用户名: 密码: 验证码:
环境友好型镀锌硅酸盐钝化工艺、机理及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,镀锌钢板的钝化处理往往采用六价铬酸盐钝化液,但铬酸盐毒性高、易致癌,对人体及环境造成极大的危害。随着人们环保意识的增强,铬酸盐的使用受到严格的限制,无铬钝化工艺的应用已成为发展的必然趋势。硅酸盐钝化是一种无毒、无污染的钝化技术,但其工艺不稳定、成膜效率不高。为解决这一问题,本论文开发了一种新型成膜促进剂,在提高成膜速率的同时有效改善了产品的耐蚀性。论文对硅酸盐钝化工艺进行了系统的研究,深入探讨了镀锌层硅酸盐钝化膜的成膜机理与耐蚀机理,并在电镀厂中进行了使用,取得了一定的经济效益。
     首先确定了镀锌硅酸盐钝化工艺的最佳工艺参数,钝化液组成为SiO32-4g/L, H2O215ml/L, NO3-20g/L, SO42-9g/L,成膜促进剂6g/L,工艺条件为钝化液pH值1.5-2.5,钝化时间10-30s,钝化温度15~40℃,空停时间5s左右,出光时间5s左右,得到的钝化膜表面光亮、外观均匀、耐蚀性好,且钝化液性能稳定、适应性强。钝化液组成对钝化膜耐蚀性的影响程度由大到小为SiO32-,成膜促进剂,H2O2, NO3-, SO42-。钝化液pH值、钝化时间、钝化温度对耐蚀性影响较大,而出光时间和空停时间为次要因素,只要不做极端操作,对钝化膜的耐蚀性没有明显影响。
     通过热力学和量化计算,结合电化学、SEM及XPS等测试手段分析了硅酸盐钝化膜的成膜机理。钝化膜的形成包括二氧化硅胶状物的生成、镀锌层的溶解、碱性薄层的形成和钝化膜形成四个过程。由于镀锌层表面存在晶体缺陷,这些晶体缺陷属于能量较高的电化学不均匀的区域,在含有H2O2的酸性钝化液中易形成众多微电池,阳极发生锌的溶解,生成Zn2+,阴极发生H2O2的极化还原反应,以OH-的形式吸附在两相界面上,引起镀锌层表面pH值上升,形成碱性膜层,为成膜反应提供必要条件。在有OH-吸附于界面的情况下,溶液中的Zn2+可与OH结合生成Zn(OH)2,继而脱水形成ZnO; pH值在1.5-2.5的钝化液中硅酸根首先生成Si02胶状物,在OH-的作用下,SiO2、OH-和Zn2+共同形成ZnSiO3。生成的ZnO、ZnSiO3等含锌化合物沉积在镀锌层表面,微细的胶态Si02粒子填充膜层的孔隙,最终形成硅酸盐钝化膜。
     钝化膜成膜过程分为三个阶段:反应初期(0-30s)钝化膜快速成长,但膜层还不完整,表面有小孔分布;反应中期(30-120s)钝化膜生长速率降低,钝化膜的结构不断完善,表面平整光滑,表现出良好的外观和耐蚀性;当钝化时间大于120s,膜层出现堆积现象其耐蚀性降低。
     耐蚀机理研究表明,腐蚀过程中硅酸盐钝化膜是通过机械隔离和电化学缓蚀作用而对基体产生保护。采用场发射电镜观察硅酸盐钝化膜的微观形貌发现,钝化膜由无数细微粒子紧密排列而成,均匀致密的结构可将镀锌层表面与腐蚀介质隔离开来,有效地阻挡外界氯离子和氧等腐蚀介质对镀锌层的侵蚀。电化学研究表明,在NaCl腐蚀溶液中,高频区硅酸盐钝化膜的电化学反应阻抗远远大于镀锌层,达到780Ω·cm2,较大的交流阻抗可以有效地阻碍电荷自由传输,腐蚀电流密度由2.0062×10-5Amp/cm2降至6.1561×10-6Amp/cm2,腐蚀速率仅为0.0183g·m-2·h-1。采用扫描电化学显微镜技术对钝化膜的电化学特性研究也表明,硅酸盐钝化膜的电化学活性不高,能够有效地降低镀锌层表面电子的传递速率,微电池的腐蚀反应发生倾向明显降低,从而抑制了腐蚀过程,显著提高了镀锌层的耐腐蚀性能。硅酸盐钝化膜对腐蚀过程阴极、阳极过程均有不同程度的控制,阳极极化度为180.663mV,明显大于阴极极化度98.579mV,其腐蚀过程表现为阳极控制型。
     对镀锌硅酸盐钝化工艺进行了日处理量1.5吨左右的工业生产应用,生产所得各种形状零部件的外观光亮,膜层均匀,无脱膜现象产生,其耐蚀性完全达到生产的要求。钝化液的稳定性好,方便维护,在长时间连续使用过程中,钝化液的pH值变化不大;随着生产量的增加,钝化液中硅酸根、硫酸根、硝酸根含量有所减少,为了保证产品的质量,在生产一段时间后,可以通过添加硅酸钠、硫酸和硝酸钠的方式来调节钝化液的组成。操作过程中采用合适的钝化液配制方法、搅拌方式、钝化温度、浸渍时间、干燥温度等,可以有效地延长钝化液使用寿命。
     综上所述,本论文所开发的镀锌硅酸盐钝化工艺环境友好、成本低廉,其产品性能优良,工艺性能稳定,具有十分广阔的应用前景。
Traditionally, hexavalent chromate was used in passivation of the galvanized steels. However, chromate is not environmentally friendly due to its toxicity and carcinogenicity, which greatly restricts its application when the people's health is of great concern. Therefore, it is impeding to explore the chromate-free passivation techniques, and, among them, silicate is one of the most potential alternatives. Unfortunately, passivation process in the silicate is inefficient and unstable. In order to solve this problem, a new promoting agent of film-formation was explored in this thesis, and this agent can accelerate the deposition rate and can improve the corrosion resistance of the formed passive film. Meanwhile, the process of passivation and mechanisms of film-formation in the silicate solvent have been discussed in detail, and also discussed is the anti-corrosion performance of this film. Furthermore, industrialized application of this passivating technique is successfully effected and a great economic benefit is obtained.
