用户名: 密码: 验证码:
新型铜合金压铸模具钢的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压铸是最先进的金属成型方法之一,应用很广,发展很快。但压铸模的服役条件非常苛刻。由于铜合金的浇注温度较高,因此铜合金压铸模的使用寿命非常低,仅相当于铝合金压铸模寿命的1/2-1/3。压铸模具钢中合金元素的含量较高,形成的碳化物种类也较多。这些碳化物沿着初生奥氏体晶界偏析,从而造成组织中有沿晶界连续分布的网状碳化物,导致模具钢的使用性能严重下降。此外,钢中的磷易偏析,也严重降低钢的性能。因此,减轻磷的偏析、破碎沿晶界连续分布的网状碳化物是提高压铸模综合性能的有效途径。对于压铸模具钢来说,合理选材、采用合适的变质处理及热处理工艺,可以提高模具钢的质量,降低压铸生产成本。
     本文在实验室条件下,重点研究了化学成分选择、复合变质及热处理对铜合金压铸模具钢的组织和力学性能的影响。利用金相显微镜及高倍视频显微镜(HSVM)、电子探针(EPMA)、DSC等手段,首先研究了锌对磷在钢中偏聚的影响,发现:锌能减弱磷在钢中的偏聚,提高钢的力学性能。此外,还研究了K/Na、RE复合变质对钢组织和性能的影响。结果显示:压铸模具钢经过复合变质处理后,晶粒得到了细化,碳化物的形貌也发生了显著的变化,网状碳化物断裂。K/Na具有很强的脱氧、脱硫能力,使得低熔点的硫、氧化物不能在晶界聚集,晶界大大净化,有效减少杂质的数量,使得结晶核心周围过冷度均匀。稀土在钢中主要偏聚在晶界上,具有减轻碳及其他合金元素向晶界的偏析,净化晶界,减少夹杂物的数量,改善夹杂物的形貌和分布的作用;在凝固过程中,强烈吸附在碳化物的某些生长表面上,阻碍碳化的生长,有利于碳化物的断网和孤立化。结果表明:当加入0.5%的K/Na和0.5%的RE复合变质处理时,新型铜合金压铸模具钢的组织及力学性能最好。
     研究了淬火温度、回火温度和回火保温时间等工艺条件对压铸模具钢组织和性能的影响。发现模具钢随着淬火温度的升高,晶粒逐渐变大,在1100℃以下时,晶粒长大并不是很明显,但是1150℃淬火后,晶粒特别粗大,故淬火温度不宜超过1100℃。模具钢随着淬火温度的升高,硬度增加,线膨胀系数减小,抗热疲劳性能增强,故较高的淬火温度有利于提高模具钢的性能。模具钢550℃回火后硬度达到峰值。随着保温时间延长,硬度先增加后变小,在5小时左右时,硬度最大。最优热处理工艺为:1150-1100℃×50min(三次),油冷;550℃×3-5h(二次),空冷。
Die-casting is one of the most advanced metal forming technologies, and it is used widely and developing fast. It is usually used in severe rugged environment. But the point of pouring of copper alloy is very high, so the operational life span is very short. The die steel contains high carbon and a large amount of alloy elements, which results in different kinds of carbides. The carbides segregate due to density variation, so the properties of the steel would become unhomogeneous radially. Meanwhile, some carbides distribute along the boundary of austenite grains while they are precipitating from the liquid phase, which leads to the emergence of continuous network of carbides at room temperature, and this would cause a severe decline of die cast dies' properties. Besides, phosphorus is usually segregated, and this can reduce the properties of steel. Thus it is an efficient approach to improve die cast dies' properties by preventing segregation of phosphorus and breaking the network of carbides distributing along the grain boundaries. And reasonable selection of materials, modification and heat treatment could save a large number of die cast dies materials, reduce production cost of die cast dies and improve quality and output of die cast dies.
