,介绍了单活塞式液压自由活塞发动机的三种基本结构,综合比较了三种结构下系统所需要的压缩能、输出液压力的脉动、燃油消耗量、机体振动和效率等,确立本学位论文研究的主要对象。
     第三章,介绍了两缸四冲程单活塞式液压自由活塞发动机的基本结构和工作原理,建立活塞组件的振动非线性方程,讨论活塞组件在不同条件下的振动特性,研究了两个冲程中活塞振动特性存在差异的本质及影响因素;讨论了活塞组件振动特性差异性对单活塞式液压自由活塞发动机性能的影响。
     第四章,利用伺服电机代替曲轴机构来驱动内燃机的配气机构和喷油系统,并重新设计了凸轮轴;对液压自由活塞发动机压缩腔的缓冲特性和压缩特性进行了设计和计算;并对发动机的整体结构进行设计以期最大限度地减小一个工作循环内的流量脉动、增加发动机的稳定性。
     第五章,基于理论和设计计算,对发动机整体性能进行仿真,分析了活塞组件的运动特性、各液压腔和燃烧腔的压力特性、内燃机的温度特性、燃油喷射和放热特性、进气和排气特性等;分析了发动机一个工作循环内的能量分配情况,为更好地提高发动机的效率,优化发动机设计提供依据。
     第六章,对发动机的压缩、泵油、‘‘缺火’’复位、缓冲及伺服电机驱动的配气和喷油等子系统进行测试,验证各子系统的预定功能;研究压缩腔的建压时间即活塞启动延迟时间对系统运行频率和输出功率的影响,分析影响建压时间的因素并提出优化措施。
     第七章,总结了本学位论文的主要研究和成果,指出本学位论文研究的创新点,并对今后的研究工作进行了展望。
Hydraulic Free Piston Engine (HFPE) is an emerging power source for hydraulic systems, which has a much simpler structure, smaller number of components and larger power to weight ratio compared to the traditional hydraulic pump driven by the crankshaft engine. Due to the linear movement of free piston assembly (FPA), HFPE reduces the FPA wear and the maintenance costs with longer lifetime cycle. Without the restriction of any mechanism, the dead centers of FPA are free. Therefore, HFPE has a variable compression ratio which allows multi-fuel applications. Since hydraulic system has good adaptability to recover energy, it is possible that HFPE could fit into the urban buses and cranes to recover energy, such as the bus frequently starts/stops or the crane lifts/drops loads. HFPE is associated with the combination of the internal combustion engine, hydraulics, sensor, condition monitoring and control technologies. The development of HFPE could bring new technologies and promote the development of the related disciplines.
     A new structure design of the four-stroke HFPE has been proposed, which enables separate exhaust stroke and intake stroke to work more effectively, hence the fuel usage and particle emission can be reduced. The gas exchange efficiency with the four-stroke structure of HFPE can be improved by15%compared to the two-stroke structure according to simulation study. FPA is the only moving part of the four-stroke HFPE, its nonlinear vibration equation has been established with the force of the hot gas in the combustion chamber, fluid forces both in the pump chambers and compression chamber together with the friction forces. The energy conversion between the energy released from the injected fuel and the hydraulic energy has been analyzed during FPA vibration. The vibration characteristics of FPA are dissimilar between the compression and expansion strokes because the forces acting on FPA are different in the two strokes. As a result, the vibration time of the two strokes are different. The vibration time ratio of the expansion and compression strokes has been adjusted to0.65through regulating the operation parameters. The volume change ratio of the pump chambers in the expansion and compression has been set to0.65to make the average output flow rate equal and to reduce the flow pulsation accordingly. The average flow rate of the expansion stroke are almost equal to that of the compression stroke and the flow pulsation ratio is around1.7calculated in simulation. As a comparison to HFPE without control of the flow pulsation ratio, the ratio was around2.1as shown in the literature. The study in this thesis can be used as a reference for theoretical analysis and design consideration of HFPE.
     In chapter1, an overview of the features, key technologies and the research state of art on the free piston engine, especially about the single-piston HFPE (SHFPE), are presented. The objectives of thesis study are addressed. The main contents are outlined.
     In chapter2, the three basic structures of SHFPE are introduced. The structure with two pump chambers is chosen to be the study objective by comparing the compression energy, the pressure pulsation, fuel consumption, engine body vibration and efficiency of SHFPE.
