用户名: 密码: 验证码:
低温胁迫和盐胁迫下嫁接黄瓜(Cucumis sativus L.)抗氧化的分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄瓜(Cucumis sativus L.)是我国北方设施栽培的主要作物之一,但连年种植引起的土壤次生盐渍化已严重影响到黄瓜的产量和品质。黄瓜属于典型的冷敏植物,低于10℃就会受到冷害。我国北方冬春季节气候寒冷,而没有加温设施的日光温室,若遇连续阴冷天气,室内最低气温常常会降到5℃左右,易使黄瓜受到低温伤害,造成黄瓜减产甚至绝产。克服连作盐害和低温冷害是当前日光温室黄瓜生产中亟待解决的主要问题。
     利用耐盐和抗冷砧木进行黄瓜的嫁接栽培是克服设施土壤次生盐渍化和提高植物抗冷性的一条有效途径。以黑籽南瓜为砧木的嫁接黄瓜幼苗叶片抗冷性可增强约3℃。同时,黄瓜的抗盐性明显增强,嫁接黄瓜叶片SOD、POD、CAT和APX酶活性均显著高于自根黄瓜等。嫁接黄瓜叶片超氧化物歧化酶(SOD)等抗氧化酶活性的明显增强与抗氧化物质抗坏血酸(AsA)等含量的显著增加是其抗逆性增强的主要原因之一。
     为了弄清嫁接提高黄瓜抗冷和耐盐的分子机制,本试验首先从黄瓜叶片克隆了Cu/Zn-SOD、Mn-SOD、CAT、GalLDH、APX、DHAR和GR基因的中间片段,然后以黑籽南瓜为砧木的嫁接黄瓜和自根黄瓜为试材,从基因转录水平分别研究了低温胁迫下和NaCl胁迫下两者叶片相关基因的表达与其抗氧化酶活性及AsA、GSH、H202和MDA等物质含量变化之间的关系,结果表明:
     1、从黄瓜叶片中分别克隆了Cu/Zn-SOD、Mn-SOD、CAT、GalLDH、APX、DHAR和GR基因的中间片段,其中,Mn-SOD、GalLDH、DHAR和GR基因的中间片段在黄瓜中均为首次克隆。将克隆基因经同源性分析,并在GeneBank中进行注册,其注册号分别为EF121763, EF203086, EF468517, EF468516, EF468515, EF426538和EF530128。
     2、低温胁迫下,嫁接与自根黄瓜叶片Cu/Zn-SOD和Mn-SOD基因mRNA相对表达量的变化分别与其Cu/Zn-SOD和Mn-SOD活性的变化相吻合, CAT基因mRNA相对表达量的变化与其CAT活性的变化并不一致。嫁接黄瓜叶片SOD基因家族中Cu/Zn-SOD和Mn-SOD基因mRNA的上调是其低温胁迫下SOD活性高于自根黄瓜叶片的决定因素;而低温胁迫下嫁接与自根黄瓜叶片CAT活性差异不大, CAT不是嫁接黄瓜抗冷性增强的主要因素。
     3、低温胁迫下,嫁接黄瓜叶片DHAR和GR基因mRNA的相对表达量均大于自根黄瓜,GalLDH和APX基因mRNA的相对表达量与自根黄瓜差异不大。嫁接黄瓜叶片GalLDH、DHAR、APX和GR活性均高于自根黄瓜,AsA和GSH含量与AsA/DHA和GSH/GSSG比值也均高于自根黄瓜,DHA、GSSG和H2O2含量均低于自根黄瓜。嫁接黄瓜较高的AsA和GSH含量与AsA/DHA和GSH/GSSG比值是其抗冷性强于自根黄瓜的重要因素,而低温胁迫下嫁接黄瓜叶片DHAR和GR基因mRNA的上调引起的DHAR和GR活性的增强是嫁接黄瓜AsA和GSH含量较自根黄瓜高的重要原因。
     4、NaCl胁迫条件下,嫁接与自根黄瓜叶片Cu/Zn-SOD、Mn-SOD和CAT基因mRNA的相对表达量均高于自根黄瓜,SOD、Cu/Zn-SOD、Mn-SOD和CAT活性也均高于自根黄瓜。嫁接黄瓜叶片Cu/Zn-SOD、Mn-SOD和CAT基因mRNA的上调是其维持较高Cu/Zn-SOD、Mn-SOD和CAT活性的重要原因;但是随NaCl胁迫时间的延长,嫁接和自根黄瓜叶片Cu/Zn-SOD、Mn-SOD和CAT mRNA的相对表达量均呈上升趋势,但其酶活性变化并不完全一致,说明还有其它因素也参与了SOD和CAT活性的调控;嫁接黄瓜叶片MDA含量和电解质渗漏率均低于自根黄瓜,嫁接黄瓜具有较高的活性氧清除系统,可以减少活性氧物质的危害,提高其耐盐性。
     5、NaCl胁迫下,嫁接黄瓜叶片GalLDH、DHAR和APX基因mRNA相对表达量均大于自根黄瓜,GalLDH、DHAR、APX和GR活性均高于自根黄瓜,GR基因mRNA相对表达量与自根黄瓜相比差异不大,但其AsA和GSH含量与AsA/DHA和GSH/GSSG比值均高于自根黄瓜,DHA、GSSG和H2O2含量均低于自根黄瓜。嫁接黄瓜叶片较高的AsA和GSH含量是嫁接黄瓜较自根黄瓜耐盐性强的主要原因,嫁接黄瓜叶片较高的GalLDH、APX、DHAR及GR等抗氧化酶活性是其AsA和GSH含量较自根黄瓜高的主要因素,而嫁接黄瓜叶片GalLDH、DHAR和APX基因mRNA的上调是其维持较高GalLDH、APX和DHAR活性的重要原因,在NaCl胁迫下嫁接黄瓜叶片具有高于自根黄瓜的GR活性并非GR基因mRNA的上调所致。
Cucumber(Cucumis sativus L.)is one of the main crops planted in facilities in North of China. However the yield and quality of cucumber was severely affected by the soil salinity accumulating resulted from planting year after year. Cucumber is cold-sensitive, and could be damaged when the temperature belows 10℃. In North of China, it often drops to about 5℃in greenhouse in winter and spring. The low temperature could make cucumber hurt, result in reduction of cucumber or even no yield. It is urgent to resolve salt injury and chilling damage in current greenhouse cucumber production.