     In this thesis, we investigated the effects of chemical composition, modification treatment and heat treatment of die cast dies on the microstructure and mechanical. The effect of zinc on the segregation of phosphorus was investigated utilizing optical microscope、Hi-scope video microscope (HSVM) and electroc probe microanalysis(EPMA). We find that, zinc can reduce the segregation of phosphorus, so the mechanical properties of steel can be improved. We also investigated the effect of K/Na and RE compound modification on the microstructure of die cast dies. The results showed that the grain size was refined, and the morphology of carbides was changed greatly after compound modification. The network of carbides was broken. The result show that the die cast dies modified by 0.5%K/Na+0.5%RE has the best structure and mechanical properties.
     In this thesis, the effects of quenching temperature, temper temperature and temper thermal retardation time have also been researched. The result show that, with the development of quenching temperature, the crystal grains are bigger. The crystal grains largen slowly under 1100℃,but the grain largens extremely above 1150℃. So the quenching temperature should be under 1100℃. With the development of quenching temperature, the hardness increases , and the thermal fatigue property of the die steel increased. The hardness after 550℃temper reach the maximizing. With the lengthen of temper thermal retardation time, the hardness first largens and then dimimishes. The hardness after 5 hours temper thermal retardation reach the maximizing.
     It was found that the optimum heat treatment was oil quenching thrice from 1050~1100℃for 50 minutes and tempering twice at 550℃for 3 to 5 hours, then air-cooling.
引文
[1]王家英,王志东.模具材料与使用寿命[M].北京:机械工业出版社,2000,154-155。
    [2]利奥波德·弗罗梅尔,古斯塔夫·利比.国防工业出版社,1982,37-39.
    [3]赖华清.压铸工艺及模具[M].北京:机械工业出版社,2004,1-3.
    [4]R.Shivpuri,M.Yu,K.Venkatesan,Y.L.Chu.Erosive Wear in Die Casting [J].J.Materials engineering,1995;4:145-153.
    [5]W.Kajoch,A.Transactions of the Seventeenth International Die Casting Congress and Exposition[C],Illinois:NADCA,1991.67-74
    [6]M.Sundqvist,s.Hogmark.Effect of Molten Copper on Hot Work Tool Steel[J].Tdbol.Int,1993,26:129-134
    [7]W.Kajoch,A.Kajkiel.Aluminum Die Cast Short Sleeves[J].Cast Met,1994,7:193-199.
    [8]N.Dinggremont,E.Bergmann,P.Collignon.Structural Studies of Hot Dip Aluminized Coatings on Mild Steel[J].Surf.Coat.Tect,1995:157-162.
    [9]兰杰.新型铸造模具钢的研究[M].上海:上海交通大学出版社,2001.12-13.
    [10]M.Alfred.Improved performance of die casting materials[J].The Proceeding of the 11 International Die Casting Congress and Exposition.Ohio:The Society of the Casting Engineers,Inc 1981,81-103.
    [11]M.Yu.Jove.QROTM90Supreme[J].Alloydigest.1992(2):94-103.
    [12]唐玉林.我国压铸件的国际地位及分析[J].特种铸造及有色合金,2002(1):35-37.
    [13]中国模具工业协会.模具钢使用推荐表[M].北京:机械工业出版社,1997:1-20.
    [14]陈蕴博.热作模具钢的选择与应用[M].国防工业出版社,1993:20-30.
    [15]卢吉连.我国模具钢技术现状与发展[J].模具技术,2000(6):90-93.
    [16]胡志刚.热作模具材料的发展[J].甘肃冶金,2000(3):18-21.
    [17]朱宗元.我国热作模具钢性能数据集[J].机械工程材料,2001,25(1):40-43.
    [18]兰杰.铝压铸模具的失效形式及材料进展[J].机械工程材料,1999,23(3):38-41.
    [19]崔昆.中国模具钢现状与发展[J].机械工程材料,2001,25(1):1-13.
    [20]冶金工业部钢铁研究院.合金钢手册,上册,第一分册[M].北京:中国工业.1971,30-63.