     In chapter3, the basic structure and operation process of SHFPE are presented. The vibration equation of FPA is established. Vibration characteristics of FPA under different conditions are discussed. Then the influence of the different characteristics of FPA vibration on the performance of SHFPE is presented.
     In chapter4, the servo motor is used to substitute the crankshaft to drive the valve mechanism and the injection system. And the camshaft is redesigned to suit the operation of SHFPE. The cushion and the compression characteristics of the compression chamber are designed and calculated. The reduction of the flow pulsation and the stability of FPA movement are assured through the overall design of SHFPE.
     In chapter5, the performance of SHFPE is simulated based on the design parameters and theoretical analysis. The kinematics characteristics, pressure characteristics of hydraulic chambers and combustion chambers are analyzed. The energy distribution within HFPE in one working cycle is discussed. The simulation results can be used as a reference to improve the engine efficiency and to optimize the SHFPE design.
     In chapter6, the subsystems of the compression, pump and reseting after misfire have been tested and the results have shown that the desired performance of the subsystems can be achieved. The pressure build-up time of the compression chamber has significant influence on the frequency of SHFPE. In addition, the influence factors on the pressure build-up time are analyzed and the optimization methods are proposed.
     In chapter7, conclusions are summarized and future research outlooks are suggested.
引文
[1]Hobbs HF. Internal combustion engine and power transmission [P]. US patent, 3089305,1959.
    [2]Eickmann K. Combustion engine for conveying a hydraulic pressure medium [P]. US patent,3269321,1966.
    [3]Achten PAJ, van den Ovenr JPJ, Potma J, et al. Horsepower with brains:The design of the CHIRON free piston engine [C]. SAE paper 2000-01-2545,2000.
    [4]Tikkanen S. Evolution of Engine-Hydraulic Free Piston Engine [D]. ESPOO 2000.
    [5]夏必忠.往复式原动液压泵的机理研究[博士学位论文].杭州:浙江大学,2003.
    [6]Mikalsen R, Roskilly AP. A review of free-piston engine history and applications [J]. Applied Thermal Engineering,2007,27:2339-2352.
    [7]陈博.基于MATLAB的微型HCCI自由活塞发动机工作过程数值模拟研究[硕士学位论文].镇江:江苏大学,2009.
    [8]Aichlmayr HT. Design considerations, modeling, and analysis of micro-homogeneous charge compression ignition combustion free-piston engines [D]. Doctor thesis of University of Minnesota,2002.
    [9]Frey D, Klotsch P, Egli A. The automotive free-piston-turbine engine [C]. SAE Paper 570051,1957.
    [10]London AL. The Free piston and turbine compound engine- A cycle analysis [J]. ASME Trans.1955:197-210.
    [11]Toutant WT. The Worthington-Junkers free-piston air compressor [J]. Journal of the American Society of Naval Engineers,1952,64 (3):583-594.
    [12]McMullen JJ, Payne WG. Performance of free-piston gas generators [J]. Transactions of the ASME,1954,76:1-13.
    [13]Underwood AF. The GMR 4-4 "HYPREX" engine a concept of the free-piston engine for automotive use [C]. SAE Paper 570032,1957.
    [14]Johansen TA, Egeland O, Johannesen EA, et al. Dynamics and control of a free-piston diesel engine [J]. ASME J. Dynamic Systems, Measurement and Control.2003,125: 468-474.
    [15]Johansen TA, Johannessen EA. Free-piston diesel engine timing and control-toward electronic cam-and crankshaft [J]. IEEE Trans. On control systems technology,2002, 10(2):177-190.
    [16]Johansen TA, Egeland E, Johannessen EA, et al. Free-piston diesel engine dynamics and control [C]. In:Proc. American Control Conference,2001, Arlington, Va.
    [17]Cawthorne WR, Famouri P, Chen JD, et al. Development of a linear alternator-engine for hybrid electric vehicle applications [J]. IEEE Trans. Vehicular Technology.1999, 48(6):1797-1802.
    [18]Cawthorne WR. Optimization of a brushless permanent magnet linear alternator for use with a linear internal combustion engine [D]. Doctor thesis of West Virginia University,1999.
    [19]Goldsborough SS, Van Blarigan P. A numerical study of a free piston IC engine operating on homogeneous charge compression ignition combustion [C]. International Congress & Exposition, March 1999, Detroit, MI, USA, Session:Advanced Powerplant Concepts (SAE paper):1999-01-0619.