     At the beginning parts of the thesis, the optimized compositions and the operating conditions of the passivating solution have been determined as follows:SiO32-is4g/L, H2O215ml/L, NO3-20g/L, SO42-9g/L, film promoting agent6g/L, pH value1.5to2.5, passivation time10~30s, temperature15~40℃, slot time5s, light time about5s. It was found that pH values, immersion time and temperature all influence markedly the corrosion resistance of passive film.
     The mechanism of silicate passive films formation was studied. In the formation of silicate passive films, four processes took place, which include the formation of silicon dioxide gels, the dissolution of zinc coating, the formation of alkaline thin film and the formation of silicate passive films in succession. Thermodynamics and quantum chemical calculations showed that there exist crystal defects on the surface of zinc coating, which are the electrochemically heterogeneous parts with high energy and tend to form the anode areas of micro-cell corrosion compared with the rest parts of the coating. Metal zinc was oxidized to zinc ion at the anode, and hydrogen peroxide was reduced at the cathode. Hydrogen peroxide adsorbed on the galvanized zinc surface and breaked into OH" which stayed the two-phase interface. Subsequently, the surface pH value increased because of the formation of alkaline film, which is a prerequisite condition for the formation of passive film. The hydroxyl could combine with the zinc ion to produce zinc hydroxide, immediately followed by dehydration to zinc oxide. On the other hand, silicate hydrolyzed to silicon dioxide gels in the acidic passivating solution in pH values of1.5~2.5. And then, silicon dioxide gel reacted with zinc ion and hydroxyl to form zinc silicate. As the whole, ZnO, ZnSiO3, other zinc compounds and the filling colloidal SiO2fine particles co-deposited on the surface of galvanized zinc, and the silicate passive film formed.
     Electrochemical tests indicate that the passive films formation process undergoes three stages. In initial stage (0~30s), the passive film grows rapidly, but the film is not complete, and some holes are distributed in the film. In the subsequent stage (30~120s), the film growth rate decreases, but membrane performance is improved continuously, the surface of film become smooth and its corrosion resistance increased. When the passivation time exceeds120s, corrosion resistance decreases with time instead due to the films' overlap.
     Because of silicate passive film's structural and electrochemical character which was able to significantly improve the corrosion resistance of galvanized zinc. It was found that silicate passivated films formed by the accumulation of small particles, which can effectively isolated the corrosive medium due to its structural integrity, finesse and uniform distribution. Electrochemical researches indicated that the electrochemical impedance of silicate passivated films is780Ω·cm2in the NaCl medium, which is larger than zinc coating. As the electrochemical corrosion inhibitor, the passive film hinders the charge transfer process. The corrosion potential and current are-0.8828V and6.156×10-6Amp·cm-2, respectively. Especially, the silicate passive films corrosion rate is0.0183g·m-2·h-1. By the scanning electrochemical microscopy characterization of silicate passivated film was researched. Compared with galvanized zinc and chromate passivation film, no regions of high electrochemical activity exist on silicate passivated film surface. The rate of electron transfer across the substrate/electrolyte reduced, and as result the dissolution of the substrate is significantly inhibited. Parameters from Tafel curve slope showed that, compared with the zinc coating, silicate passivated film polarized both the cathodic process and the anodic process to the greater extent, and the ba is180.663mV, significantly greater than the98.579mV of bc, indicating that the corrosion processes are controlled mainly by the anodic polarization.
     In industrial application of this silicate passivating technique, galvanized steel parts in complicated shapes can be well passivated, and the passivation film looks mirror-like, uniform, without stripping phenomenon; Results of corrosion resistance test of this passive film fully reach the industrial standards. pH values of the passivating solution in the long-term continuous operation change little, indicating of good stability and easy maintenance; As production volume increases, the content of silicate, sulfate and nitrate in passivation solution decrease, and in order to ensure product quality, these can be supplied by adding sodium silicate, sulfuric acid and sodium nitrate after some operation time to regulate the compositions of the passivating solution. During operation, the appropriate method for the preparation of passivating solution, stirring, passivation temperature, dipping time, drying temperature, etc, can effectively extend the life of passivating solution.
     In summary, the technique of silicate-contained passivating solution in the present study shows environmentally friendly, low cost, excellent product performance, wide application, and great market competitive advantage, and it is expected to produce enormously economic and social benefits.