     It is an effective way that using rootstock for grafting cucumber cultivation to overcome the soil salinization and improve the cold resistance of the plant. The cold resistance of grafted cucumber’s leaves can be enhanced by 3℃. Meanwhile, the salt tolerance of cucumber significantly enhanced. The activities of SOD, POD, CAT and APX of the grafted cucumber leaves are higher than that of own-rooted cucumber. The increase of activities of antioxidant enzymes and the content of AsA is the main reason that the grafted cucumber increase its resistance.
     In order to identify the molecular mechanism of salt-tolerance and cold resistance of grafted cucumber, firstly the middle region of Cu / Zn-SOD, Mn-SOD, CAT, GalLDH, APX, DHAR and GR gene in cucumber leaves was cloned in this experiment. Then taking grafted and own-root cucumber (Junlv No.3) as trial material, the changes of expressions of genes, the activities of antioxidant enzyme, and the content AsA, GSH, H202 and MDA of grafted cucumber and own-root under NaCl stress and the low-temperature stress were analyzed.
     The results showed that:
     1. Cu/Zn-SOD,Mn-SOD,CAT,GalLDH,APX,DHAR and GR genes in cucumber leaves was cloned respectively. And the middle region of Mn-SOD,GalLDH,DHAR and GR genes were firstly cloned from cucumber leaves. Through analyzing the homology of the cloned gene, it was registered in gene bank, the number are EF121763, EF203086, EF468517, EF468516, EF468515, EF426538 and EF530128 respectively.
     2. The changes of activities of Cu/Zn-SOD and Mn-SOD correspond to the changes of their expression under low temperature stress, but the changes of activities of CAT were not the same as that of mRNA. SOD activity of grafted cucumber is higher than that of own-root cucumber under low-temperature stress. The key factor is that Cu/Zn-SOD and Mn-SOD mRNA in grafted cucumber leaves increases. And no significant change of CAT activities was observed between grafted and own-root cucumbers under low temperature stress. Thus CAT is not the main factor that enhanced the cold resistance of grafted cucumber.
     3. Under low temperature stress, the relative expression of DHAR, GR mRNA were all higher in leaves of grafted cucumber than that of own-root cucumber, while no significant change of the relative expression of GalLDH, APX mRNA was observed between them. The content of AsA, GSH and the ratio of AsA/DHA, GSH/GSSG were all higher in grafted cucumber than that of own-root cucumber, while the content of DHA, GSSG and H2O2 were all lower. Which demonstrates the higher content of AsA,GSH in the grafted cucumber plants enhance their chilling tolerances. And the higher relative expression of DHAR, GR mRNA resulted in the higher activities of DHAR, GR in grafted cucumber leaves, which resulted in the higher content of ASA and GSH in grafted cucumber leaves.
     4. Under NaCl stress,the relative expression of Cu/Zn-SOD, Mn-SOD and CAT mRNA were all higher in leaves of grafted cucumber than that of own-root cucumber, and the activities of SOD, Cu/Zn-SOD, Mn-SOD and CAT in leaves of grafted cucumber were higher too. It could be concluded that the higher relative expression of Cu/Zn-SOD, Mn-SOD and CAT mRNA resulted in the higher activities of SOD, Cu/Zn-SOD, Mn-SOD and CAT in grafted cucumber leaves. With NaCl stress time prolonging, the relative expression of Cu/Zn-SOD, Mn-SOD and CAT mRNA both increased in grafted and own-root cucumber leaves, but the changes of the activities of Cu/Zn-SOD, Mn-SOD and CAT were not the same as that in mRNA, indicting that the activities of SOD and CAT were also regulated by other factors. The MDA content and electrolytic leakage in grafted cucumber plants was lower than that of in own-root cucumber plants, which demonstrates the grafted cucumber plants have higher scavenging metabolism that can decrease the oxidative damage and increase their salt tolerances.
     5. Under NaCl stress, the activities of GalLDH, DHAR, APX, GR were all higher in leaves of grafted cucumber than those of own-root cucumber. The relative expression of GalLDH, DHAR and APX mRNA were all higher in leaves of grafted cucumber than those of own-root cucumber, while no significant change of the relative expression of GR mRNA was observed between grafted and own-root cucumbers. The content of AsA, GSH and the ratio of AsA/DHA, GSH/GSSG in leaves of grafted were all higher than that of own-root cucumber, while the content of DHA, GSSG and H2O2 were lower. This demonstrates the higher content of AsA, GSH in the grafted cucumber plants enhance their salt tolerances. And the higher content of AsA and GSH in the grafted cucumber plants was resulted from the higher activities of GalLDH, APX, DHAR and GR. The higher activities of GalLDH, APX and DHAR was regulated by the higher relative expression of GalLDH, APX and DHAR mRNA. Under NaCl stress, the activities of GR were also regulated by other factors.