    [20]Mikalsen R, Roskilly AP. The control of a free-piston engine generator. Part 1: fundamental analyses [J]. Applied Energy,2010,87:1273-1280.
    [21]Mikalsen R, Roskilly AP. The control of a free-piston engine generator. Part 2:Engine dynamics and piston motion control [J]. Applied Energy,2009,87(4):1281-1287.
    [22]Mikalsen R, Roskilly AP. The design and simulation of a two-stroke free-piston compression ignition engine for electrical power generation [J]. Applied Thermal Engineering,2008,28:589-600.
    [23]Hew WP, Jamaludin J, Tadjuddin M, et al. Fabrication and testing of linear electric generator for use with a free-piston engine [C]. Power Engineering Conference,15-16 Dec.2003:277-282.
    [24]Arof H, Eid AM, Nor KM. Permanent magnet linear generator design using finite element method [C]. International Conference on Electrical, Electronic and Computer Engineering,2004 (ICEEC '04),5-7 Sept:893-896.
    [25]Wang J, West M, Howe D, et al. Design and experimental verification of a linear permanent magnet generator for a free-piston energy converter [J]. IEEE Trans. On Energy Conversion.2007.22(2):299-306.
    [26]Arshad WM, Thelin P, Backstrom T, et al. Use of transverse-flux machines in a free-piston generator [J]. IEEE trans.2004,40(4):1092-1100.
    [27]Arshad WM, Backstrom T. Analytical design and analysis procedure for a transverse flux machine [C]. IEEE electric machines and drives conference,2000:115-121.
    [28]李庆峰,肖进,黄震.自由活塞式内燃发电机仿真研究[J].中国机械工程.20(8):911-915.
    [29]李庆峰,肖进,黄震.自由活塞式内燃发电机研究现状[J].小型内燃机与摩托车,2008,37(4):91-95.
    [30]李庆峰,朱皓月,肖进,等.自由活塞式内燃发电机振动特性[J].内燃机学报.2009,27(4):370-374.
    [31]李庆峰,肖进,黄震.两冲程HCCI自由活塞式内燃发电机仿真[J].农业机械学报.2009,40(2):41-45.
    [32]李庆峰,肖进,黄震.变压缩比下自由活塞式内燃发电机的效率分析[J].上海交通大学学报.2009,43(5):745-749.
    [33]Xiao J, Li QF, Huang Z. Motion characteristic of a free piston linear engine [J]. Applied Energy.2010, Vol.87:1288-1294.
    [34]Li QF, Xiao J, Huang Z. Simulation of a two stroke free piston engine for electrical power generation [J]. Energy& Fuels.2008, Vol.22 (5):3443-3449.
    [35]Li QF, Xiao J, Huang Z. Huang. Parametric study of a free piston linear alternator [J]. International journal of automotive technology.2010, Vol.11 (1):111-117.
    [36]常思勤,徐照平.内燃-直线发电集成动力系统概念设计[J].南京理工大学学报(自然科学版),2008,32(4):449-452.
    [37]Xu ZP, Chang SQ. Prototype testing and analysis of a novel internal combustion linear generatorintegrated power system [J]. Applied Energy,2010,87 (4):1342-1348.
    [38]Xu ZP, Chang SQ. Improved moving coil electric machine for internalcombustion linear generator [J]. IEEE TRANSACTIONS ON ENERGY CONVERSION,2010, Vol. 25(2):281-286.
    [39]肖翀,左正兴.自由活塞发电机动力学过程的非线性模型[J].北京理工大学学报.2008,28(11):966~969.
    [40]肖翀,左正兴.自由活塞式内燃发电机动态仿真与特性分析[J].农业机械学报.2009,40(2):46-49.
    [41]栾延龙,李理光,王哲,等.自由活塞发动机关键设计参数及其性能的仿真优化研究[J].内燃机工程.2010,31(2):15~21.
    [42]Bush V. Free piston engine power unit [P]. US patent,3005306,1959.
    [43]Harman FB. Free piston engine pump [P]. US patent,3065703,1960.
    [44]Bush V. Free piston hydraulic pump [P]. US patent,3145660,1962.
    [45]Braun AT. The Braun-linear-engine [C]. SAE paper,730185,1973.
    [46]William MBF. Opposed free piston engine having start, stop, and restart control means [P]. US patent,3908379,1975.
    [47]Robert D. Vanderlaan. Free piston engine pump including variable energy rate and acceleration-deceleration controls [P]. USpatent,4307999,1981.