引文
[1]曹楚南.腐蚀电化学[M].北京:化学工业出版社,1999
    [2]梁彩凤.钢在中国大陆的大气腐蚀研究[J].电化学,2001,(2):12-16
    [3]D.T.Gawne, I.R.Christie. The Discipline and the Industry[J]. Trans. Inst. Met. Finish., 1992,70(4):184-189
    [4]Tom Bell. Towards a universal surface engineering road map[J]. Surf. Eng.,2000, 16(2):89-90
    [5]屠振密,韩书梅,杨哲龙等.防护装饰性镀层[M].第1版.北京:化学工业出版社,2004
    [6]柯伟.中国腐蚀调查报告[M].北京:化学工业出版社,2003
    [7]范颖芳,张英姿,胡志强等.基于概率分析的锈蚀钢筋力学性能研究[J].建筑材料学报,2006,9(1):99-104
    [8]安茂忠.电镀锌及锌合金发展现状[J].电镀与涂饰,2003,22(6):35-40
    [9]M. Tencer. Electrical conductivity of chromate conversion coating on electrodeposited zinc[J]. Appl. Surf. Sci.,2006,252(23):8229-8234
    [10]沈品华,屠振密.电镀锌及锌合金[M].第1版.北京:机械工业出版社,2002
    [11]Fred W. Eppensteiner, Melvin R. Jenkins. Chromate conversion coatings [J]. Met. Finish.,1999,97(1):494-506
    [12]郑环宇,安茂忠,赖勤志.镀锌层无铬钝化工艺的研究[J].材料保护,2005,38(9):18-21
    [13]Robert Berger, Ulf Bexell, T. Mikael Grehk, et al. A comparative study of the corrosion protective properties of chromium and chromium free passivation methods[J]. Surf. Coat. Technol.,2007,202(2):391-397
    [14]田民波,马鹏飞.欧盟WEEE/RoHS指令案介绍[J].国外环保动态,2003,11:34-37
    [15]王亚昆.促进电镀行业的清洁生产研究[J].新技术新工艺,2006,11-12
    [16]陈亚,李士嘉,王春林等.现代实用电镀技术[M].第1版.北京:国防工业出版社,2003
    [17]赵文珍主编.材料表面工程导论[M].西安:西安交通大学出版社,1998
    [18]金属腐蚀防护协会.金属腐蚀手册[M].上海:上海科学技术出版社,1987
    [19]Engel L, Klingele H. An atlas of metal damage surface examination by scanning electron microscope. English edtion[M]. Munich:Wolfe science books in association with Carl Hanser Verlag,1981
    [20]Misawa T. The mechanisms of atmospheric rusting and the effect of Cu and P on the rust formation of low alloy steels[J]. Corros. Sci.,1971,11:35-48
    [21]Misawa T. The mechanisms of formation of iron oxide and oxyhydroxides in aqueous solution at room temperature [J]. Corros. Sci.,1974,14(2):131-149
    [22]R·温斯顿·里维.尤利格腐蚀手册[M].杨武等译.北京:化学工业出版社,2005
    [23]李异主编.金属表面转化膜技术[M].北京:化学工业出版社,2009
    [24]韩顺昌等编.金属腐蚀显微组织图谱[M].北京:国防工业出版社,2008
    [25]刘永辉,张佩芬.金属腐蚀学原理[M].北京:航空工业出版社,1993
    [26]李鑫庆,陈迪勤,宇静琴.化学转化膜技术与应用[M].北京:机械工业出版社,2005
    [27]吴纯素.化学转化膜[M].北京,化学工业出版社,1989
    [28]X.Zhang, W.G. Sloof, A. Hovestad, et al. Characterization of chromate conversion coatings on zinc using XPS and SKPFM[J]. Surf. Coat. Technol.,2005,197(2-3):168-176
    [29]陈锦虹,许乔瑜,毕君等.镀锌层有机物无铬钝化[J].电镀与环保,2000,20(6):7-11
    [30]Wippermann K, Schuitze J W, Kessel R, et al. The Inhibition of Zinc Corrosion by Bisaminotriasole and Other Triazole Derivatives [J]. Corros. Sci.,1991,32(2):205-207
    [31]Chen Z W, Kennon N F, See J B, el al. Technigalva and Other Developments in Batch Hot-Dip Galvanizing[J]. JOM,1992,44(1):22-26
    [32]Wilcox G D, Wharton J A. A Review of Chromate-Free Passivation Treatments for Zinc and Zinc Alloys[J]. Trans. Inst. Met. Finish.,1997,75(6):140-146
    [33]T. Bellezze, G. Roventi, R. Fratesi. Electrochemical study on the corrosion resistance of Cr Ⅲ-based conversion layers on zinc coatings [J]. Surf. Coat. Technol.,2002,155(2-3): 221-230
    [34]曾振欧,邹锦光,赵国鹏等.不同镀锌层的三价铬钝化膜耐蚀性能比较[J].电镀与涂饰,2007,26(1):7-9
    [35]任艳萍,陈锦虹.镀锌层三价铬钝化膜腐蚀行为的研究[J].材料保护,2007,40(2):7-10,41
    [36]Mirghasem Hosseini, Habib Ashassi-Sorkhabi, Heshmat Allah Yaghobkhani Ghiasvand. Corrosion Protection of Electro-Galvanized Steel by Green Conversion Coatings [J]. J Rare Earth,2007,25(5):537-543
    [37]周渝生.无铬钝化技术研究的进展[J].钢铁,2003,38(4):68-71
    [38]Vukasovich M S, Farr J P G. Molybdate in Corrosion Inhibition[J]. Mater. Performance,1986,25(5):9-11
