用户名: 密码: 验证码:
低温环境模拟舱室的热设计、控制分析与降温试验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文涉及的低温环境模拟舱室(设计温度-205℃~+100℃),是能为某些装置或部件提供低温环境下进行试验工作的密闭舱室,该舱室具有较大的内部空间和优良的绝热保温性能,并且在工作状态下,舱室内部充有一定量的氦气,以增强内部的传热性能、加快降温速率。低温舱室应用最多的是低温真空舱室,由于该种类型的舱室内部处于高真空环境,因此舱室内部真空绝热的保护。如果所需求的低温舱室要在非真空状态下工作,那么舱室内外筒体连接构件的漏热就是一个最关键的问题。在该类低温舱室的设计过程中,如何尽可能地减少通过舱室结构的漏热量,是热设计过程中的重点及难点。
     本文通过对低温环境模拟舱室的漏热较大部分:门封和内外筒体间的连接通道进行了结构设计与搭接液氮管路的优化,减少漏热量。对舱室热沉氦气管路进行了热计算,确定了结构的合理性;对低温下稳定工作状态中的舱室进行漏热分析,包括舱室主体真空绝热层的漏热、端面通道的漏热、内外筒体间支撑结构的漏热、通过门封结构的漏热、通过低温工质管道的漏热。
     根据低温环境模拟舱室的功能与目的,分析了低温环境模拟舱室的循环工作原理,依据目标温度划分其工作流程,包括目标温度85K以下恒温控制流程、目标温度85K-150K恒温控制流程、目标温度150K-室温恒温控制流程、目标温度室温-100℃恒温控制流程和复温控制流程。根据控制要求对可编程逻辑控制器PLC进行了选型设计。
     对低温环境模拟舱室进行的内部热沉降温试验,证明低温非真空舱室内部在降温速率上相对于低温真空舱室的优越性,空间内部充入氦气能大大提高空间内的换热性能;并且初步证明舱室热设计的合理性。
Low-temperature Environment Simulator provides low temperature environment to test for certain devices or component. The simulator has a larger interior space and excellent insulation properties. In working condition, the simulator internal charge a certain amount of helium in order to enhance the internal heat transfer performance, and speed up the cooling rate. The most widely used low-temperature vacuum simulator, inside with a high vacuum environment, can provide protection of the vacuum insulation. For low-temperature Environment Simulator in this paper, the heat leak of the container component is one of the most critical issues. In the design process of such a cryogenic vessel, how to minimize heat flow through the simulator is a key point.
     In this paper, the door seal and the channel between inside and outside of the simulator are designed and optimized to reduce heat flow. The analysis of heat leakage is carried out in stable state at low temperatures, including the heat leak of the vacuum insulation of the container body, the heat leak of the wire channel, the support structure, the door seal structure and refrigerant coils.
     According to the function and purpose of the low-temperature environment simulator, its working progress is analyzed. Working progress is divided into several parts, including the target temperature of 85K, target temperature of 85K to 150K, the target temperature of 150K to room temperature, the target temperature of room temperature to 100℃and the rewarming process. Selection and Design of Programmable Logic Controller (PLC) is done under the control requirements.
     The internal heat sink cooling experiment is carried out to prove that the low temperature Environment Simulator’cooling rate is higher than the cooling rate of low-temperature vacuum vessel. The helium charged into the container can greatly increase the heat transfer performance within the space. Preliminary proved the rationality of the heat design of the low-temperature environment simulator.
引文
[1]张敏,王如竹.空间低温技术的新进展[J].低温工程.2000,114(2).
    [2]Marce, J. L. and Pasquet J. C.19th space simulation conference-intespace from 1970 to the present day, 19th Space Simulation Conference-Cost Effective testing for the 21st Century.1990.
    [3]Corinth, R. L. and Rouse, J. A. Meeting today’s requirements for large thermal vacuum test facilities, 14th Space Simulation Conference.1986.
    [4]孙来燕,黄本诚,成致祥.大型空间环境试验设备中的低温技术[J].低温工程.1999,110(4).
    [5]孙培杰,吴静怡,江明旒,张良俊,徐烈.空间对接综合试验台温度环境模拟系统及其温场特性[N].上海交通大学学报.2009(5).
    [6]黄本诚. KM6载人航天器空间环境试验设备[J].中国空间科学技术.2002(3).
    [7]黄本诚,马有礼.航天器空间环境试验技术[M].国防工业出版社.2002.
    [8]姜传胜,王浚.大型空间环模器热沉热设计研究[N].北京航空航天大学学报.2001.6(3).
    [9]姜传胜.大型空间环模器热沉管网仿真及热设计研究[D].北京航空航天大学飞行器设计与应用力学系.1999.
    [10]周建平.载人航天交会对接技术[J].载人航天.2011(2).
    [11]王如竹,汪荣顺.低温系统[M].上海:上海交通大学出版社.2000.
    [12]徐烈等.低温舱室设计、制造与使用[M].北京:机械工业出版社.1987.
    [13]黄本诚,成致祥,王秀华,李旭异.直径3.6米空间环境模拟室的设计与性能分析.强度与环境.1980(1).
    [14]王永志.实施我国载人空间站工程推动载人航天事业科学发展[J].载人航天.2011(1).
    [15]邹定忠,刘敏,刘国青.新的大型空间环境模拟器热沉的研制[J].环模技术.1998(4).
    [16]王立兴,白焱,章洁平,唐强,王自力.低温半静密封技术[J].低温工程.2003(1).
    [17]袁立峰,王浚.低温低气压下温度均匀度分析[J].低温工程.2005(4).
    [18]孙培杰,吴静怡,张鹏,江明旒,徐烈.气体传热对多层绝热性能影响的试验研究[J].低温与超导.2008(11).
    [19]付锡理.真空多层绝热理论研究和传热计算[J].低温工程.1989.(2).
    [20]Edelmann C and Kunz I. Remarks concerning the interpretation of long term outgassing-rate measurements with the help of the rise of pressure method by the theory of Malev[J].Vacuum.1995.
    [21]李殿东,袁文军,柏树.超高真空温度空间模拟设备的研制[J].航空制造技术.2005(11).
    [22]D L James and S Stevkovski. Thermal Analysis of the ALR8(SI) Plutonium Storage Container[J]. Journal of Thermo physics and Heat Transfer. 2002.10 (4): 575- 586.
    [23]陈国邦,张鹏.低温绝热与传热技术[M].北京:科学出版社.2004.
    [24]陈国邦,等.最新低温制冷技术[M ].北京:机械工业出版社,2003.
    [25]徐烈,方荣生,马庆芳.绝热技术[M].北京:国防工业出版社.1990.
    [26]王贵仁,陈叔平,张春燕,李慧燕,孙李丁,苏海林.低温舱室的漏热分析与实验研究[J].石油化工设备.2007(5).
    [27]徐成海等.真空低温技术与设备[M].冶金工业出版社.1995.
    [28]Semyonov Y G, Borisov S F, Suetin P E. Investigation of heat transfer in rarefied gases over a w ide range of Knudsen numbers [J]. International Journal Heat and Mass Transfer.1984 (10).
    [29]邹定忠,刘敏,刘国青.热沉设计技术[J].中国空间科学技术.2002(3).
    [30]贾阳,刘松.热沉温度场仿真研究[J].环境技术.1996(3).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700