引文
艾希珍,于贤昌,王绍辉,邢禹贤.低温胁迫下黄瓜嫁接苗和自根苗某些物质含量的变化.植物生理学通讯, 1999, 35 (1): 26-28
    安华明,陈力耕,樊卫国,胡西琴.高等植物中维生素C的功能、合成及代谢研究进展.植物学通报,2004, 21(5): 608-617
    安华明,陈力耕,樊卫国,刘庆林.刺梨叶衰老过程中维生素C含量和部分抗氧化酶活性的变化,园艺学报,2005, 32(6): 994-997
    安华明,陈力耕,樊卫国.刺梨果实半乳糖内醋脱氢酶基因cDNA片段的克隆及在不同器官的表达,中国农业科学,2005, 38(3):571-575
    陈贵林,赵丽丽.嫁接西瓜生长动态及伤流液营养元素含量的研究.河北农业大学学报, 1999, 22(3):38-41
    陈红,王永清,袁媛,潘绍坤.茄子/番茄嫁接体发育过程中的蛋白质含量、POD、CAT和SOD活性及其同工酶研究.四川农业大学学报, 2006,24(2):144-147
    陈劲风,张盛林,张兴国.嫁接对黄瓜生长的影响研究.西南农业大学学报, 1994,16 (2):124-126
    陈淑芳,朱月林,胡春梅. NaCl胁迫对嫁接番茄生长和光合特性的影响.江苏农业学报, 2006, 22 (2):145-149
    陈淑芳,朱月林,刘友良. NaCl胁迫对番茄嫁接苗保护酶活性、渗透调节物质含量及光合特性的影响.园艺学报,2005, 32 (4): 609-613
    陈坤明.植物逆境抗氧化系统和逆境氧化还原平衡.博士论文, 2003,兰州大学
    陈坤明,宫海军,王锁民.植物抗坏血酸的生物合成、转运及其生物学功能.西北植物学报,2004, 24 (2) : 329—336
    陈坤明,宫海军,王锁民.植物谷胱甘肽代谢与环境胁迫.西北植物学报, 2004, 24(6): 1119-1130
    范双喜,王绍辉.高温逆境下嫁接番茄耐热特性研究.农业工程学报, 2005, 21: 60-63
    冯昕,于贤昌,郭恒俊,马红,魏珉.低温胁迫对黄瓜嫁接苗和自根苗保护酶活性的影响.山东农业大学学报(自然科学版), 2002, 33 (3): 302-304
    高丽红,张福墁.日光温室黄瓜生产中存在的问题及解决途径.沈阳农业大学学报,2000,31(1):113-116
    高青海,吴燕,徐坤.茄子嫁接苗根系对低温环境胁迫的响应.应用生态学报, 2006, 17(3)B:390-396
    巩慧玲,赵萍,杨俊峰.马铃薯块茎贮藏期间蛋自质和维生素C含量的变化.西北农业学报, 2004, 13(1):49- 51
    关美芝,范双喜,王绍辉,秦勇,高洁.日光温室不同生育期嫁接番茄对根际环境及生长特性的影响.中国农学通报, 2005, 21(9):324-326
    何莉莉,侯丽霞,葛晓光,须晖,李天来.嫁接番茄抗叶霉病效果及其与体内几种抗性物质的关系.沈阳农业大学学报, 2001-04, 32 (2): 99-101
    何莉莉,侯丽霞,须晖,葛晓光,李天来.嫁接番茄抗叶霉病效果与植株体内同工酶的关系.辽宁农业科学, 2001(1): 16-19
    胡春梅,朱月林,杨立飞,陈淑芳,黄月明.低温条件下黄瓜嫁接株与自根株光合特性的比较.西北植物学报, 2006,26(2):0247-0253
    姜桃武.不同砧木对嫁接西瓜性状的影响.长江蔬菜, 1997,(4):23-25.
    江元清,凌毅,赵武玲.真核mRNA的3′非翻译区转录后水平调控作用研究进展.植物学通报, 2001, 18 (1):3-10
    柯玉琴,潘廷国. NaCl胁迫对甘薯苗期生长、IAA代谢的影响及其与耐盐性的关系.应用生态学报,2002, 13(10): 1303-1306
    雷鸣.嫁接对西瓜枯萎病抗性的影响.安徽农业科学, 2001, 29(5): 655-65
    李红丽,于贤昌.嫁接和嫁接砧木对黄瓜果实品质的影响.西北农业学报, 2005,14(1): 129-132
    李志英,卢育华,徐立.土壤低温对嫁接黄瓜生理生化特性的影响.园艺学报, 1998, 25(3):258-26
    李文嘉,黎炎,王益奎,康红卫,吴永官,梁任繁.嫁接番茄苗养分吸收特性及产量的研究.长江蔬菜, 2006, 01: 53-54
    李廷群,田林,贾秀芬,李锦龙,陈海俭,张惠芳.利用番茄嫁接茄子防治茄子黄萎病.中国蔬菜, 1999, (6):30-31
    林炎炎,毛玲荣,朱正斌,杨喻斌,王驰.不同栽培因子对早佳嫁接西瓜产量与品质的影响.浙江农业科学, 2005,(2):99-103
    刘慧英,朱祝军,吕国华.低温胁迫对嫁接西瓜耐冷性和活性氧清除系统的影响.应用生态学报, 2004,15(4)B659-662
    刘玉石,丁九敏.茄子、番茄异属间嫁接抗病增产效果初步研究.连云港职业技术学院学报, 2006,19(2):37-40
    刘润秋,张红梅,徐敬华,黄丹枫,姚方杰.砧木对嫁接西瓜生长及品质的影响.上海交通大学学报(农业科学版), 2003, 21(4):289-294
    刘正鲁,朱月林,胡春梅,魏国平,杨立飞,张古文.氯化钠胁迫对嫁接茄子生长、抗氧化酶活性和活性氧代谢的影响.应用生态学报,2007, 18(3): 537-541
    吕福堂,司东霞.日光温室土壤盐分积累及离子组成变化的研究.中国生态农业学报, 2004,12(1):43-46
    钱琼秋,宰文珊,朱祝军,喻景权.外源硅对盐胁迫下黄瓜幼苗叶绿体活性氧清除系统的影响.植物生理与分子生物学报, 2006,32(1): 107-112
    饶贵珍,彭士涛,王宝剑.不同砧木嫁接白皮黄瓜的综合效应研究.中国农学通报, 2003, 19(5):150-153
    饶贵珍,肖波.不同砧木嫁接白皮黄瓜研究初报.华北农学报, 2002, 17(增刊):32-36
    申卫星,陈玉,吕士恩,周凯南,周祥晨,安传信.西瓜枯萎病菌对西瓜及其嫁接砧木的接种试验和绿原酸、阿魏酸变化动态同抗病性的关系.山东农业大学学报, 1999, 29(4): 469-477
    史庆华,朱祝军,李娟,钱琼秋.高锰胁迫与低pH对黄瓜根系氧化胁迫和抗氧化酶的复合效应.中国农业科学, 2005, 38(5):999-1004
    史庆华,朱祝军,应泉盛,钱琼秋.不同光强下高锰对黄瓜光合作用特性的影响.应用生态学报, 2005, 16(6):1047-1050
    寿伟林,董文其,徐志豪,朱育强,戴丹丽,陈杰.不同砧木品种及嫁接方法对番茄生长发育的影响.浙江农业科学, 2003,(4):163-165
    孙志强,白玉玲.嫁接黄瓜的生理基础研究.河南农业科学, 1996, 1: 26-28
    童有为,陈淡飞.温室土壤次生盐渍化的形成和治理途径研究.园艺学报,1991,18(2):159-162
    王杰,张大伟.无子嫁接西瓜抗病毒病的生理生化机制研究.安徽农业大学学报, 2002, 29(4): 336-339