    [39]Hyung-Joon Kim, Jinming Zhang, Roe-Hoan Yoon, et al. Development of environmentally friendly nonchrome conversion coating for electrogalvanized steel[J]. Surf. Coat. Technol.,2004,188-189(5):762-767
    [40]Miller R. Non-toxic corrosion resistant conversion coating for aluminum and aluminum alloys and the process for making the same[P]. US Patent,5221371,1993-06-22
    [41]Zhiyi Yong, Jin Zhu, Cheng Qiu, et al. Molybdate/phosphate composite conversion coating on magnesium alloy surface for corrosion protection[J]. Appl. Surf. Sci.,2008, 255(5):1672-1680
    [42]张文钲.钼酸钠应用前景展望[J].中国钼业,2000,24(4):7-9
    [43]周谟银.钼酸盐在金属表面处理中的应用[J].材料保护,2000,33(10):45-47
    [44]刘小虹,颜肖慈.镀锌层钼酸盐转化膜及其耐蚀机理[J].电镀与环保,2002,22(11):18-19
    [45]Wilcox G D, Gabe D R. Chemical Molybdate Conversion Treatments for Zinc[J]. Met Fin.,1998,86(9):71-75
    [46]Bjimi D, Gabe D R. Passivation Sutdies Using Gorup VIA Anions, Partl:Aniodic Treatment of Tin[J]. Br. Corros. J.,1983,18(2):88-91
    [47]Bjimi D, Gabe D R. Passivation Sutdies Using Gorup VIA Anions, Part2:Cathodic Treatment of Tin[J]. Br. Corros. J.,1983,18(2):93-95
    [48]Bjimi D, Gabe D R. Passivation Sutdies Using Gorup VIA Anions, Part3:Aniodic Treatment of Zinc[J]. Br. Corros. J.,1983,18(3):138-140
    [49]Wilcox G D, Gabe D R. Passivation Sutdies Using Gorup VIA Anions, Part4:Cathodic Redox Reaction and film Formation[J]. Br. Corros. J.,1984,19(4):196-198
    [50]Wilcox G D, Gabe D R. Passivation Sutdies Using Gorup VIA Anions, Part5:Cathodic Treatment of Zinc[J]. Br. Corros. J.,1987,22(4):254-256
    [51]Wilcox G D, Gabe D R. Molybdate Chemical Treatment[J]. Met Fin.,1988, 28(9):71-73
    [52]Tang P T, Bech-Nielsen G, Moller P M. Molybdate Based Alternatives to Chromating as a Passivation Treatment for Zinc[J]. Plat. Surf. Finish.,1994,81(11):20-22
    [53]Tang P T, Bech-Nielsen G, Moller P M. Molybdate Based Passivation of Zinc[J]. Trans, Inst. Met. Finish.,1997,75(4):144-146
    [54]A.A.O. Magalhaes, I.C.P. Margarit, O.R. Mattos. Molybdate conversion coatings on zinc surfaces[J]. J. Electroanal. Chem.,2004,572(2):433-440
    [55]卢锦堂,孔纲.热镀Zn层铝酸盐钝化工艺[J].腐蚀科学与防护技术,2001,13(1):46-48,41
    [56]吴海江,卢锦堂.热浸镀锌层上钼酸盐转化膜的腐蚀电化学性能[J].腐蚀科学与防护技术,2009,21(3):295-298
    [57]Y.K. Song, F. Mansfeld. Development of a Molybdate-Phosphate-Silane-Silicate (MPSS) coating process for electrogalvanized steel[J]. Corros. Sci.,2006,48(1):154-164
    [58]陈锦虹,卢锦堂.镀锌层上有机物无铬钝化涂层的耐蚀性[J].材料保护,2002,35(8):29-31
    [59]郝建军,安成强,刘常升.不同添加剂对镀锌层钼酸盐钝化膜腐蚀电化学性能的影响[J].材料保护,2006,39(10):23-25
    [60]方景礼,刘琴,韩克平等.铁上绿色钼酸盐化学转化膜的研究[J].表面技术,1995,24(5):9-11
    [61]孔刚,卢锦堂.镀锌层钼酸盐钝化膜腐蚀行为的研究[J].材料保护,2001,34(11):17-19
    [62]肖鑫,龙有前,钟萍等.镀锌层钼酸盐-氟化锆体系钝化工艺研究[J].腐蚀科学与防护技术,2005,17(3):184-186
    [63]陈旭俊.乙酸胺钼酸盐的缓蚀作用与机理[J].中国腐蚀与防护学报,1995,15(4):279-284
    [64]Vukasovich M.S, Farr J.P.G. Molybdate in Corrosion Inhibition-A Review[J]. Mater. Performance,1986,25(5):9-15
    [65]王济奎,方景礼.镀锌层表面有机膦合钼聚多酸盐转化膜的研究[J].应用化学,1996,13(5):73-75
    [66]龚洁,许瑞芬,陈旭俊.有机钼酸盐MDTA对碳钢的缓蚀作用和机理[J].腐蚀与防护,1999,20(2):62
    [67]钱余海,戴毅刚,陈红星.镀锌(合金)钢板无/低铬钝化技术研究状况[J].腐蚀科学与防护技术,2004,16(4):222-225
    [68]张景双,夏保佳,屠振密等.锡-锌合金镀层的无铬和低铬钝化[J].电镀与精饰,2002,24(3):9
    [69]李燕,陆柱.钨酸盐对碳钢缓蚀机理的研究[J].精细化工,2000,17(9):526-530
    [70]Bjimi D, Gabe D R. Passivation Sutdies Using Gorup VIA Anions, Part2:Cathodic Treatment of Tin[J]. Br. Corros. J.,1983,18(12):93-97
    [71]Cowieson DR Scholefield AR. Passivation of Tin-Zinc Alloy [J]. Trans. Inst. Met. Finish.,1985,63(2):56-61
    [72]Hinton B R W. The inhibition of aluminum alloy corrosion by rare earth metal cations [J]. Corros. Aust.,1985,10(3):12-17
