用户名: 密码: 验证码:
四川盆地西部下二叠统白云岩形成机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳酸盐的成岩作用与成岩环境一直是沉积地质学和石油地质学研究的核心领域之一,而与白云化作用和白云岩成因有关的研究更是一个长期令无数地质学家为之着迷和经久不衰的课题。对四川盆地及其周缘地区下二叠统白云岩的研究在30年前就已经开始,近些年的勘探成果表明四川盆地西部地区白云岩储层具有良好储集条件,是盆地二叠系中新的有利勘探领域。下二叠统的白云岩主要集中在栖霞组,其厚度大都在数米到数十米之间,现有的勘探资料表明这些白云岩在烃类勘探中的良好前景。本论文在充分获取四川盆地西部下二叠统栖霞组碳酸盐岩的矿物学、岩石学和地球化学信息的基础上,研究沉积期后各阶段流体的性质、来源、演化和主要控制因素及其与白云石沉淀作用、石灰岩溶解作用的关系,结合岩浆活动、构造运动、古气候、海平面变化、层序格架、埋藏历史和碳酸盐岩的其它成岩作用研究,对四川盆地西部下二叠统栖霞组碳酸盐岩储层的形成机制进行研究,探索白云化和白云岩成因等基础理论问题,建立适合四川盆地西部下二叠统栖霞组碳酸盐岩成岩作用(尤其是白云化作用)的理论与模式,为四川盆地西部下二叠统栖霞组碳酸盐岩储层的勘探提供必要的理论基础,也为全球范围内沉积盆地中白云化作用的研究提供有价值的中国实例。
     四川盆地西部下二叠统栖霞组在结构上基本缺乏原始结构保存的白云岩,几乎全为结晶白云岩,并且基本不存在完全由白云石组的岩石样品,说明白云化作用持续时间有限,地层中镁离子有限,白云化作用不彻底。白云岩中白云石的晶体较大,同样说明镁浓度较低和结晶中心较少的地质事实,白云石晶体大小主要分布在细晶—极粗晶的范围,主要的结构类型有平直晶面斑状晶、平直晶面半自形晶和自形晶、非平直晶面它形晶、非平直晶面鞍形晶、过度白云石化、具破碎和溶解结构的白云石等,显示高温白云化/白云石沉淀的特征。白云岩中还广泛存在自生伊利石、萤石、石英、氟磷灰石和重晶石等非碳酸盐矿物,它们主要赋存于白云岩的孔隙中,尤其是白云石溶解后的孔隙中,这些矿物可能也表明白云化作用与外来热流体有关。
     四川盆地西部下二叠统碳酸盐岩的各种成岩组分都具有较高的均一化温度,白云石中包裹体均一化温度平均值为135.5℃,显著高于方解石的109.5℃;在不同结构的各种白云石类型中,非平直晶面鞍形晶具有最高的包裹体均一化温度,平均值为151℃;非平直晶面它形晶白云石也具有较高的包裹体均一化温度,平均值为140℃;各种具平直晶面的白云石具有较低的包裹体均一化温度,其中平直晶面斑状晶为89℃,自形晶为103℃,半自形晶为109℃;白云石的过度生长边具有比主晶更高的包裹体均一化温度,说明白云石是在温度升高过程中继续生长的。虽然非平直晶面鞍形白云石具有最高的包裹体均一化温度,但在沉淀时间上比其晚的、充填于其溶解孔洞中的亮晶方解石反而具有较低的包裹体均一化温度,平均值仅为78℃。矿物的沉淀过程与地热增温过程倒置,显示白云石沉淀温度的非地热来源,在鞍形白云石沉淀之后,栖霞组地层中碳酸盐成岩环境的温度发生了倒退,温度降低值大于70℃,同时该温度差也导致了鞍形白云石的破碎。
     通过包裹体均一化温度、矿物氧同位素组成和流体氧同位素组成三变量相关性研究反演了四川盆地西部下二叠统与白云化/白云石沉淀有关的流体性质,结果表明:栖霞组具不同结构的白云石的沉淀流体或白云化流体所具有的盐度都高于海水,因而白云石都是高温条件下由咸水或超咸水沉淀或白云石化作用的产物。沉淀非平直晶面鞍形晶白云石的流体δ~(18)O值主要分布在+8—+12‰SMOW之间,因此可以认为沉淀鞍形白云石等非平直晶面白云石类型的流体是高温且具有较高盐度的热液流体,具其它结构的白云石的流体δ~(18)O值主要分布在0—+8‰SMOW之间,与正常海相白云岩的白云化流体相比,仍旧属于高温的热液流体。而大多数方解石都具有和海水类似的盐度特征,流体的δ~(18)O值变化在-5—+1‰SMOW。
     根据四川盆地西部下二统白云岩/白云石及伴岩石/矿物的结构、成分,相应的元素地球化学和氧、碳同位素地球化学特征,以及包裹体均一化温度测试,结合埋藏历史及热史,我们可以基本肯定四川盆地下二叠统栖霞组白云岩主流类型的形成机制和峨眉山玄武岩/地幔柱伴生的热事件有关,白云化作用是一种不完全、不彻底的白云化,也是一种回头白云化,白云化流体是在海源流体基础上叠加有限的外来离子/流体后的盐度高于海水的高温高盐度流体,但主要的镁来源仍是地层中的海源流体。峨眉山玄武岩/地幔柱伴生的热事件在四川盆地西部下二叠统栖霞组白云岩的形成中具有重要作用,温度升高克服了白云石形成的动力学屏障,并造成镁含量较低或Mg/Ca比值较低的流体环境中发生白云化或白云石的沉淀,热作用的时间较短和地层中镁总体上的不足导致白云化作用的不彻底性,并主要形成所谓的灰斑云岩或云斑灰岩。与峨眉山玄武岩/地幔柱有关的热作用结束时,地层温度急剧降低,加之镁的消耗,白云石形成的动力学屏障重新建立,因而白云化作用停止,同时这种低温度和Mg消耗的流体对白云石不饱和(倒退溶解模式和Mg消耗两个因素),因而白云石、尤其是特高温度条件下形成的鞍形白云石的破碎和溶解。
Diagenesis and diagenetic environment of carbonate is one of the most importantcore fields of sedimentary geology and petroleum geology. Among these diageneticresearches, the dolomitization and the formation mechanism of dolomite attract manygeologists in long time. Dolomites of the Lower Permian Qixia Formation were studiedthree decades ago in Sichuan Basin and its periphery areas. Recent explorations suggestthat the dolomites of western Sichuan Basin have good reservoir quality and could beseen as the new exploration target. Dolomites mainly occur in2nd member of QixiaFormation, and have the thickness of meters to tens of meters. Based on availableexploration information, these dolomites have excellent hydrocarbon explorationpotential. This dissertation, based on mineralogical, petrologic and geochemicalinformation of different carbonate phases in Qixia Formation, studies the characters,origin, evolution and control factors of multistage diagenetic fluids, and also researchesthe relationship between diagenetic fluids and dolomite precipitation and limestonedissolution. Combining the information of magmatic activities, tectonic movement,paleoclimate, sea-level change, sequence stratigraphy, burial history and othercarbonate diagenetic events, the formation mechanism of carbonate reservoir in LowerPermian Qixia Formation of western Sichuan Basin is studied, the basic theoretic issueof dolomitization is researched, and the carbonate diagenetic theory and model(especially the dolomitization model) in Lower Permian Qixia Formation of westernSichuan Basin is established. Current research provides the essential theoretic conceptfor carbonate reservoir exploration in Lower Permian Qixia Formaton of westernSichuan Basin, and also provides the valuable case study for dolomitization insedimentary basin.