    王玉彦,贾卫国.不同砧木对嫁接黄瓜生理影响的研究.中国蔬菜, 1995,(2):31-34
    王玉彦,将先华,于广建,李淑琴.不同砧木嫁接黄瓜亲和性及应用效果.北方园艺, 1994, 3:16-18
    夏颖,朱惠学.蔬菜中抗坏血酸含量及影响因素.临沂医专学报,1994, 16(2):133-134
    邢禹贤.温室西瓜栽培.山东农学院科研资料汇编, 1977
    徐茂军,朱睦元,顾青.光诱导对发芽大豆中半乳糖酸内醋脱氢酶活性和维生素C合成的影响.营养学报,2002, 24(2):212-214
    徐坤,康立美,邢海荣.嫁接无籽西瓜光合特性研究.西北农业学报, 1999, 8(2):73-76
    杨立飞,朱月林,胡春梅. NaCl胁迫对营养液栽培嫁接黄瓜生物量及离子分布的影响.西北植物学报, 2006, 26(6): 1195-1200
    杨秀清,闫海冰.铜锌元素与仁用杏SOD活性关系的研究.山西农业大学学报, 2006, 26 (02):152-154
    闫立英.不同南瓜品种对嫁接黄瓜幼苗生长及抗寒性的影响.河北职业技术师范学院学报, 1999,13(4):29-31
    姚静,邹志荣,杨猛.设施栽培中土壤次生盐渍化问题及解决途径.陕西农业科学,2003(4):39-41
    岳青,苗如意.不同砧木对嫁接西瓜效果的影响.山西师大学报, 1999, 13(1):53-55
    于凤鸣,闫立英,刘玉艳.砧木对嫁接西瓜的生理影响.河北职业技术师范学院学报, 2002, 16 (4):34-36
    于贤昌,王立江.蔬菜嫁接的研究与应用.山东农业大学学报, 1998, 29(2): 249-256
    于贤昌,邢禹贤,马红,魏珉.不同砧木与接穗对黄瓜嫁接苗抗冷性的影响.中国农业科学, 1998, 31(2):41-47
    于贤昌,邢禹贤,马红,魏珉.黄瓜嫁接苗抗冷特性研究.园艺学报, 1997,24(4):348-352
    于贤昌,邢禹贤,马红,魏珉.黄瓜嫁接苗对不同低温胁迫的反应.上海农业学报, 1999, 15 (1): 47-50
    张云启,刘世琦,王海波.耐盐砧木嫁接对西瓜生长、产量及品质的影响.山东农业科学, 2004,(4):30-31
    张云启,刘世琦,王海波.耐盐砧木嫁接对西瓜幼苗抗盐特性的影响.上海农业学报, 2004, 20(3):62-64
    张培英,吕文河,孙丽,陈伊里,肖增宽.马铃薯块茎中维生素C含量的变化.马铃薯杂志,1995, 9(1):22-25
    张衍鹏,于贤昌,张振贤.日光温室嫁接黄瓜的光合特性和保护酶活性.园艺学报2004, 31 (1):94-96
    赵世杰,李德全.现代植物生理学实验指南.科学出版社,北京,1999,305-306
    赵瑞,赵鸿钧.奶瓜嫁接黄瓜抗病及增产效果研究.长江蔬菜, 1998, 6:26-27
    郑长英,曹志平,陈国康,陈云峰,杨杭.番茄嫁接防治温室根结线虫病的研究.中国生态农业学报, 2005, 13(4):164-166
    郑长英,曹志平,陈国康,陈云峰,杨杭.抗根结线虫砧木嫁接对番茄生长及产量的影响.中国蔬菜, 2004(4):37-38
    周国庆.几种微量元素配施对杂交早稻秧苗的效应.作物研究, 2000, 14 (1): 8-11.
    朱祝军,喻景权.氮素形态和光照强度对烟草生长和H2O2清除酶活性的影响.植物营养与肥料学报,1998,4(4): 379-385
    Allen R D. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol, 1995, 107: 1049–1054
    Ana S C, Maria M M, Francisco P A. The rootstock effect on the tomato salinity response depends on the shoot genotype. Plant Sci, 2002, 162 : 825-831
    Asada K, Takahashi M. Production and scavenging of active oxy-gen in photosynthesis. Elsevier Science Publishers, Amsterdam, 1987, 227-287
    Asao T, Shimizu N, Ohta K. Effect of rootstocks on the extension of harvest period of cucumber (Cucumis sativus L.) growth in non-renewal hydroponics. Journal of the Japanese Society for Horticultural Science, 1999,68: 589-602
    Azevedo N A, Tarquinio P J, Enéas F J. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany, 2006, 56: 87-94
    Baneyx F. Recombinant protein expression in Escherichia coli. Current Opinion in Biotechnology, 1999, (10): 411-421
    Bartol I C, Pastor I G M, Foyer C H. Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes III and IV. Plant Physiol, 2000, (123): 335-343
    Bavaresco M. Fregoni M and Fraschini P. Investigations on iron uptake and reduction by excised roots of different gravepine rootstocks and V.vinifera cultivar. Plant Soil, 1991, 130: 109-113.
    Beck E, Burkert A, Hofmann M. Uptake of L-ascirbate by intact spinach chloroplasts. Plant Physiol, 1983, (73): 41- 45
    Bowler C, Van Camp W, Van Montagu M, Inze D. Superoxide dismutase in plants. Critical Reviews in Plant Science, 1994, 13: 199~218.