    [73]Amott D R, Hinton B R W, Ryan N E. Canonic Film-Forming Inhibitiors for the Corrosion Protection of 7075 Aluminum Alloy in Chloride Solutions [J]. Mater. Performance,1987,26(8):42-47
    [74]Hinton B R W, Wilson L. The Corrosion Inhibition of Zinc with Cerium Chloride [J]. Corros. Sci.,1989,9 (9):967-985
    [75]Hinton B R W, Arnott D R, Ryan N E. Cerium Conversion Coatings for the Corrosion Protection of Aluminum[J]. Mater. Forum,1986,9(3):162-173
    [76]Hinton B R W. Corrosion Inhition with Rare Earth Metalsalts [J]. J. Alloys Compd., 1992,(180):15-25
    [77]Hinton B R W. Corrosion prevention and chromates[J]. Met. Finish.,1991,89(9): 55-61
    [78]Mansfeld F. The Ce-Mo Process for the Development of Stainless Alunimium [J]. Electrochem.Acta,1992,37(12):2277-2282
    [79]Breslin C B, Chen C, Mansfeld F. Electrochemical behaviour of stainless steels following surface modification in cerium-containing solutions[J]. Corros. Sci.1997,39(6): 1061-1073
    [80]Mansfeld F. Surface modification of aluminum alloys in molten salts containing CeCl3 [J]. Thin Sold Films,1995,270(1):417-421
    [81]Arenas M A, Damborenea J.J. Growth mechanisms of cerium layers on galvanised steel [J]. Electrochim. Acta,2003,48(24):3693-3698
    [82]Arenas M A, Damborenea J J. Surface characterisation of cerium layers on galvanised steel[J]. Surf. Coat. Technol.,2004,187(2/3):320-325
    [83]Yasuyuke Kobayashi, Yutaka Fujiwara. Effect of SO42- on the corrosion behavior of cerium-based conversion coatings on galvanized steel[J]. Electrochim. Acta,2006,51(20): 4236-4242
    [84]杨柳,刘光明,钱余海等.镀锌钢板铈盐钝化的电化学性能研究[J].表面技术,2006,35(6):11-14
    [85]王济奎,方景礼.镀锌层表面混合稀土转化膜的研究[J].中国稀土学报,1997,15(1):31-34
    [86]龙晋明,杨宁,陈庆华等.锌表面稀土化学钝化及耐蚀性研究[J].稀有金属,2002,26(2):98-102
    [87]龙晋明,韩夏云,杨宁等.锌和镀锌钢的稀土表面改性[J].稀土,2003,24(5):52-56
    [88]方景礼,王济奎,刘琴等.碳钢表面稀土转化膜的XPS和AES研究[J].中国稀土学报,1994,12(1):38-40
    [89]邝钜炽.稀土促进的钢铁表面磷酸盐转化膜形成[J].腐蚀科学与防护技术,2006,18(2):126-128
    [90]唐鏊磊,唐聿明,左禹.稀土转化膜钼酸盐后处理工艺研究[J].材料保护,2006,39(11):27-29
    [91]Wilson L. Method of forming corrosion resistant coating containing cerium[P].AU patent:WO06639,1988-09-07
    [92]Davo B, Damborenea de J J. Use of rare earth as electrochemical corrosion inhibitors for an Al-Li-Cu (8090) alloy in 3.5% NaC1[J]. Electrochim. Acta,2004(9):4957-4965
    [93]Andre D, Jean P. Study of the deposition of cerium oxide by conversion on to aluninium alloys[J]. Surf. Coat. Technol.,2005,194(1):1-9
    [94]Breslin C B, Chen C, Mansfeld F. Electrochemical behaviour of stainless steels following surface modification in cerium-containing solutions[J]. Corros. Sci.1997,39(6): 1061-1073
    [95]Yasuyuke Kobayashi, Yutaka Fujiwara. Effect of SO42- on the corrosion behavior of cerium-based conversion coatings on galvanized steel [J]. Electrochim. Acta,2006,51(20): 4236-4242
    [96]李鸿宾.镀锌层表面硝酸铈盐钝化研究[D].沈阳:东北大学2002
    [97]朱立群,杨飞.环保型镀锌层蓝色钝化膜耐腐蚀性能的研究[J].腐蚀与防护,2006,27(10):503-507
    [98]朱立群,杨飞,黄慧洁等.镀锌层无铬钛盐的蓝色钝化[J].江苏大学学报(自然科学版),2007,28(2):127-130
    [99]Liqun Zhu, Fei Yang, Nan Ding. Corrosion resistance of the electro-galvanized steel treated in a titanium conversion solution[J]. Surf. Coat. Technol.,2007,201(18): 7829-7834
    [100]天津大学有机化学教研室编.有机化学[M].北京:人民教育出版社,1979
    [101]C. I. Febles, A. Arias, A. Hardisson, et al. Phytic acid level in wheat flours[J]. J.Cereal Sci.,2002,36(1):19-23
    [102]Lasztity R, Lasztity L. Phytic acid in cereal technology [J]. Cereal Sci. Technol., 1990(10):309-371
    [103]张洪生.无毒植酸在金属防护中的应用[J].电镀与涂饰,1999,18(4):38-41
    [104]张洪生,杨晓蕾,陈熹.植酸在金属防护中的应用[J].腐蚀科学与防护技术,2002,14(4):239-243