     Fabric-preserved dolomites are absent in Lower Permian Qixia Formation of western Sichuan Basin. Almost all rocks are crystalline dolomite rocks. And the puredolomite rock is also absent in current study, suggesting that the duration ofdolomitization was short, the magnesium ion in strata was limited, and thedolomitization was incomplete. The crystal sizes of dolomites are large, also indicatingthat the concentration of magnesium ion was relatively low and the number ofnucleation site was poor. Dolomites mainly have the crystal size of fine toextremely-coarse. And the dolomite fabrics include planar dolomite rhombs, planarsubhedral to euhedral crystals, non-planar anhedral crystals, non-planar saddle crystals,dolomite overgrowth and dolomite crystals with fragment and dissolved features. Thesefabrics indicate the elevated temperature in dolomitization or dolomite precipitation.Authigenic non-carbonate minerals like illite, fluorite, quartz, fluorapatite and baritewidely occur in pores and vugs of dolomites, especially in the dissolved dolomite vugs.These authigenic minerals could be the indicators of external hydrothermal fluids indolomitization.
     All fluid inclusions in different carbonate fabrics in Qixia Formation have highhomogenization temperatures (Th). The average Thvalue of dolomite fabrics is135.5℃,higher than calcite fabrics (109.5℃). In different dolomite fabrics, the non-planarsaddle dolomites have the highest average Thvalue of151℃, the non-planar anhedraldolomites also have high average Thvalue of140℃. Different planar fabrics haverelatively low Thvalues. The average Thvalues of dolomite rhombs, euhedral crystalsand subhedral crystals are89℃,103℃and109℃, respectively. The dolomiteovergrowths have higher Thvalues than its host crystals, suggesting the dolomitegrowth were accompanied with progressively elevated temperatures. Although thesaddle dolomites have the highest Thvalues, the later formed calcites in saddle dolomitedissolved pores have the lower Thvalues. The average Thvalue is78℃. The mineralprecipitation order was contrary to geothermal gradient of progressive burial,suggesting the temperatures of dolomite precipitation were not caused by geothermal,and the temperatures of diagenetic environment in Qixia Formation had retrogradationafter the precipitation of saddle dolomites. The temperature decrease was more than70℃. Such scale of temperature fall would lead to the fragmentation of saddledolomites.
     By combining the research results of homogenization temperatures, oxygenisotopic compositions of minerals and oxygen isotopic compositions of fluids, thecharacters of dolomitizing fluid in the Lower Permian Qixia Formation of westernSichuan Basin are identified by inversion analysis method. All dolomitizing fluids have the higher salinities than sea water, that is to say the different dolomite fabrics wereproduced by or precipitated from saline water or hypersaline water with elevatedtemperatures. The fluids that precipitated saddle dolomite have the oxygen isotopevalue of+8to+12‰SMOW, and could be seen as hydrothermal fluids with highsalinity. The fluids that produced other dolomite fabrics have the oxygen isotope valueof0to+8‰SMOW. Compared with the dolomites that precipitated from normal seawater, these fluids also could be seen as hydrothermal fluids. Most of the calcites wereprecipitated from the fluids of normal marine salinities, the oxygen isotope value ofprecipitating fluids are from-5to+1‰SMOW.
     Based on the fabrics and compositions of different carbonate and non-carbonatephases, the corresponding element and stable isotope geochemistry information, themicrothermometry of fluid inclusions, and the burial and thermal histories, currentresearch concludes that the formation mechanism of mainstream dolomite fabrics in theLower Permian Qixia Formation was related to the thermal event caused by Emeishanbasalt/mantle plume. The dolomitization was an incomplete and turn-round process.The dolomitizing fluid was the mixture of marine-derived water and limited externalion/fluid, and had higher salinity and higher temperature than sea water. However, theorigin of magnesium was still the marine-derived water in strata. The thermal eventcaused by Emeishan basalt/mantle plume plays a significant role in dolomitization ofQixia Formation. The elevated temperature overcomes the dynamic obstacle indolomite precipitation, and contributes to dolomite precipitation under the aqueousenvironment of low magnesium concentration or low Mg/Ca ratio. The short durationof thermal event and the shortage of magnesium in strata lead to incompletedolomitization. Therefore, the dolomitic limestone and limy dolomites were producedas major phases. Once the thermal event terminated, the formation temperaturedeclined rapidly. In addition the depletion of magnesium, the dynamic obstacle ofdolomitization was reconstructed, leading to the termination of dolomitization.Considering the retrograde dissolution of lower temperature and the depletion ofmagnesium in diagenetic fluid, the dolomite would be fragmented and dissolved,especially the saddle dolomite precipitated in elevated temperature.