    [48]Achten PAJ. A review of free piston engine concepts [C]. SAE Paper 941776,1994.
    [49]http://www.innas.com/Chiron_wp.html
    [50]Achten PAJ, Somhorst JHE, van Kuilenburg RF, et al. CPR for the hydraulic industry: The new design of the Innas Free Piston Engine [C]. Hydraulik dagarna'99, May 18-19 1999, Linkoping University, Sweden.
    [51]Achten PAJ. The development of the Innas Free Piston engine:the art of choosing the right moment [C]. IKP, Linkoping University,1995
    [52]Achten PAJ. Free piston engine provided with a purging air dosing system [P]. US patent,6279517 B1,2001.
    [53]Tikkanen S, Vilenius M. Control of dual hydraulic free piston engine [J]. Int. J. Vehicle autonomous systems,2006, Vol.4(1):3-23.
    [54]Tikkanen S, Vilenius M. On the dynamic characteristics of the hydraulic free piston engine [C]. In:the JHPS International Symposium on Fluid Power in Tokyo'1999.
    [55]Tikkanen S, Vilenius M. Hydraulic free piston engine-the power unit of the future [C]. Proceedings of the 4th JHPS International Symposium on Fluid Power Tokyo'99: 297-302.
    [56]Larmi M, Isaksson S, Tikkanen S, et al. Performance simulation of a compression ignition free piston engine [C]. SAE paper,2001-01-0280,2001.
    [57]Tikkanen S, Lammila M, Herranen M, et al. First cycles of the dual hydraulic free piston engine [C]. SAE paper,2000-01-2546,2000.
    [58]Hibi A. A prime mover consists of a free piston internal combustion hydraulic power generator and a hydraulic motor [C]. SAE paper 930313,1993.
    [59]Hibi A, Ito T. Fundamental test results of a hydraulic free piston internal combustion engine [J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2004:1149-1157.
    [60]http://vvknol.vkw.tu-dresden.de/kfat/free_km.htm 1.2.1999
    [61]Fenelon TR, Clarke JM. Method for operation of a free piston engine [P]. Patent application WO 0015954 A1,1999.
    [62]Berllinger WG. Method of operating a free piston internal combustion engine with a short bore/stroke ratio [P]. US patent,6314924B1,2001.
    [63]Berllinger WG, Sloma JM. Piston for use in an engine [P]. US patent,6076506,2000.
    [64]Beachley NH, Fronczak FJ. Design of a free-piston engine-pump [C]. SAE paper 921740,1992.
    [65]Li LJ, Beachley NH. Design feasibility of free piston internal combustion engine/ hydraulic pump [C]. SAE paper 880657,1988.
    [66]Heintz RP. A free-piston engine-pump for an automotive propulsion system [C]. SAE Paper 810266.1981.
    [67]Heintz RP. Free piston engine-pump/hydrostatic motor control concepts [C]. In: Proceeding 22nd Intersociety Energy Conversion Engineering conference. Philadelphia. 1987,112:969-974.
    [68]Heintz RP. Theory of operation of a free piston engine-pump [C]. SAE paper,859316, 1985.
    [69]Heintz RP. Free-piston engine pump [P]. US patent,4369021,1983.
    [70]夏必忠,汪劲松,傅新,等.双活塞式液压自由活塞发动机原理样机的研制及其压缩比[J].机械工程学报.2006,42(3):117-123.
    [71]周盛,徐兵,杨华勇.双活塞液压自由活塞发动机活塞组件振动特性[J].煤炭学报.2005,30(6):792-795.
    [72]夏必忠,徐兵,傅新,等.液压自由活塞发动机起动过程的能量分析[J].农业机械学报.2003,34(4):1-4.
    [73]周盛,徐兵,杨华勇.双活塞式液压自由活塞发动机运动特性研究[J].机械工程学报.2006,42(6):1-4.
    [74]赵阳,徐兵,杨华勇,等.液压自由活塞发动机起动过程的实验研究[J].浙江大学学报(工学版).2006,40(3):424-428.
    [75]杨华勇,夏必忠,傅新.液压自由活塞发动机的发展历程及研究现状[J].机械工程学报.2001,37(2):-7.
    [76]杨华勇,夏必忠,傅新.液压自由活塞发动机-未来的动力之星[J].中国机械工程.2001,12(3):353-357.
    [77]夏必忠,周华,傅新,等.液压自由活塞发动机的节能方式研究[J].农业机械学报.2001,32(6):8-11.