    [105]胡会利,程瑾宁,李宁等.植酸在金属防护中的应用现状及展望[J].材料保护,2005,38(12):39-41
    [106]胡会利,李宁,程瑾宁.镀锌植酸钝化膜耐蚀性的研究[J].电镀与环保,2005,25(6):21-25
    [107]朱传方,胡腊生.植酸在镀锌钝化中的应用[J].精细化工,1995,12(5):54-55
    [108]周金保.镀锌层无铬钝化工艺的新进展[J].电镀与环保,1991,11(5):8-11
    [109]梁启民,张丽娜.镀锌层单宁酸钝化[J].电镀与精饰,1986(1):3-6
    [110]M.J. Tenwick, H.A. Davies. Enhanced strength in high conductivity copper alloys[J]. Mater. Sci. Eng.,1988,98(2):543-546
    [111]闫捷.锌及锌合金镀层的无铬钝化[D].哈尔滨:哈尔滨工业大学,2005
    [112]张安富.镀锌系钢板表面处理新工艺[J].表面技术,1991,20(5):29-31
    [113]Mcconkey B H. Tannin-Based Rust Conversion Coatings[J]. Corros. Australas,1995,20 (5):17-22
    [114]Robert Berger, Ulf Bexell, T. Mikael Grehk, et al. A comparative study of the corrosion protective properties of chromium and chromium free passivation methods[J]. Surf. Coat. Technol.,2007,202(2):391-397
    [115]John Sinko. Challenges of chromate inhibitor pigments replacement in organic coatings[J]. Prog. Org. Coat,2001,42(3-4):267-282
    [116]Huili Hua, Ning Li, Jinning Chengb, et al. Corrosion behavior of chromium-free dacromet coating in seawater[J]. J. Alloys Compd.,2009,472(1-2):219-224
    [117]Basker Veeraraghavan, Dragan Slavkov, Swaminatha Prabhu, et al. Synthesis and characterization of a novel non-chrome electrolytic surface treatment process to protect zinc coatings[J]. Surf. Coat. Technol.,2003,167(1):41-51
    [118]Motoaki Hara, Ryoichi Ichino, Masazumi Okido, et al. Corrosion protection property of colloidal silicate film on galvanized steel[J]. Surf. Coat. Technol.,2003, 169-170:679-681
    [119]Sandrine Dalbin, Georges Maurin, Ricardo P. Nogueira, et al. Silica-based coating for corrosion protection of electrogalvanized steel[J]. Surf. Coat. Technol.,2005,194(2-3): 363-371
    [120]Montemor M.F, Simoes A.M, Ferreira M.GS, et al. The corrosion performance of organosilane based pre-treatments for coatings on galvanized steel[J]. Prog. Org. Coat. 2000,38(l):17-26
    [121]Montemor M.F, Simoes A.M, Ferreira M.GS. Composition and behaviour of cerium films on galvanised steel[J]. Prog. Org. Coat.,2001,43(4):274-281
    [122]Montemor M.F, Simoes A.M, Ferreira M.G.S. Composition and corrosion behaviour of galvanised steel treated with rare-earth salts:the effect of the cation[J]. Prog. Org. Coat,2002,44(2):111-120
    [123]Wolfgang E.G. Hansal, Selma Hansal, Matthias Polzler, et al. Investigation of polysiloxane coatings as corrosion inhibitors of zinc surfaces[J]. Surf. Coat. Technol.,2006, 200(9):3056-3063
    [124]Kathrin Eckhard, Wolfgang Schuhmann, Monika Maciejewska. Determination of optimum imaging conditions in AC-SECM using the mathematical distance between approach curves displayed in the impedance domain[J]. Electrochim. Acta,2009,54(7): 2125-2130
    [125]Trabelsi W, Triki E, Dhouibi L, et al. The use of pre-treatments based on doped silane solutions for improved corrosion resistance of galvanized steel substrates[J]. Surf. Coat. Technol.,2006,200(14-15):4240-4250
    [126]Montemor W.F, Trabelsi W, Zheludevich M, et al. Modification of bis-silane solutions with rare-earth cations for improved corrosion protection of galvanized steel substrates[J]. Prog. Org. Coat,2006,57(1):67-77
    [127]韩克平,叶向荣,方景礼.镀锌层表面硅酸盐防腐膜的研究[J].腐蚀科学与防护技术,1997,9(2):167-170
    [128]宫丽,卢燕平.纳米硅溶胶/丙烯酸复合防蚀薄膜的研究[J].材料保护,2005,38(1):17-19
    [129]宫丽,卢燕平,于洋.纳米硅溶胶改性有机复合钝化膜耐蚀性研究[J].表面技术,2004,33(6):18-20
    [130]M. G S. Ferreira, R. G Duarte, M. F. Montemor, et al. Silanes and rare earth salts as chromate replacers for pre-treatments on galvanised steel[J]. Electrochim. Acta,2004, 49(17-18):2927-2935