引文
[1] AL-ASAM I S,LONNEE J,CLARKE J. Multiple fluid flow events and the formation ofsaddle dolomite: case studies from the Middle Devonian of the Western Canada SedimentaryBasin [J].Marine and Petroleum Geology.2002(19):209-217
    [2] AL-HELAL A B, WHITAKER F F, XIAO Y. Reactive transport modeling of brine reflux:Dolomitization, anhydrite precipitation, and porosity evolution [J]. Journal of SedimentaryResearch,2012(82):196-215
    [3] ALONSO-ZARZA A M, MARTíN-PéREZ A. Dolomite in caves: Recent dolomiteformation in oxic, non-sulfate environments, Castanar Cave, Spain [J]. Sedimentary Geology,2008(205):160-164
    [4] AZMY K, VEIZER J, MISI A, ET AL. Dolomitization and isotope stratigraphy of theVazante Formation, S o Francisco Basin, Brazil [J]. Precambrian Research,2001(112):303-329
    [5] AZMY K, KNIGHT I, LAVOIE D.2009. Origin of dolomites in the Boat Harbour Formation,St. George Group, in western Newfoundland, Canada: implications for porosity development[J]. Bulletin of Canadian Petroleum Geology,2009(57):81-104
    [6] BAILEY T R, ROSENTHAL Y, MCARTHUR J M, et al. Paleoceanographic changes of theLate Pliensbachian-Early Toarcian interval: a possible link to the genesis of an OceanicAnoxic Event [J]. Earth Planet. Sci. Lett.2003(212):207-320
    [7] BISSELL H J, CHILINGAR G V.1967. Classification of sedimentary carbonaterocks//CHILINGAR G V, BISSELL H J, FAIRBRIDGE R W. Carbonate Rocks: Origin,Occurrence, and Classification [M]. Amsterdam: Elsevier,1967:87-168
    [8] BLATT H. Sedimentary Petrology. New York: W H Freeman,1992:514
    [9] BONTOGNALI T R R, VASCONCELOS C, WARTHMANN R J, ET AL. Dolomiteformation within microbial mats in the coastal sabkha of Abu Dhabi (United Arab Emirates)[J]. Sedimentology,2010(57):824-844
    [10] BRAITHWAITE C J R, RIZZI G, AND DARKE G.(Eds).2004.The geometry andpetrogenesis of dolomite hydrocarbon reservoirs [M]. Geological Society(London) SpecialPublication,2004,235:1-413
    [11] BRAND U. Carbon, oxygen and strontium isotopes in Paleozoic carbonate components: anevaluation of original seawater-chemistry proxies [J]. Chemical Geology.2004(204):23-44
    [12] BRAND U, AZMY K, TAZAWA J, ET AL.2010. Hydrothermal diagenesis of Paleozoicseamount carbonate components [J]. Chemical Geology.2010(278):173-185
    [13] CAYEUX L. Les Roches Sedimentaires de France, Roches Carbonatees [M]. Paris: Massonet Cie,1935
    [14] CHEN D, QING H, LI R.2005.The Late Devonian Frasnian-Famennian (F/F) biotic crisis:Insights from δ13Ccarb,δ13Corg and87Sr/86Sr isotopic systematic [J]. Earth and PlanetaryScience Letters.2005(235):151-166
    [15] CHILINGAR GV. Classification of limestones and dolomites on basis of Ca/Mg ratio [J].Journal of Sedimentary Petrology.1957(27):187-189
    [16] CLARK SHB, POOLE FG, WANG Z. Comparison of some sediment-hosted, stratiformbarite deposits in China, the United States, and India in China, the United States, and India [J].Ore Geology Reviews.2004(24):85-101
    [17] COMPTON JS, COMPTON R, MCMILLAN IK. Late Cenozoic phosphogenesis on thewestern shelf of South Africa in the vicinity of the Cape Canyon [J]. Marine Geology.2004(206):19-40
    [18] CONLIFFE J, AZMY K, KNIGHT I, ET AL. Dolomitization of the Lower Ordovician WattsBight Formation of the St. George Group, western Newfoundland: evidence of hydrothermalfluid alteration [J]. Canadian Journal of Earth Sciences,2009(46):247-261
    [19] CONSONNI A, RONCHI P, GELONI C, ET AL. Application of numerical modeling to acase of compaction-driven dolomitization: a Jurassic palaeohigh in the Po Plain, Italy [J].Sedimentology,2010(57):209-231
    [20] COPP I. Hydrothermal dolomite (HTD) reservoirs: A new Australian carbonate play. PESANews,2008(93):88-95
    [21] CORBELLA M, CARDELLACH E, AYORA C.Disolution and precipitation of carbonates inhydrothermal systems: implications in the genesis of MVT type deposits [J]. Boletin de laSociedadGeologica Mexicana,2007(59):83-99
    [22] DAVIES GR. Hydrothermal (thermobaric) dolomitization: Rock fabrics and organicpetrology. In: McAuley R(ed), Dolomites—Thespectrum: Mechanisms, models, reservoirdevelopment: Canadian Society of Petroleum Geologists, Seminar and Core Conference,January13-15,2004[C], Calgary, Extended Abstracts, CD format,2004c