    Bowler C, Van M M, InzéD. Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology, 1992, 43: 83-116
    Bowler C, Slooten L, Vandenbranden S. Manganese super-oxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J, 1991, 10: 1723- 1732
    Bowler C, Alliotte T, De loose M. The induction of manganese superoxide superoxide superoxidedismutase in response to stress inNicotiana plumbaginifolia. EMBO J, 1989, 8: 31- 38
    Burkey K O, Eason G, Fiscus E L. Factors that affect leaf extracellular ascorbic acid content and redox status. Physiol Plant, 2003, (117): 51- 57
    Bunkelmann J R, Trelease R N. Ascorbate peroxidase: a prominent membrane protein oilseeed glyoxisome. Plant Physiol, 1996, (110): 589-598
    Castelluccio C, Paganga G, Melikian N. Antioxidant potential of intermediates in phenylpropanoid metabolism in higher plants, FEBS Lett, 1995, 368: 188~192
    Cadenas E. Biochemistry of oxygen toxicity. Annu Rev Biochem, 1989, 58: 79 110
    Casamo L M. Hydroxy radicals and a thylakoid-bound endopep-tidase are involved in light and oxygen-induced proteolysis in oat chloroplasts. Plant Cell Physiol, 1994, 35: 145-152
    Chen Z, Daniel R, Gallie. DehydroAscorbate Reductase Affects Leaf Growth, Development, and Function. Plant Physiology, August 4, 2006
    Chen Z, Daniel R, Gallie. Increasing Tolerance to Ozone by Elevating Foliar Ascorbic Acid Confers Greater Protection against Ozone Than Increasing Avoidance1. Plant Physiology, 2005, (138): 1673–1689
    Chen Z, Daniel R, Gallie. The Ascorbic Acid Redox State Controls Guard Cell Signaling and Stomatal Movement. The Plant Cell. 2004, (16):1143–1162
    Chen Z, Todd E, Young, Ling J. Increasing vitamin C content of plants through enhanced ascorbate recycling. Plant Biology, 2003, (100): 3525-3530
    Chikahiro M, Kozi A. Ferredoxin-dependent photoreduction of the monodehydroascorbate radical in spinach thylakoids. Plant and Cell Physiology, 1994, 35: 539-549
    Conklin P L, Norris S R, Wheeler G L, Williams E H, Smirnoff N, Last R L. Genetic evidence for the role of GDP-mannose in plant AsAorbic acid (vitamin C) biosynthesis. Proc. Natl. Acad. Sci. USA, 1999, (96): 4198–4203
    Conklin P L, Williams E H, Last R. Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsismutant, Proc Natl Acad Sci USA, 1996, 93:9970~9974
    Conklin P L, Pallanca J E, Last R L, Smirnoff N L. AsAorbic acid metabolism in the AsAorbate deficient mutant vtc1. Plant Physiol. 1997, .(115): 1277-1285
    Cristina Pignocchi, Guy Kiddle, Iker Herna′ndez, et al. Ascorbate Oxidase-Dependent Changes in the Redox State of the Apoplast Modulate Gene Transcript Accumulation Leading to Modified HormoneSignaling and Orchestration of Defense Processes in Tobacco. Plant Physiology, 2006, 141: 423–435
    Dagmar Prochazkova, SairamR K, Srivastava G C, Singh D V. 2001. Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Science, 161: 765-771.
    Dalton DA. Plant Physiol, 1993, 102: 481-489
    Davey M W, Vanmontage M, Inze D, Sanmartin M, Kanellis A, Smirnoff N, Benzie I J J, Strain J J, Favell D, Fletcher J. Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agr, 2000. (80): 825-860
    Degara L, Tommas I F. Ascortabe redox enzymes: a network of reactions involved in plant development. Recent. Dev. Phytochem , 1999, (3): 1- 15
    Deleonardis S, Dipierro N, Dipierro S. Purification and characterization of an ascorbate peroxidase from potato tuber mitochondria. Plant Physiol Biochem, 2000.(38): 773-779
    Dhindsa RA, Plumb-Dhindsa P, Thorpe TA. Leaf senescence: Correlated with increased permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 1981, 32: 93-101
    Dong Hee Lee, Chin Bum Lee. 2000. Chilling stress-induced changes of antioxdant enzymes in the leaves of cucumber in gel enzyme activety assays. Plant Science, 159:75-85.
    Elstner EF, Osswald W. Mechanisms of oxygen activation during plant stress. Proceedings of the Royal Society of Edinburgh, 1994, 102: 131-154
    Eran, Yoseph. Analysis of xylem water as indicator of current chloride uptake staus in citrus trees. Sci Hort, 2005, 103 : 317-327
    Fisarakis I, Chartzoulakis K, Stavrakas D. 2001. Response of sultana vines (Vitis vinifera L.) on six rootstocks to NaCl salinity exposure and recovery. Agricultural Water Management, 51: 13-27
    Foyer C. H., Rowell J., Walker D. A.. Measurements of the ascorbate content of spinach leaf protop lasts and chloroplasts during illumination. Planta, 1983, (157): 239- 244
    Foyer C. H., Lelandais M.. A comparison of the relative rates of transport of ascorbate and glucose across the thylakoid, chloroplast and plasmalemma membranes of pea leaf mesophyll cells. J. Plant Physiol,1996, (148): 391- 398
    Foyer C. H., Halliwell B.. Purification and properties of dehydroascorbate reductase from spinach leaves. Photochemistry. 1977. (160): 1347-1350
    Foyer Descourvieres P,Kunert K Jet al.Protection against oxygen radicals:an important defense mechanismstudied in trans-genic plants, Plant Cell Enxiron, 1994, 17:507-523
    Foyer C H, Halliwell B. Presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. [J].Planta, 1976, 167: 521-526
    Gupta A S, Heinen J L, Holaday A S, Burke J J, Allen R D. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. U.S.A., 1993, 90: 1629-1633
    Halliwell B, Gutteridge J M C. Free Radicals in Biology and Medicine. 2nd edn. Clarendon Press, Oxford. 1989.
    Hernandez-Nistal J, Dopico B, Labrador E. Cold and salt stress regulates the expression and activity of a chickpea cytosolic Cu/Zn superoxide dismutase. Plant Science, 2002, 163: 507-514
    Hodges D M, Andrews C J, Johnson D A and Hamilton R I. Antioxidant enzyme and compound responses to chilling stress and their combining abilities in differentially sensitive maize hybrids. Crop Sci, 1997, 37: 857-863.