    [78]夏必忠,傅新,杨华勇.液压自由活塞发动机的能量平衡分析[J].内燃机工程.2002,23(3):76-80.
    [79]周盛,徐兵,杨华勇,等.双活塞液压自由活塞发动机仿真研究[J].机械工程学报.2005,41(4):92-96.
    [80]Zhao ZF, Zhang FJ, Zhao CL, et al. Modeling and simulation of a hydraulic free piston diesel engine [C]. SAE paper,2008-01-1528,2008.
    [81]赵振峰,赵长禄,张付军.一种新型混合动力系统:液压自由活塞发动机整体推进系统[J].兵工学报.2009,30(6):774-778.
    [82]赵振峰,黄英,张付军,等.一种新型电液驱动无凸轮配气机构特性研究[J].内燃机工程.2008,29(6):24-27.
    [83]赵振峰,张付军,赵长禄.设计参数对液压自由活塞柴油机性能的影响分析[J].车用发动机.2009,No.3:53-56.
    [84]苑士华,吴维,荆崇波,等.单活塞式液压自由活塞柴油机启动过程研究[J].兵工学 报,31(8):1009-1013.
    [85]荆崇波,吴维,苑士华,等.单活塞式液压自由活塞发动机活塞振动特性研究[J].北京理工大学学报,29(4):304-308.
    [86]苑士华,吴维,胡纪滨,等.单活塞式液压自由活塞发动机压缩冲程特性[J].机械工程学报,2010,46(18):134-138.
    [87]Zhao ZF, Huang Y, Zhang FJ, et al. Experimental study on hydraulic free piston diesel engine [C]. SAE paper,2010-01-2149,2010.
    [88]Zhao ZF, Zhang FJ, Huang Y, et al. An experimental study of the hydraulic free piston engine [J]. Applied Energy,2012,99:226-233.
    [89]Zhao ZF, Huang Y, Zhang FJ, et al. Experimental study on hydraulic free-piston diesel engine [C]. SAE paper 2010-01-2149,2010.
    [90]吴维,荆崇波,苑士华.液压自由活塞发动机频率阀工作特性[J].煤炭学报,2011,36(2):341-345.
    [91]赵振峰,张付军,赵长禄,陈宇.基于Matlab/Simulink的液压自由活塞柴油机动态特性研究[J].车辆与动力技术,2008.2:9-13,
    [92]朱涛.液压自由活塞发动机的仿真研究[博士学位论文].天津:天津大学,2010.
    [93]熊仟.液压姿态又活塞发动机大流量快速响应电磁阀的仿真设计和实验研究[硕士学位论文]天津:天津大学,2010.
    [94]陶成军.液压自由活塞发动机的系统仿真研究[硕士学位论文]天津:天津大学,2012.
    [95]朱涛,汪洋,张中,等.液压自由活塞发动机的气体流动模拟[J].中国机械工程,21(18):2196-2201.
    [96]http://www.innas.com/Chiron_digital_valve.html.
    [97]Berlinger WG. Free piston internal combustion engine with rotating piston [P]. US Patent,6105541,2000.
    [98]Hibi A. Hydraulic free piston internal combustion engine-test result [J]. Power, Sept., 1984.
    [99]Hibi A, Kumara S. Hydraulic free-piston internal combustion engine-test results [J]. Hydraulic Pneumatic Mechanical Power, Sept.1984:244-249.
    [100]刘嘉,黄英,张付军,等.液压自由活塞柴油机无凸轮电液驱动配气机构设计与试验研究[J].液压与气动,2010.4:17-20.
    [101]吕云嵩.液压自由活塞发动机的惯性负载与热效率研究[J].南京理工大学学报,31(6):735-738.
    [102]周龙保.内燃机学(第2版)[M].北京:机械工业出版社,2010.
    [103]Dresner T, Barkan P. A review and classification of variable valve timing mechanisms [C]. SAE paper 890674,1989.
    [104]Dresner T, Barkan P. A review of variable valve timing benefits and modes of operation [C]. SAE paper 891676,1989.
    [105]李莉.电磁驱动气门机构的设计开发和试验研究[博士学位论文].杭州:浙江大学,2004.
    [106]张雁成.电控液压驱动配气系统的模拟分析[硕士学位论文].长春:吉林大学,2009.
    [107]Salber W, Kemper H, Staay F, et al. The electro-mechanical valve train-A system module for future powertrain concepts [J]. MTZ,61(12):826-826 and MTZ,2000,62(1): 44-55.