    [23] DAVIES G R, SMITH J L B. Structurally controlled hydrothermal dolomite reservoir facies:An overview [J]. AAPG Bulletin,2006(90):1641-1690
    [24] DIX G R, SHARMA S, AL-AASM I S, ET AL. Hydrothermal dolomite in the Timiskamingoutlier, central Canadian Shield: proxy for Late Ordovician tectonic activity [J]. AmericanJournal of Science,2010(310):405-423
    [25] DUNNINGTON HV.1967.Aspects of diagenesis and shape change in sytlolitic limestonereservoirs, Proceedings of the Seventh World Petroleum Congress(Mexico City,Mexico),1967[C], New York,Elsevier,339-352
    [26] EL-TABAKH M, MORY A, SCHREIBER BC, ET AL. Anhydrite cements afterdolomitization of shallow marine Silurian carbonates of the Gascoyne Platform, SouthernCarnarvon Basin, Western Australia [J]. Sedimentary Geology,2004(164):75-87
    [27] GARCIA-FRESCA B, LUCIA F J, SHARP J M J, ET AL. Outcrop-constrainedhydrogeological simulations of brine reflux and early dolomitization of the Permian SanAndres Formation [J].AAPG Bulletin,2012(96):1757-1781
    [28] GILLIS KM, COOGANA LA, PEDERSEN R. Strontium isotope constraints on fluid flow inthe upper oceanic crust at the East Pacific Rise [J]. Earth and Planetary Science Letters,2005(232):83-94
    [29] GLEASON JD, MOORE JR, REA DK, ET AL. Ichthyolith strontium isotope stratigraphy of aNeogene red clay sequence: calibrating eolian dust accumulation rates in the central NorthPacific [J]. Earth and Planetary Science Letters,2002(202):625-636
    [30] GLEASON JD, MOORE JR, JOHNSON TM, ET AL. Age calibration of piston core EW9709—07(equatorial central Pacific) using fish teeth Sr isotope stratigraphy [J]. Palaeogeography,Palaeoclimatology, Palaeoecology,2004(212):355-366
    [31] GROVE MJ, BAKER PA, CROSS SL, ET AL. Application of strontium isotopes tounderstanding the hydrology and paleohydrology of the Altiplano, Bolivia-Peru [J].Palaeogeography, Palaeoclimatology, Palaeoecology.2003(194):281-297
    [32] HANOR J S.Origin of saline fluids in sedimentary basins [M].In: Parnell J.(Eds.) Geofluids:Origin and migration of fluids insedimentary basins. Geological Society (London) SpecialPublication,1994,78:151-174
    [33] HARTIG K A, SOREGHAN G S, GOLDSTEIN R H, ET AL. Dolomite in Permian paleosolsof the Bravo Dome CO2Field, U.S.A.: Permian reflux followed by late recrystallization atelevated temperature [J]. Journal of Sedimentary Research,2011(81):248-265
    [34] HE B, XU YG, HUANG LX, ET AL.2007.Age and duration of the Emeishan floodvolcanism, SW China: Geochemistry and SHRIMP zircon U-Pb dating of silicic ignimbrites,post—volcanic Xuanwei Formation and clay tuff at the Chaotian section [J]. Earth andPlanetary Science Letters,2007(255):306--323
    [35] HERRERO M J, MARTíN-PéREZ A, ALONSO-ZARZA A M, ET AL. Petrography andgeochemistry of the magnesites and dolostones of the EdiacaranIbor Group (635to542Ma),Western Spain: Evidences of their hydrothermal origin [J]. Sedimentary Geology,2011(240):71-84
    [36] JONES G D, GUPTA I, SONNENTHAL E. Reactive transport models of structurallycontrolled hydrothermal dolomite: Implications for Middle East carbonate reservoirs [J].GeoArabia,2011(16):194-195
    [37] KATZ D A, EBERLI G P, SWART P K, ET AL. Tectonic-hydrothermal brecciationassociated with calcite precipitation and permeability destruction in Mississippian carbonatereservoirs, Montana and Wyoming [J]. AAPG Bulletin,2006(90):1803-1841
    [38] KRAUSE S, LIEBETRAU V, GORB S, ET AL. Microbial nucleation of Mg-rich dolomite inexopolymeric substances under anoxic modern seawater salinity: New insight into old enigma[J]. Geology,2012(40):587-590
    [39] LAVOIE D, CHI G. Hydrothermal dolomitization in the Lower Silurian La Vieille Formationin Northern New Brunswick: geological context and significance for hydrocarbon exploration[J]. Bulletin of Canadian Petroleum Geology,2006(54):360-395
    [40] LAVOIE D, CHI G, URBATSCH M, ET AL. Massive dolomitization of a pinnacle reef in theLower Devonian West Point Formation (Gaspé Peninsula, Quebec): An extreme case ofhydrothermal dolomitization through fault-focused circulation of magmatic fluids [J]. AAPGBulletin,2010(94):513-531
    [41] LAVOIE D, CHI G. Lower Paleozoic foreland basins in eastern Canada: Tectono-thermalevents recorded by faults, fluids and hydrothermal dolomites [J]. Bulletin of CanadianPetroleum Geology,2010(58):17-35