    Horemans N, Asard H, Caubergs R J. Carrier mediated up take of dehydroascorbate into higher plant plasma membrane vesicles show strans-stimulation. FEB S Letters, 1998, (421): 41- 44
    Horemans N, Potters G, Asard H. Transport of ascorbate into protoplasts of Nicotiana tabacum Bright Yellow 2 cell line. Protoplasma, 1998, (205): 114- 121
    Horemans N, Asard H, Caubergs R J. Transport of ascorbate into plasmamembrane vesicles of Phaseolus vulgarisL. Protoplasma, 1996, (194): 177- 185
    Horemans N, Asard H, Caubergs R J. The ascorbate carrier of higher plant plasma membranes p referentially translocates the fully oxidized (dehydroascorbate) molecule. Plant Physiol,1997, (114): 1 247- 1253
    Huang C, He W, Guo J, Su P, Zhang L. Increased sensitivity to salt stress in an AsAorbate-deficient Arabidopsis mutant. J Exp Bot, 2005, 56 (422): 3041-3049
    Imai T, Karita S, Shiratori G, Hattori M, Nunome T, Oba K, Hirai M. L-galactonc-1,4-lactone dehydrogenase from sweet potato:purification and cDNA sequence analysis, Plant cell Physiol, 1998, (39): 1350-1358
    Inze D, Van Montagu M. Xidative stress in plants. Curr Opiniotechnol, 1995, 6: 153~158
    Irene P, Maite S, Mary S, Kalamaki, Dimitrios G, Angelos K, Kanellis. Molecular characterization and expression studies during melon fruit development and ripening of L-galactono-1,4-lactonedehydrogenase, Journal of Experimental Botany, 2004, 55 (403): 1623-1633
    Ishikawa T, Yoshimura K, Tamoi M, Takeda T, Shigeoka S. Alternative mRNA splicing of 30-terminal exons generates ascorbate peroxidase chloroplasts. Biochem, 1997, (328): 7958-8100
    Jahnke L S, Hull M R and Long S P. Chilling stress and oxygen metabolizing enzyme in Zea mays and Zea diploperennis. Plant Cell Envir, 1991, 14: 97-104.
    Jens O, Geert P, Mark W, Davey, Guy B, Marc Van M. Isolation of a cDNA Coding for L-Galactono-g-Lactone Dehydrogenase, an Enzyme involved in the Biosynthesis ofAscorbic Acid in Plants. The Journal of Biological Chemistry, 1997, 272 (48): 30009-30016
    Jin Y H, Tao D L, Hao Z Q. Environmental stresses and redox status of ascorbate. Acta Botanica Sinica, 2003, 45: 795-801
    Joao R, Oliveira D, Nascimento, Beatriz K, Higuchi M, Luiza P, Araujo G, Renato A O, Franco M L. Ascorbate biosynthesis in strawberries: L-Galactono-1,4-lactone dehydrogenase expression during fruit development and ripening. Postharvest Biology and Technology, 2005, (38 ):34-42
    Josefina Herna′ndez-Nistal, Berta Dopico, Emilia Labrador. Cold and salt stress regulates the expression and activity of a chickpea cytosolic Cu/Zn superoxide dismutase. Plant Science, 2002, 163: 507-514
    Karpinski S, ReynoldsH,Karpinska. Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis, Science, 1999, 284: 654-657
    Kazufumi T, Kazuko O, Kanichi S, Muneharu E. Generation and properties of ascorbic acid-deficient transgenic tobacco cells expressing antisense RNA for L-galactono-1,4-lactone dehydrogenase, The Plant Journal, 2001, (2): 139-148
    Kazufumi T, Takahiko T, Muneharu E. Gene expression of ascorbic acid-related enzymes in tobacco. Phytochemistry, 2002, (61): 631-635
    Kazuko O, Mikiko F, Yasuko I,Sakura I, Kayoko N. L-Galactono-f-Lactone dehydrogenase: partial characterization, induction of activity and role in the synthesis of ascorbic acid in wounded white potato tuber tissue. Plant Cell Physiol, 1994, 35 (3): 473-478
    Kazuo Tsugane, Kyoko Kobayashi. A recessivearabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification, The Plant Cell, 1999, 11: 1195~1206
    Kazuya Yoshimura, Yukinori Yabuta, Takahiro Ishikawa. Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiology, 2000, 123: 223~233
    Keller R, Springer F, Renz R, Kossmann J.. Antisense inhibition of the GDP-mannose pyrophosphorylasereduces the AsAorbate content in transgenic plants leading to developmental changes during senescence. Plant J, 1999, (19): 131-141
    KE Shi-sheng. Effects of Copper on the Photosynthesis and Oxidative Metabolism of Amaranthus tricolor Seedlings. Agricultural Sciences in China,2007, 6 (10): 1182-1192
    Kim HT, Kang NJ, Kang KY. Selection of‘PusanDaemok 1’for high yield and quality in rootstock of cucumber. Journal of Horticultural Science, 1998, 40: 158-161
    Kurepa J, He′rouart D, Van Montagu M, Inze′D. Differential expression of CuZn- and Fe-superoxide dismutase genes of tobacco during development, oxidative stress and hormonal treatments, J. Exp. Bot, 1997, 48: 2007-2014
    Kwon S Y, Choi S M, Ahn Y O. Enhanced stress-tolerance of transgenic tobacco plants expressing a human dehydroascorbate reductase gene. Journal of Plant Physiology, 2003, (160): 347-357
    Loewus F A, Loewus M W. Biosynthesis and metabolism of ascorbic acid in plants [J ]. Crit. Rev. Plant Sci, 1987, (5): 101-119
    Mait, Karita S, Shiratorig, Hattorim. L-Galactono-Υ-lactone dehydrogenase from sweet potato: purification and cDNA sequence analysis. Plant Cell Physiol, 1998, 39: 1 350- 1 358
    Mait, Kingston-Smith A. H., Foyer C. H.. Inhibition of endogenous ascorbate synthesis in potato leaves supp lied with exogenous ascorbate. Free Radical Res, 1999. (31): 171- 179
    Maria T E, Maria M M, Francisco P A. Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. J Exp Bot, 2005, 56: 703-712