    [131]李广超.硫脲对镀锌层硅酸盐钝化作用的影响[J].电镀与涂饰,2007,26(1):10-14
    [132]刘文君,张英杰,章江洪等.工艺因素对硅酸盐无铬钝化中耐蚀性的影响[J].表面技术,2007,36(1):60-61
    [133]A. Amirudin, D. Thierry. Corrosion mechanisms of phosphated zinc layers on steel as substrates for automotive coatings[J]. Prog. Org. Coat.,1996,28(1):59-76
    [134]W. J. van Ooij, D. Zhu, M. Stacy, et al. Corrosion Protection Properties of Organofunctional Silanes[J]. Tsinghua science and technology,2005,10(6):639-664
    [135]M. Fedel, M. Olivier, M. Poelman, et al. Corrosion protection properties of silane pre-treated powder coated galvanized steel[J]. Prog. Org. Coat.,2009,66(2):118-128
    [136]N. Diomidis, J.-P. Celis. Effect of hydrodynamics on zinc anodizing in silicate-based electrolytes[J]. Surf. Coat. Technol.,2005,195(2-3):307-313
    [137]Dikinis V, Niaura G, Rezaite V, et al. Formation of conversion silicate films on Zn and their properties[J]. T I MET FINISH.2007,85(2):87-93
    [138]魏宝明主编.金属腐蚀理论及应用[M].北京:化学工业出版社,1984
    [139]U.R.伊文思著.华保定译.金属腐蚀与氧化[M].北京:机械工业出版社,1976
    [140]屈定荣.Ti32Mo合金在盐酸溶液中钝化膜结构及性能研究[D].北京:北京化工大学,2001
    [141]J.A.迪安主编,魏俊发等译.兰氏化学手册[M].北京:科学出版社,2003(第二版)
    [142]查全性著.电极过程动力学导论[M].北京:科学出版社,2004(第四版)
    [143]Herbert H. Uhlig. Corrosion and corrosion control[M]. America:A Wiley-Interscience Publication,1963
    [144]张景双,安茂忠.电镀锌及锌合金镀层钝化处理的应用与发展[J].材料保护,1999,32(7):14-16
    [145]张允诚,胡如南,向荣.电镀手册[M].北京:国防工业出版社,1997
    [146]刘永辉.电化学测试技术[M].北京:航空学院出版社,1987
    [147]Burgert Blom, Gunter Klatt, Jack C.Q. Fletcher, et al. Computational investigation of ethene trimerisation catalysed by cyclopentadienyl chromium complexes[J]. Inorg. Chim. Acta,2007,360(2):2890-2896
    [148]Mingyong Sun, Alan E. Nelson, John Adjaye. Ab initio DFT study of hydrogen dissociation on MoS2, NiMoS, and CoMoS:mechanism, kinetics, and vibrational frequencies[J]. J. Catal.,2005,233(1):411-421
    [149]Pan Yunxiang, Han You, Liu Changjun. Pathways for steam reforming of dimethyl ether under cold plasma conditions:A DFT study[J]. Fue,2007,86(2):2300-2307
    [150]吴荫顺.金属腐蚀研究方法[M].北京:冶金工业出版社,1993
    [151]高颖,邬冰.电化学基础[M].北京:化学工业出版社,2004
    [152]化学工业部化工机械研究院.腐蚀与防护手册[M].第1版.北京:化学工业 出版社,1989
    [153]M. Pourbaix. Atlas of electrochemical equilibria in aqueous solutions[M]. London:Oxford Press,1974
    [154]杨显万,何蔼平,袁宝州.高温水溶液热力学数据计算手册[M].北京:冶金工业出版社,1983
    [155]曾华梁,吴仲达,陈钧无等.电镀工艺手册[M].北京:机械工业出版社,1997
    [156]李荻主编.电化学原理[M].北京:北京航空航天大学出版社,2003(修订版)
    [157]A.J. Bard, M.V. Mirkin. Scanning Electrochemical Microscopy[M].Marcel Dekker, New York,2001
    [158]A.J. Bard, L.R. Faulkner. Electrochemical Methods[M]. Wiley, New York,2001
    [159]Michael V. Mirkin, Benjamin R. Horrocks. Electroanalytical measurements using the scanning electrochemical microscope[J]. Anal. Chun. Acta,2000,406(2):119-146
    [160]Allen J. Bard, Xiao Li, Wei Zhan. Chemically imaging living cells by scanning electrochemical microscopy [J]. Biosens. Bioelectron.,2006,22(4):461-472
    [161]Guojin Lu, James S. Cooper, Paul J. McGinn. SECM imaging of electrocatalytic activity for oxygen reduction reaction on thin film materials[J]. Electrochim. Acta,2007, 52(16):5172-5181
    [162]Anna L. Barker, Patrick R. Unwin, Julian W. Gardner, et al.A multi-electrode probe for parallel imaging in scanning electrochemical microscopy [J]. Electrochem. Commun.,2007,6(1):91-97
    [163]M.L. Berndt, C.C. Berndt. ASM Handbook Vol.13 Corrosion:Fundamentals, Testing and Protection[J]. ASM International, USA,2003