    [42] LINDTKE J, ZIGENBALG S B, BRUNNER B, ET AL. Authigenesis of native sulphur anddolomite in a lacustrine evaporitic setting (Hellin basin, Late Miocene, SE Spain)[J].Geological Magazine,2011(148):655-669
    [43] LITH Y V, WARTHMANN R, VASCONCELOS C, ET AL. Microbial fossilization incarbonate sediments: a result of the bacterial surface involvement in dolomite precipitation [J].Sedimentology,2003(50):237-245
    [44] LONNEE J, MACHEL H G. Pervasive dolomitization with subsequent hydrothermalalteration in the Clarke Lake gas field, Middle Devonian Slave Point Formation, BritishColumbia, Canada [J]. AAPG Bulletin,2006(90):1739-1761
    [45] LOPEZ-HORGUE M A, IRIARTE E, SCHROEDER S, ET AL. Structurally controlledhydrothermal dolomites in Albian carbonates of the Ason Valley, Basque Cantabrian Basin,northern Spain [J]. Marine and Petroleum Geology,2010(27):1069-1092
    [46] LUCZAJ J A.Evidence against the Dorag (Mixing-zone) model for dolomitization along theWisconsin arch—A case for hydrothermal diagenesis [J]. AAPG Bulletin,2006(90):1719-1738
    [47] LUCZAJ J A, HARRISON III W B, WILLIAMS N S. Fractured hydrothermal dolomitereservoirs in the Devonian Dundee Formation of the Central Michigan Basin [J]. AAPGBulletin,2006(90):1787-1801
    [48] MACHEL HG, ANDERSON JH.Pervasive subsurface dolomitization of the Nisku Formationin central Alberta [J]. Journal of Sedimentary Petrology,1989(59):891-911
    [49] MACHEL H G, LONNEE J. Hydrothermal dolomite-A product of poor definition andimagination [J]. Sedimentary Geology,2002(152):163-171
    [50] MACHEL H G. Concepts and models of dolomitization: A critical reappraisal [M]. In:BRAITHWAITE C J R, RIZZI G, DARKE G(EDS),The geometry and petrogenesis ofdolomite hydrocatbon reservoirs. Geological Society (London) Special Publication,2004,235:7-63
    [51] MATHONEY J J, COFFIN M. Large Igneous Province: Continental, Oceanic, and PlanetaryFlood Volcanism[M]. AGU Geophysical Monography,1997,100:438
    [52] MATSUDA N S, FRANCA A B, JAHNERT R J, ET AL.2008.Hydrothermal dolomitizationfrom Precambrian carbonates in the southern of Brazil:An example of reservoircharacteristics.The33rd international geological congress: abstracts,2008[C],33
    [53] MAUGER C L, COMPTON J S. Formation of modern dolomite in hypersaline pans of theWestern Cape, South Africa [J]. Sedimentology,2011(58):1678-1692
    [54] MEISTER P, MCKENZIE J A, VASCONCELOS C, ET AL. Dolomite formation in thedynamic deep biosphere: results from the Peru Margin [J]. Sedimentology,2007(54):1007-1031
    [55] MEISTER P, REYES C, BEAUMONT W, ET AL. Calcium and magnesium-limited dolomiteprecipitation at Deep Springs Lake, California [J]. Sedimentology,2011(58):1810-1830
    [56] MELEZHIK VA, GOROKHOV IM, FALLICK AE, ET AL.2001.Strontium and carbonisotope geochemistry applied to dating of carbonate sedimentation: an example fromhigh-grade rocks of the Norwegian Caledonides [J]. Precambrian Research,2001(108):267-292
    [57] MELEZHIK VA, ROBERTSA D, FALLICKB AE, ET AL.2005.Geochemical preservationpotential of high-grade calcite marble versus dolomite marble: implication for isotopechemostratigraphy [J]. Chemical Geology,2005(216):203-224
    [58] MELEZHIK VA, KUZNETSOV AB, FALLICK AF, ET AL. Depositional environments andan apparent age for the Gecimeta-limestones: Constraints on the geological history ofnorthern Mozambique [J]. Precambrian Research,2006(148):19-31
    [59] MELIM LA, WESTPHAL H, SWART PK, ET AL. Questioning carbonate diageneticparadigms: evidence from the Neogene of the Bahamas [J]. Marine Geology,2002(185):27-53
    [60] MOSSOP GD.Origin of the peripheral rim,Redwater Reef, Alberta. Bulletin of CanadianPetroleum Geology,1972(20):238-280
    [61] NADER F H, SWENNEN R, ELLAM R M. Field geometry, petrography and geochemistryof a dolomitization front (Late Jurassic, central Lebanon)[J]. Sedimentology,2007(54):1093-1119
    [62] PALMER MR, ELDERFIELD H.Sr isotope composition of sea water over the past75Myr[J]. Nature,1985(314):526-528
    [63] PALMER MR, EDMOND JM.The strontium isotope budget of the modern ocean [J]. EarthPlanet. Sci. Lett.,1989(92):11-26
    [64] PALMER MR, HELVAC C, FALLICK AE. Sulphur, sulphate oxygen and strontium isotopecomposition of Cenozoic Turkish evaporates [J]. Chemical Geology,2004(209):341-356