    Masanori T, Fumiko M, Naoko A, Nobuyoshi N, Akihiro K, Mitsuko A, Hikaru S. Light-controlled expression of a gene encoding L-galactono-g-lactonedehydrogenase which affects ascorbate pool size in Arabidopsis thaliana, Plant Science, 2003, (164) :1111-1117
    May M J, Vernoux T, Leaver C. Glutathione homeostasis in plants: implications for environmental sensing and plant development. Journal of Experimental Botany, 1998, 49: 649-667
    McKersie B D, Chen Y R, Beus M De, Bowler S R, InzéD, Halluin K D, Botterman J. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol, 1993, 103: 1155–1163
    Michael W F, Luwe, Umeo Takahama, and Ulrich Heber. Role of Ascorbate in Detoxifying Ozone in the Apoplast of Spinach (Spinacia oleracea 1.) Leaves. Plant Physiol, 1993, 101: 969-976
    Mittler R.J Biol Chem, 1992, 267: 21802-21807
    Miyake C, Asada K. Ferredoxin-dependent photoreduction of the monodehydroascorbate radical in spinach thylakoids. Plant Cell Physiol, 1994, 35:539 549
    Miyake C . Plant Cell Physiol, 1996, 37: 423-430
    Mizuno M, Kamei M, Tsuchida H. 1998. Ascorbate peroxidase and catalase cooperate for protection against hydrogen peroxide generated in potato tubers during low temperature storage. Biochem.Mol.Biol.Int, 44:717-726
    Moshe Shenker, Plessner Ora E, Elisha Tel-Or. 2004. Manganese nutrition effects on tomato growth, chlorophyll concentration, and superoxide dismutase activity. J. Plant Physiol, 161: 197–202
    Morita S, Kaminaka H, Masumura T. Induction of rice cytosolic ascorbate peroxidase mRNA by oxidative stress: the involvment of hydrogen peroxide in oxidative stress signalling, Plant Cell Physiol, 40: 417-422
    Mozafa R A, Oertli J J. Vitamin C (ascorbic acid) : Uptake and metabolism by soybean [J ]. J. Plant Physiol , 1993, (141): 316- 321
    Mutsuda M, Ishikawa T, Takeda T. Subcellular localization and properties of L-galactono-glactone dehydrogenase in spinach leave. Biosci Biotech. Biochem, 1995, (59): 1983- 1984
    Noctor G, Foyer C H. Ascorbate and glutathione: Keeping active oxygen under control [J]. Annu. Rev. Plant Physiol.Plant Mol.Biol, 1998, 49: 249-279
    Oba K, Ishikawa M, Nishikawa M. Purification and properties of L-galactono-Υ-lactone dehydrogenase, a key enzyme for ascorbic acid biosynthesis, from sweet potato roots. J. Biochem, 1995, (117): 120- 124
    Ogawa K, Kanematsu S and Adada K. Intra-and extra-cellular localization of cytosolic CuZn-superoxide dismutase in spinachleaf and hypocotyls. Plant Cell Physiol, 1996, 37 (6): 790-799
    Osmond C B, Grace S C, Perspectives on photoinhibition and photorespiration in the field. J. Exp.Bot., 1995, 46: 1351-1362
    Ostergaad J, Persiau G, Davey M W. Isolation of a cDNA coding for L-galactono-Υ-lactone dehydrogenase, an enzyme involved in the biosynthesis of ascorbic acid in plants. J. Biol. Chem, 1997, (272): 30009- 30016
    Orvar B L, McPherson J, Ellis B E. Pre-activating wounding response in tobacco prior to high-level ozone exposure prevents necrotic injury. Plant, 1997, (11): 203-212
    Pacific R E. Hydrophobicity as the signal for selective degracla-tion of hydroxyl radical-modified hemoglobin by the multi-catalytic proteinase complex, proteasome. J.Biol.Chem.,1993, 268:15405-15411
    Pastori G M, Trippi V S. Oxidative stress induces high rate of glutathione reductase synthesis in a drought-resistant maize strain. Plant Cell Physiol, 1992, (33): 957-961
    Perl A, Perl-Treves R, Galili S. Enhanced oxidative-stre defense in transgenic potato expressing tomato Cu/Zn superoxid dismutase. Theor Appl Genet,1993, 85: 568~576
    Petrie S E, T L. Eeffects of nitrogen fertilization on manganese concentration and yield of parley and oats. Soi1 Sci Soc Am,J,48: 19-322
    Picher LH, Brennan, Hurley A. Overproduction of petun chloropastic copper/zinc in transgenic tobacco. Plant Physiol, 1991, 97: 452-455
    Prasad T K, Anderson M D, Martin B A. Evidence for chilling induce oxidative stress in maize seedlings and regulatory role for hydrogen peroxide. The Plant Cell, 1994, 6: 65-74
    Prochazkova RKD, Sairam GC, Srivastava DV. Single oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Science, 2001, 161: 765-771
    Pukacka S, Ratajczak E. Antioxidative response of ascorbate-glutathione pathway enzymes and metabolites to desiccation of recalcitrant Acer saccharinum seeds. Journal of Plant Physiology, 2006, 163: 1259-1266
    Queiroz CGS, Alonso A, Mares-Guia M. Chilling-induce changes in membrane fluidity and antioxidant enzyme activities in Coffea arabiga L. roots. Biologia Plantarum, 1998, 41: 403-413
    Rosa M, Rivero, Juan M, Ruiz, Esteban Sánchez and Luis Romero. Does grafting provide tomato plants an advantage against H2O2 production under conditions of thermal shock? Physiologia Plantarum, 2003, 117: 44-50
    Ruiz J M, Belakbir A and Romero L. Foliar level of phosphorus and its bioindicators in Cucumis melo grafted plants. A possible effect of rootstocks. J Plant Physiol, 1996, 149:400-404
    Ruiz J M, Belakbir A, Ragala L and Romero L. Response of plant yield and leaf pigments to saline conditions: the effectiveness of different rootstocks in melon plants (Cucumis melo L.). Soil Sci Plant Nutr, 1997, 43:855-862
    Salin M L. Toxic oxygen species and protective system of the chloroplast. Physiol Plant, 1989, 72: 681-689.