    [108]Butzmann S, Melbert J. Sensorless control of electomagnetic actuators for variable valve train [C]. SAE paper 2000-01-1225,2000.
    [109]Heiland H. Innovative concepts, http://www.bmwgroup.com.
    [110]Theobaid MA. Control of engine load via electromagnetic valve actuators [C]. SAE paper 940816,1994.
    [111]Rafael R, Migue CJ, Luis A, et al. Optimization of a camless engine distribution by means of the modelling. Study of the influence of the external operation parameters on the performance of the engine[C]. SAE paper 2001-01-3370,2001.
    [112]Michael M. Camless engine [C]. SAE paper 960581,1996.
    [113]Mardell J, Cross R. An integrated, full authority, electrohydraulic engine valve and diesel fuel injection system [C]. SAE Paper,880602,1988.
    [114]Rassem R. A novel, fully flexible, electro-mechanical engine valve actuation system [C]. SAE paper 970249,1997.
    [115]Barba C, Burkhardt C, Boulouchos K, et al. A phenomenological combustion model for heat release rate prediction in high speed DI Diesel engines with common-rail injection [C]. SAE Paper,2000-01-2933,2000.
    [116]AMESim help.
    [117]Annand WJD. Heat transfer in the cylinders of reciprocating internal combustion engines [J]. Proceedings of the Institution of Mechanical Engineers,1963,177:973-996.
    [118]Annand WJD, Ma TH. Instantaneous heat transfer rates to the cylinder head surface of a small compression-ignition egine [J]. Proceedings of the Institution of Mechanical Engineers,1970, Vol.185(1):976-987.
    [119]Benson RS, Annand WJD, Baruah PC. A simulation model including intake and exhaust systems for a single cylinder four-stroke cycle spark ignition engine [J]. Internal Journal of Mechanical Sciences,1975, Vol.17 (2):97-124.
    [120]李骊.强非线性振动系统的定性理论与定量方法[M].北京:科学出版社,1997.
    [121]李纪仁.油缸的缓冲装置[J].机械技术.1984,(3):34-38.
    [122]路甬祥.液压气动技术手册[M].北京:机械工业出版社2002.
    [123]朱雁.油压缓冲器原理及应用[J].中国铸机,1990.5.
    [124]刘波.液压缸缓冲结构和缓冲过程的研究[硕士学位论文].杭州:浙江大学,2004.
    [125]徐绳武.柱塞式液压泵(第一版)[M].北京:机械工业出版社,1985.7.
    [126]《往复泵设计》编写组编.往复泵设计(第一版)[M].北京:机械工业出版社,1987.2.
    [127]张大斌,苏明,鄢吉多,于丽娅.基于AMESim的液压柱塞泵的数字建模与流量脉动分析[J].煤矿机械,2010,Vol.31(1):100-102.
    [128]余经洪,陈兆能,陆元章.液压柱塞泵流量脉动测试的试验研究[J].机床与液压,1992.4:187-193.
    [129]冀宏,张玲珑,杨建新,等.油压驱动海水往复泵的流量脉动及其控制[J].液压与气动,2010.9:84-87.
    [130]朱金鑫.消除柱塞泵流量脉动的方法[J].机床与液压,2006.8:166-167.
    [131]Hacker's guide to writing S-function based I/O drivers for xPC Target, Version 0.1, 2001.12.27.
    [132]The Math Works. xPC Target User's Guide.
    [133]接浩南.基于xPC Target的采集卡驱动程序开发[J].微计算机信息,2008,Vol.24(8):185-186.
    [134]苗立东.xPC目标机的启动方法研究[J].计算机应用与软件,2009,Vol.26(6):83-84.
    [135]时亚忠,王旭永,张红伟.采用CMEX S函数编写xPC环境下设备驱动模块的研究[J].测控技术,2006,Vol.25(7):59-61.
    [136]苗立东.xPC目标驱动程序开发中的关键问题研究[J].计算机工程,Vol.35(19):239-241.
    [137]The MathWorks. xPC TargetTM 4 Device Drivers, User Guide.
    [138]The Mathworks. Simulink Writing S-Functions.
    [139]赵亚明,马旭东.Simulink/RTW下xPC Target的S函数驱动模块开发[J].机械工程与自动化.2007.6,No.3:50-52.
    [140]鄢勇.液压缸间隙密封流场仿真分析[D].武汉科技大学硕士学位论文,2011.4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700