    [65] PRICE GD, GROCKE DR. Strontium-isotope stratigraphy and oxygen-and carbon-isotopevariation during the Middle Jurassic-Early Cretaceous of the Falkland Plateau, South Atlantic[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2002(183):209-222
    [66] RAO V P, KESSARKAR P M, KRUMBEIN W E, ET AL. Microbial dolomite crusts fromwestern India [J]. Sedimentology,2003(50):819-830
    [67] RAY JS, VEIZER J, DAVIS WJ.C, O, Sr and Pb isotope systematic of carbonate sequencesof the Vindhyan Supergroug, India: age, diagenesis, correlations and implications for globalevents [J]. Precambrian Research,2003(121):103-140
    [68] SALLER AH, HENDERSON N. Distribution of porosity and permeability in platformdolomites: Insight from the Permian of west Texas: Reply [J]. AAPG Bulletin,2001(85):530-532
    [69] SALLER A H, DICKSON J A D. Partial dolomitization of a Pennsylvanian limestonebuildup by hydrothermal fluids and its effect on reservoir quality and performance [J]. AAPGBulletin,2011(95):1745-1762
    [70] SANZ-MONTERO M E, RODRíGUEZ-ARANDA J P, CALVO J P. Mediation ofendoevaporitic microbial communities in early replacement of gypsum by dolomite: a casestudy from Miocene lake deposits of the Madrid Basin, Spain [J]. Journal of SedimentaryResearch,2006(76):1257-1266
    [71] SANZ-MONTERO M E, RODRíGUEZ-ARANDA J P, GARCíADELCURA M A.Dolomite-silica stromatolites in Miocene lacustrine deposits from the Duero Basin, Spain: therole of organotemplates in the precipitation of dolomite [J]. Sedimentology,2008(55):729-750
    [72] SHAH M M, NADER F H, DEWIT J, ET AL. Fault-related hydrothermal dolomites inCretaceous carbonates (Cantabria, northern Spain): Results of petrographic, geochemical andpetrophysical studies [J]. Bulletin de la SocieteGeologique de France,2010(181):391-407
    [73] SHAND P, DARBYSHIRE DPF, GOODDY D, ET AL.87Sr/86Sr as an indicator of flowpathsand weathering rates in the Plynlimon experimental catchments, Wales, UK [J]. ChemicalGeology,2007(236):247-265
    [74] SHEARMANA DJ, KHOURIA J, TAHA S. On the replacement of dolomite by calcite insome mesozoic limestones from the French Jura [J]. Proceedings of the Geologists'Association,1961(72):1-12
    [75] SHIPBOARD SCIENTIFIC PARTY. Site1003, In: EBERLI GP, SWART PK, MALONE M,ET AL.(EDS), Proceedings of the Ocean Drilling Program, College Station, TX. Ocean Drill.Prog. Init. Rep.1997[C],166:67-151
    [76] SHIPBOARD SCIENTIFIC PARTY. Site1005, In:EBERLI GP, SWART PK, MALONE M,ET AL.(EDS), Proceedings of the Ocean Drilling Program, College Station, TX. Ocean Drill.Prog. Init. Rep.1997[C],166:171-232
    [77] SIBLEY DF, GREGG JM. Classification of dolomite rock texture [J]. Journal of SedimentaryPetrology,1987(57):967-975
    [78] SLATER B E, SMITH L B J. Outcrop analog for Trenton-Black River hydrothermal dolomitereservoirs, Mohawk Valley, New York [J]. AAPG Bulletin,2012(96):1369-1388
    [79] SMITH LB, DAVIES GR. Structurally controlled hydrothermal alteration of carbonatereservoirs: Introduction [J]. AAPG Bulletin,2006(90):1635-1640
    [80] SMITH LB. Origin and reservoir characteristics of Upper Ordovician Trenton-Black Riverhydrothermal dolomite reservoirs in New York [J]. AAPG Bulletin,2006(90):1691-1718
    [81] SMITH L B, GREEN D, SPANG R, ET AL. Fault-related hydrothermal diagenesis,Cretaceous Pinda Group carbonates and siliciclastics, offshore Angola. AAPG annualconvention&exhibition: abstracts volume,2009[C]
    [82] STEIDTMANN E.The origin of dolomites [M]. In: Twenhofel WH(ed), Treatise onSedimentation. Williams and Wilkins, Baltimore, MD,1926,256-265
    [83] STEIN M, STARINSKY A, AGNON A, ET AL.The impact of brine-rock interaction duringmarine evaporite formation on the isotopic Sr record in the oceans: Evidence from Mt. Sedom,Israel [J]. Geochimica et Cosmochimica Acta,2000(64):2039-2053
    [84] SVERJENSKY DA.Genesis of Mississippi Valley-type lead-zinc deposits [J]. Ann. Rev.Earth Plant. Sci.,1986(14):177-199
    [85] SWENNEN R, VANDEGINSTE V, ELLAM R.Genesis of zebra dolomites (CathedralFormation: Canadian Cordillera Fold and Thrust Belt, British Columbia)[J]. Journal ofGeochemical Exploration,2003(78-79):571-577
    [86] SWENNEN R, DEWIT J, FIERENS E, ET AL. Multiple dolomitization events along thePozalagua Fault (Pozalagua Quarry, Basque-Cantabrian Basin, Northern Spain)[J].Sedimentology,2012(59):1345-1374