    Sandalio L M, Palma J M and del Río L A. Localization of manganese-superoxide dismutase in peroxisomes isolated from Pisum sativum L. Plant Sci, 1987, 51: 1–8
    Scandalios JG. Oxygen stress and superoxide dismutases. Plant Physiology, 1993, 101: 712-726
    Scebba F, Sebastiani L and Vitagliano C. Changes in activity of antioxidative enzymes in wheat (Triticum aestivum) seedlings under cold acclimation. Physiol Plant, 1998, 104: 747- 752.
    Shaaltiel Y and Gressel J. Multienzyme oxygen radical detoxification system correlation with paraquat resistance in Coniza bonariensis. Pest Biochem Physiol, 1986, 26: 22-28
    Shalata A, Tal M. The effect of salt stress on lipid peroxidation and antioxidants in the cultivated tomato and its wild salt-tolerant relative Lyepoersicon pennellii. Physiologia Plantarum, 1998, 104: 169-174
    Shalata A, Mittova V, Volokita M. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system. Physiologia Plantarum, 2001, 112: 487-494
    Shen B, Jensen R G, Bohnert H J. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplast. Plant Physiol, 1997, 113: 1177~1183
    Shen B, Richard G, Hans J. Mannitol protects against oxidation by hydroxyl radicals, Plant Physiol,1997, 115: 527-532
    Shigeru S, Takahiro I, Masahiro T, Yoshiko M, Toru T, Yukinori Y, Kazuya Y. Regulation and function of ascorbate peroxidase isoenzymes. Journal of Experimental Botany, 2002, (53):1305-1319
    Shimaoka T, Yokota A, Miyake C. Purification and Characterization of Chloroplast DehydroAsAorbate Reductase from Spinach Leaves. Plant & Cell Physiology, 2000, (10): 1110-1118
    Siendones E, González-Reyes J A, Santos-Ocana C. Biosynthesis of ascorbic acid in kindney beans. -Galactona-Gamma-lactone dehydrogenase is an intrinsic protein located at the mitochondrial inner membrane[J ]. Plant Physiol, 1999, (120): 907-912
    Slooten L, Capaiau K, Vandenbranden S. Improvment of the resistance of higher plants against oxidative stress. Med-edelingen van de Faculteit Landbouwwetenschappen van de U-niversiteit Gent, 1992, 57: 1477-1485
    Smirnoff N. AsAorbic acid: metabolism and functions of a multi-facetted molecule. Curr. Opin. Plant Biol, 2000, (3): 229–235
    Stadtman E R. Protein Oxidation and aging. Science,1992, 257: 1220-1224
    Storozhenko S, Pauw P D, Montagu M V. The heat-shock element is a function component of the ArabidopsisAPX1 gene promoter, Plant Physiol, 118: 1005-1014
    Tabata K, Oba K, Suzuki K. Generation and properties of ascorbic acid-deficient transgenic tobacco cellsexpressing antisense RNA for L-galactono-1,4 -lactone dehydrogenase[J]. Plant J, 2001, 27: 139-148.
    Takaaki T, Katsunori M, Kazufumi T, Muneharu E. Generation and properties of ascorbic acid-overproducingtransgenic tobacco cells expressing sense RNA for L-galactono-1,4-lactone dehydrogenase. Planta, 2005, (220): 854–863
    Tanaka Y, Hibino T, Hayashi Y. Salt tolerance of trans-genic rice overexpressing yeast mitochondrial Mn-SOD in chloro-plasts, Plant Science, 1999, 148: 131~138
    Takaham A U, Oniki T. Regulations of peroxidase-dependent oxidation of phenolics in the apoplast of spinach leaves by ascorbate[J]. Plant Cell Physiol, 1992, 33: 379–387
    Turcsányi E, Lyons T, Plochl M. Does ascorbatein the mesophyll cell walls form the first line defence against ozone? Testing the concept using brosd bean (Viciafaba L.) [J]. J Exp Bot, 2000, 51 (346): 901–910
    Uranoa J, Nakagawaa T, Makib Y. Molecular cloning and characterization of a rice dehydroAsAorbate reductase. FEBS Letters, 2000, 466: 107-111
    Van Kooten O and Snel J F H. Photosynthesis Research, 1990, 25: 147-150
    Vanacker H, Carvert L W, Foyer C H. Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiol, 1998, (117): 1103- 1114
    Vanacker H, Harbinson J, Ruisch J. Antioxidant defences of the apolast [J ]. Protoplasma, 1998, 205: 129- 140
    Walker M A and McKersie B D. Role of the ascorbate-glutatione antioxidant system in chilling resistance of tomato. J Plant Physiol,1993, 141:234-239
    Wheeler G L, Jones M A, Smirnoff N. The biosynthetic pathway of vitamin C in higher plants. Nature,1998, (393): 365-369
    Willekens H, Chamnongpol S, Davey M. Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants. EMBO J, 1997, 16: 4806-4816
    Willekens H, Langebartels C, Tire C. Differential expression of catalase genes inMicotiana plumbaginifolia. Proc. Natl. Acad.Sic USA, 1994, 91: 10450-10454
    Yamasaki H, Heshiki R, Ikehara N. Leaf-goldening induced by high light inFicus microcarpa L f, a tropical fig. J Plant Res,1995, 108: 171-180
    Yamasaki H, Uefuji H, Sakihama Y. Bleaching of the red anthocyanin induced by superoxide radial. Arch Biochem Bio-phys, 1996, 332: 183-186
    Yoshimura K, Yabuta Y, Tamoi M, Ishikawa T, Shigeoka S. Alternatively spliced mRNA variants of chloroplast ascorbate peroxidase isoenzymes in spinach leaves. Biochem, 1999, 338:41-48
    Zhong Chen, Daniel R, Gallie. The Ascorbic Acid Redox State Controls Guard Cell Signaling and Stomatal Movement. The Plant Cell, 2004, 16: 1143–1162
    Zou L P, Li H X, Ouyang B. Cloning and mapping of genes involved in tomato Ascorbic acid biosynthesis and metabolism. Plant Science, 2006, (170): 120–127
    Zou L P, Li H X, Ouyang B, Zhang J H, Ye Z B. Cloning, Expression, and Mapping of GDP-D-mannose Pyrophosphorylase cDNA from Tomato (Lycopersicon esculentum). Acta Genetica Sinica, 2006, (33): 757-764

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700