    [164]A. Ibrahim, R.S. Lima, C.C. Berndt, et al. Fatigue and mechanical properties of nanostructured and conventional titania (TiO2) thermal spray coatings[J]. Surf. Coat. Technol.,2007,201(16-17):7589-7596
    [165]N. Espallargas, J. Berget, J.M. Guilemany, et al. Cr3C2-NiCr and WC-Ni thermal spray coatings as alternatives to hard chromium for erosion-corrosion resistance [J]. Surf. Coat. Technol.,2008,202(8):1405-1417
    [166]M. Paula Longinotti, Horacio R. Corti. Diffusion of ferrocene methanol in super-cooled aqueous solutions using cylindrical microelectrodes[J]. Electrochem. Commun.,2007,9(7):1444-1450
    [167]Yoshiki Hirata, Soichi Yabuki, Fumio Mizutani. Application of integrated SECM ultra-micro-electrode and AFM force probe to biosensor surfaces[J]. Bioelectrochemistry, 2004,63(1-2):217-224
    [168]R. Cornut, C. Lefrou. Studying permeable films with scanning electrochemical microscopy (SECM):Quantitative determination of permeability parameter[J]. J. Electroanal. Chem.,2008,623(2):197-203
    [169]Edgar Volker, Carlota Gonzalez Inchauspe, Ernesto J. Calvo. Scanning electrochemical microscopy measurement of ferrous ion fluxes during localized corrosion of steel[J]. Electrochem. Commun.,2006,8(1):179-183
    [170]Huili Hu, Ning Li, Jinning Cheng, et al. Corrosion behavior of chromium-free dacromet coating in seawater[J]. J. Alloys Compd.,2009,472(1-2):219-224
    [171]F. Andreatta, M.M. Lohrengel, H. Terryn, et al. Electrochemical characterisation of aluminium AA7075-T6 and solution heat treated AA7075 using a micro-capillary cell[J]. Electrochim. Acta,2003,48(20-22):3239-3247
    [172]Darren A. Walsh, Lisa E. Li, M.S. Bakare, et al. Visualisation of the local electrochemical activity of thermal sprayed anti-corrosion coatings using scanning electrochemical microscopy[J]. Electrochim. Acta,2009,54(20):4647-4654
    [173]Peter Liljeroth, Christoffer Johans, Christopher J. Slevin, et al. Micro ring-disk electrode probes for scanning electrochemical microscopy [J]. Electrochem. Commun., 2002,4(1):67-71
    [174]Xiao Li, Allen J. Bard. Scanning electrochemical microscopy of HeLa cells-Effects of ferrocene methanol and silver ion[J]. J. Electroanal. Chem.,2009,628(1-2): 35-42
    [175]Xiaolan Liu, Tao Zhang, Yawei Shao, et al. Effect of alternating voltage treatment on the corrosion resistance of pure magnesium[J]. Corros. Sci.,2009,51(8):1772-1779
    [176]J.A.Wharton, R.J.K.Wood, B.GMellor. Wavelet analysis of electrochemical noise measurements during corrosion of austenitic and superduplex stainless steels in chloride media[J]. Corros. Sci.,2003,45(1):97-122
    [177]Y.Gonzalez-Garcia, G.T Burstein, S.Gonzalez, et al. Imaging metastable pits on austenitic stainless steel in situ at the open-circuit corrosion potential [J]. Electrochem. Commun.,2004,6(7):637-642
    [178]R.M.Souto, Y.Gonzalez-Garcia, S.Gonzalez, et al. Damage to paint coatings caused by electrolyte immersion as observed in situ by scanning electrochemical microscopy[J]. Corros. Sci.,2004,46(11):2621-2628
    [179]J.C. Seegmiller, D. A. Buttry. A SECM study of hererogeneous redox activity at AA2024 surface[J]. J. Electrochem. Soc.,2003,150(9):B413-B418
    [180]A. Davoodi, J.Pana, C. Leygraf, et al. Probing of local dissolution of Al-alloys in chloride solutions by AFM and SECM[J]. Appl. Surf. Sci.,2006,252:5499-5503
    [181]A. Davoodi, J.Pana, C. Leygraf, et al. In situ investigation of localized corosion of aluminum alloys in chloride solution using integrated EC-AFM/SECM techniques[J]. Electrochem. Solid-State Lett.,2005,8(6):B21-B24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700