    [87] TEICHERT BMA, TORRES ME, BOHRMANN G, ET AL. Fluid source,fluid pathways anddiagenetic reactions across an accretionary prism revealed by Sr and B geochemistry [J].Earth and Planetary Science Letters,2005(239):106-121
    [88] TEODORVICH GI. Study of sedimentary rocks [M].1958, Leningrad:Gostoptekhyzdat
    [89] THERIAULT F, HUTCHEON I.Dolomitization and calcitization of the Devonian GrosmontFormation, northern Alberta [J]. Journal of Sedimentary Research,1987(57):955-966
    [90] VASCONCELOS C, MCKENZIE J A, BERNASCONI S, ET AL. Microbial mediation as apossible mechanism for natural dolomite formation at low temoeratures. Nature,1995(377):220-222
    [91] WALTER MR, VEEVERS JJ, CALVER CR, ET AL. Dating the840—544MaNeoproterozoic interval by isotopes of strontium, carbon,and sulfur in seawater, and someinterpretative models [J]. Precambrian Research,2000(100):371-433
    [92] WENDTE J, BYRNES A, SARGENT D.The control of hydrothermal dolomitization andassociated fracturing on porosity and permeability of reservoir facies of the Upper DevonianJean Marie Member (Redknife Formation) in the July Lake area of northeastern BritishColumbia [J]. Bulletin of Canadian Petroleum Geology,2009(57):387-408
    [93] WHITAKER F F, XIAO Y.Reactive transport modeling of early burial dolomitization ofcarbonate platforms by geothermal convection [J]. AAPG Bulletin,2010(94):889-917
    [94] WHITE D E. Thermal waters of volcanic origin [J]. GSA Bulletin,1957(68):1637-1658
    [95] WIERZBICKI R, DRAVIS J J, AL-AASM I, ET AL. Burial dolomitization and dissolution ofUpper Jurassic Abenaki platform carbonates, Deep Panuke reservoir, Nova Scotia, Canada [J].AAPG Bulletin,2006(90):1843-1861
    [96] WILKINSON J J, CROWTHER H L, COLES B J. Chemical mass transfer duringhydrothermal alteration of carbonates: controls of sea floor subsidence, sedimentation andZn-Pb mineralization in the Irish Carboniferous [J]. Chemical Geology,2011(289):55-75
    [97] WRIGHT D T, WACEY D. Precipitation of dolomite using sulphate-reducing bacteria fromCoorong Region, South Australia: significance and implications [J]. Sedimentology,2005(52):987-1008
    [98] WRIGHT D T, WACEY D. Sedimentary dolomite: A reality check [M]. In: Braithwaite CJR,RIzzi G, Darke G(eds), The geometry and petrogenesis of dolomite hydrocatbon reservoirs.Geological Society (London) Special Publication,2004,235:65-74
    [99] ZENGER DH, DUNHAM JB, ETHINGTON RL.Concepts and Models of Dolomitization[M]. Society of Economic Poleontologists and Mineralogists, Special Publications,1980,28
    [100]陈代钊.构造—热液白云岩化作用与白云岩储层.石油与天然气地质,2008(5):614-622
    [101]陈洪德,覃建雄,王成善,等.中国南方二叠纪层序岩相古地理特征及演化[J].沉积学报,1999(4):510-521
    [102]陈明启.川西南下二叠阳新统白云岩成因探讨[J].沉积学报,1989(2):45-50
    [103]陈轩,赵文智,张利萍,等.川中地区中二叠统构造热液白云岩的发现及其勘探意义[J].石油学报,2012(4):562-569
    [104]陈宗清.论四川盆地中二叠统栖霞组天然气勘探[J].天然气地球科学,2009(3):325-334
    [105]范蔚茗,王岳军,彭头平,等.桂西晚古生代玄武岩Ar-Ar和U-Pb年代学及其对峨眉山玄武岩省喷发时代的约束[J].科学通报,2004(18):1892-1900
    [106]冯增昭.沉积岩石学[M].北京:石油工业出版社,1993
    [107]郝毅,林良彪,周进高,等.川西北中二叠统栖霞组豹斑灰岩特征与成因[J].成都理工大学学报(自然科学版),2012(6):651-656
    [108]何斌,徐义刚,肖龙,等.峨眉山大火成岩省电形成机制及空间展布:来自沉积地层学的新证据[J].地质学报,2003(2):194-202
    [109]何斌,徐义刚,王雅玫,等.东吴运动性质的厘定及其时空演变规律[J].地球科学—中国地质大学学报,2005(1):89-96
    [110]何斌,徐义刚,王雅玫,等.用沉积记录来估计峨眉山玄武岩喷发前段地壳抬升幅度[J].大地构造与成矿学,2005(3):316-320
    [111]何斌,徐义刚,肖龙,等.峨眉山地幔柱上升的沉积响应及其地质意义[J].地质论评,2006(1):30-37
    [112]何幼斌,冯增昭.四川盆地及其周缘下二叠统细—粗晶白云岩成因探讨[J].江汉石油学院学报,1996(4):15-20
    [113]胡明毅,魏国齐,胡忠贵,等.四川盆地中二叠统栖霞组层序—岩相古地理[J].古地理学报,2010(5):515-526
    [114]胡瑞忠,陶琰,钟宏,等.地幔柱成矿系统:以峨眉山地幔柱为例[J].地学前缘,2005(1):42-54
    [115]黄思静.上扬子地台区晚古生代海相碳酸盐岩的碳、锶同位素研究[J].地质学报,1997(1):45-53
    [116]黄思静,Hairuo Qing,裴昌蓉,等.川东三叠系飞仙关组白云岩锶含量、锶同位素组成与白云石化流体[J].岩石学报,2006(8):2123-2132
    [117]黄思静,Hairou Qing,胡作维,等.四川盆地东北部三叠系飞仙关组碳酸盐岩成岩作用和白云岩成因的研究现状和存在问题[J].地球科学进展,2007(5):495-503
    [118]黄思静,QING H R,胡作维,等.封闭系统中的白云石化作用及其石油地质学和矿床学意义—以四川盆地东北部三叠系飞仙关组碳酸盐岩为例[J].岩石学报,2007(11):2955-2962
    [119]黄思静,王春梅,黄培培,等.碳酸盐成岩作用的研究前沿和值得思考的问题[J].成都理工大学学报(自然科学版),2008(1):1-10
    [120]黄思静,张雪花,刘丽红,等.碳酸盐成岩作用研究现状与前瞻[J].地学前缘,2009(5):219-231
    [121]黄思静,黄可可,张雪花,等.碳酸盐倒退溶解模式的化学热力学基础—与CO2有关的溶解介质[J].成都理工大学学报(自然科学版),2009(5):457-464
    [122]黄思静,黄培培,黄可可,等.碳酸盐倒退溶解模式的化学热力学基础H2S与CO2的对比[J].沉积学报,2010(1):1-9
    [123]黄思静.碳酸盐岩的成岩作用[M].北京:地质出版社,2010
    [124]蒋志斌,王兴志,曾德铭,等.川西北下二叠统栖霞组有利成岩作用与孔隙演化[J].中国地质,2009(1):101-109
    [125]金振奎,冯增昭.滇东—川西下二叠统白云岩的形成机理—玄武岩淋滤白云化[J].沉积学报,1999(3):383-389
    [126]金之钧,朱东亚,胡文瑄,等.塔里木盆地热液活动地质地球化学特征及其对储层影响[J].地质学报,2006(2):245-253
    [127]焦存礼,何治亮,邢秀娟,等.塔里木盆地构造热液白云岩及其储层意义[J].岩石学报,2011(1):277-284
    [128]李波,颜佳新,薛武强,等.四川广元地区中二叠世斑状白云岩成因及地质意义[J].地球科学—中国地质大学学报,2012(增刊2):136-146
    [129]李国辉,李翔,宋蜀筠,等.四川盆地二叠系三分及其意义[J].天然气勘探与开发,2005(3):20-25
    [130]李国蓉,刘树根,宋来明,等.西昌盆地东吴期深部热液作用及其对志留系碳酸盐岩储层的改造[J].矿物岩石,2009(4):60-65
    [131]李宏博,张招崇,吕林素,等.栖霞组和茅口组等厚图:对峨眉山地幔柱成因模式的指示意义[J].岩石学报,2011(10):2963-2974
    [132]李开开,蔡春芳,蔡镠璐,等.塔中地区上奥陶统热液流体与热化学硫酸盐还原作用[J].石油与天然气地质,2008(2):217-222
    [133]李开开,蔡春芳,蔡镠璐,等.塔河地区下古生界热液流体及储层发育主控因素探讨—以S88和TS1井为例[J].石油实验地质,2010(1):46-51
    [134]李荣,焦养泉,吴立群,等.构造热液白云石化一种国际碳酸盐岩领域的新模式[J].地质科技情报,2008(3):35-40
    [135]廖小漫,张本健,徐后伟,等.川西地区中二叠统储集层成岩作用[J].新疆石油地质,2012(3):312-315
    [136]刘成英,朱日祥.试论峨眉山玄武岩的地球动力学含义[J].地学前缘,2009(2):52-69
    [137]刘德良,宋岩,薛爱民,等.四川盆地构造与天然气聚集区带综合研究[M].北京:石油工业出版社,2000
    [138]刘树根,黄文明,陈翠华,等.四川盆地震旦系—古生界热液作用及其成藏成矿效应初探[J].矿物岩石,2008(3):41-50
    [139]柳益群,李红,朱玉双,等.白云岩成因探讨:新疆三塘湖盆地发现二叠系湖相喷流型热水白云岩[J].沉积学报,2010(5):861-867
    [140]柳益群,焦鑫,李红,等.新疆三塘湖跃进沟二叠系地幔热液喷流型原生白云岩[J].中国科学:地球科学,2011(12):1862-1871
    [141]马红强,陈强路,陈红汉,等.盐水包裹体在成岩作用研究中的应用—以塔河油田下奥陶统碳酸盐岩为例[J].石油实验地质,2003(增刊):601-606
    [142]马永生,陈洪德,王国力,等编.中国南方构造—层序岩相古地理图集[M].北京:科学出版社,2009
    [143]潘文庆,刘永福,DICKSON JA D,等.塔里木盆地下古生界碳酸盐岩热液岩溶的特征及地质模型[J].沉积学报,2009(5):983-944
    [144]覃建雄,曾允孚,陈洪德,等.西南地区二叠纪层序底层与海平面变化[J].岩相古地理,1998(1):1-14
    [145]沈树忠,王玥,金玉玕.二叠系全球界线层型和点位(GSSP)研究进展[J].地层学杂志,2005(2):138-146
    [146]石兰亭,王斌婷,郑荣才,等.酒西盆地深部热液活动与油气成因[J].新疆石油地质,2008(2):152-154
    [147]石新,王兴志,张帆,等.川西北地区栖霞组白云岩储集层研究[J].西南石油学院学报,2005(2):13-15
    [148]舒晓辉,张军涛,李国蓉,等.四川盆地北部栖霞组—茅口组热液白云岩特征与成因[J].石油与天然气地质,2012(3):442-448,458
    [149]四川省地质矿产局编.四川省区域地质志[M].北京:地质出版社,1991
    [150]四川省地质矿产局.四川省岩石地层[M].武汉:中国地质大学出版社,1997
    [151]四川省区域地层表编写组.西南地区区域地层表—四川省分册[M].北京,地质出版社,1978
    [152]宋光永,刘树根,黄文明,等.川东南丁山—林滩场构造灯影组热液白云岩特征[J].成都理工大学学报(自然科学版),2009(6):706-715
    [153]宋光永,刘树根,李森明,等.四川盆地东南地区林1井灯影组鞍形白云石成因及其意义[J].海相油气地质,2011(2):53-60
    [154]宋文海.四川盆地二叠统白云岩的分布及天然气勘探[J].天然气工业,1985(4):16-23
    [155]陶洪兴,徐元秀.热液作用与油气储层[J].石油勘探与开发,1994(6):92-97
    [156]王成善,陈洪德,寿建峰,等.中国南方海相二叠系层序地层与油气勘探[M].四川:四川科学出版社,1998
    [157]王丹,袁苗,段文浩,等.川西北中二叠统栖霞组白云岩成因探讨[J].石油天然气学报(江汉石油学院学报),2011(6):46-49
    [158]王运生,金以钟.四川盆地下二叠统白云岩及古岩溶的形成与峨眉地裂运动的关系[J].成都理工学院学报,1997(1):8-16
    [159]王振宇,王二伟,杨薇,等.塔中地区下奥陶统鹰山组热液白云岩内幕型储层形成机制及其分布特征[J].石油天然气学报(江汉石油学院学报),2011(12):41-45
    [160]汪泽成,赵文智,张林,等.四川盆地构造层序与天然气勘探[M].北京:地质出版社,2002
    [161]魏国齐,杨威,李跃刚,等.川西地区下二叠统栖霞组沉积体系、储层成因及展布[C].第二届中国石油地质年会——中国油气勘探潜力及可持续发展论文集,2006:1-6
    [162]魏国齐,杨威,朱永刚,等.川西地区中二叠统栖霞组沉积体系[J].石油与天然气地质,2010(4):442-448
    [163]吴茂炳,王毅,郑孟林,等.塔中地区奥陶纪碳酸盐岩热液岩溶及其对储层的影响[J].中国科学D辑:地球科学,2007(增刊I):83-92
    [164]徐世琦,周建文,曾庆,等.龙门山北段二叠系栖霞组二段白云岩储层特征[J].天然气工业,2005(增刊):59-61
    [165]徐义刚,钟孙霖.峨眉山大火成岩省:地幔柱活动的证据及其熔融条件[J].地球化学,2001(1):1-9
    [166]杨起等.华北石炭—二叠纪煤变质特征与地质因素探讨[M].北京:地质出版社,1988
    [167]曾德铭,石新,王兴志.川西北地区下二叠统栖霞组滩相储层特征及其分布[J].地质勘探,2010(12):25-28
    [168]曾允孚.石灰岩与白云岩的分类和命名[M].成都地质学院沉积研究室.沉积专辑.成都:成都地质学院,1981:290-293
    [169]张军涛,胡文瑄,王小林,等.塔里木盆地西北缘寒武系中热水白云石团块特征及成因研究[J].地质学报,2011(2):234-245
    [170]张廷山,陈晓慧,刘治成,等.峨眉山地幔柱构造对四川盆地栖霞期沉积格局的影响[J].地质学报,2011(8):1251-1264
    [171]张兴阳,张水昌,罗平,等.塔中地区晚燕山—喜马拉雅期油气调整与热液活动的关系[J].科学通报,2007(增刊I):192-197
    [172]张荫本.四川盆地二叠系中的白云化[J].石油学报,1982(1):29-33
    [173]张志斌,李忠权,李朝阳,等.中天山下石炭统马鞍桥组重结晶灰岩热水沉积成因的地球化学初步分析[J].矿物岩石,2007(2):70-77
    [174]赵闯,于炳松,张聪,等.塔中地区与热液有关白云岩的形成机理探讨[J].岩石矿物学杂志,2012(2):164-172
    [175]赵文智,沈安江,胡素云,等.塔里木盆地寒武—奥陶系白云岩储层类型与分布特征[J].岩石学报,2012(3):758-768
    [176]赵锡奎.黔中下二叠统碳酸盐岩中的构造—埋藏热液白云化作用[J].岩相古地理,1991(6):41-47
    [177]郑剑锋,沈安江,潘文庆,等.塔里木盆地下古生界热液白云岩储层的主控因素及识别特征[J].海相油气地质,2011(4):47-56
    [178]中国地层典编委会.中国地层典—二叠系[M].北京:地质出版社,2000
    [179]中国科学院南京地质古生物研究所.西南地区碳酸盐生物地层[M].北京:科学出版社,1979
    [180]朱东亚,金之钧,胡文瑄,等.塔里木盆地深部流体对碳酸盐岩储层影响[J].地质论评,2008(3):348-354
    [181]朱东亚,金之钧,胡文瑄.塔中地区热液改造型白云岩储层[J].石油学报,2009(5):698-704
    [182]朱东亚,金之钧,胡文瑄.塔北地区下奥陶统白云岩热液重结晶作用及其油气储集意义[J].中国科学:地球科学,2010(2):156-170
    [183]朱东亚,孟庆强,解启来,等.云南腾冲热液发育模式及其对塔里木盆地热液溶蚀改造的启示[J].石油与天然气地质,2010(3):327-334
    [184]朱东亚,孟庆强.塔里木盆地下古生界碳酸盐岩中硅化作用成因[J].石油实验地质,2010(4):358-361
    [185]朱东亚,孟庆强,解启来,等.塔里木盆地大理岩化储层发育特征[J].石油与天然气地质,2011(4):506-511,521
    [186]朱传庆,徐明,单竞男,等.利用古温标恢复四川盆地主要构造运动时期的剥蚀量[J].中国地质,2009(6):1268-1277
    [187]朱传庆,徐明,袁玉松,等.峨眉山玄武岩喷发在四川盆地的地热学响应[J].科学通报,2010(6):474-482

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700