    [21]姜祖褰等.模具钢[M].北京:冶金工业部出版社,1988,1-56.
    [22]曹振平.国产模具钢存在的问题及其对策[J].模具工业,1997(6):44-45.
    [23]卢连杰.模具表面处理技术发展概况[J].模具技术,1991(1):11-12.
    [24]唐玉林.国内外模具技术现状及发展趋势[J].模具技术,1991(1):1-3.
    [25]胡刚.超低温技术在提高工模具寿命方面的应用[J].模具技术,1997(5):34-38.
    [26]郭世君.铸造压铸模具钢组织与性能的研究[M].哈尔滨工业大学研究生论文,2002,5.
    [27]方建儒.新型铸造热锻模具钢组织与性能的研究[M].吉林工业大学研究生论文,1998,3.
    [28]C.Y.Hungrtc.Effect of Compressive Deformation on the Transformation Behavior of an Ultra-Low-Carbon Bainitic Steel[J].Materials Transaction,1993,34(8):658-668.
    [29]Shen Xianpu etc.Effect of Boron on Handenability of Austenite during Interitical Annealing[J].Acta Metallurgical Sinica,1990(7):50-58.
    [30]Wang Xiaotian etc.Effects of rare earth Metals on Microstructural Transformation of Low or Medium Carbon Si-Mn-V Steels during Quenching and Tempering[J].Acta Metallurgical Sinica,1991(3):188-193.
    [31]史美堂.常用模具钢热处理性能[J].模具工业,1991(1):137-140.
    [32 杨裕国.压铸工艺与模具设计[M].北京:机械工业出版社,1997,30-45.
    [33]赖华清.压铸工艺及模具[M].北京:机械工业出版社,2004,39-45.
    [34]李仁杰,卓迪仕.压力铸造技术[M].北京:国防工业出版社,1986,43-51.
    [35]金蕴林,许宝成.最新实用压铸技术[M].北京:兵器工业出版社,1993,110-114.
    [36]伍建国,屈华昌.压铸模设计[M].北京:机械工业出版社,1995,23-30.
    [37]潘宪曾.压铸模设计手册[M].第二版.北京:机械工业出版社,1999,88-100.
    [38]曾昭昭.特种铸造[M].杭州:浙江大学出版社,1990,141-145.
    [39]宫克强.特种铸造[M].北京:机械工业出版社,1982,102-107.
    [40]刘云旭.金属学热处理原理[M].北京:机械工业出版社,1981,35-40.
    [41]G.Roberts et al.,Tool Steels[M],5 th.Ed.ASM International Material Park,1998,343-347.
    [42]W.H.Wills et al.Tool Steels:Steel Products Manual,A Publication of the Iron and Steel Society,1988,33-37.
    [43]Standard Specification:Die Insert Material and Heat Treating Specification DC-9999-1,GM Powertrain Group,Revision Date 3-01-2005,33-37.
    [44]章守华.合金钢[M].北京:冶金工业出版社,1981,321-324.
    [45]K-E Thelning,Steel and It's Heat Treatment[M],2th.Ed.London,Butterworths,1984,678-685.
    [46]俞德刚.钢的强韧化理论与设计[M].上海:上海交通大学出版社,1990,248-253.
    [47]孙珍宝等.合金钢手册[M].(上册)北京:冶金工业出版社,1984,126-132.
    [48]R.Wilson.Metallargy and Heat Treatment of Tool Steels[M].McGraw-Hill Book Company(UK)Limited,1975,378-385.
    [49]虞觉奇等.二元合金状态图集[M].上海:上海科学技术出版社,1987,712-718.
    [50]朱志红.低磷钢生产工艺研究[J].重型机械科技,2005(3):14-19.
    [51]贾书君,曲鹏等.磷和晶粒尺寸对低碳钢力学性能的影响[J].钢铁,2005,40(6):39-42.
    [52]张东彬,吴承建等.Fe-P与Fe-P-Ce合金中的晶界磷偏聚及其对脆性的影响[J].金属学报,1991,27(6):111-113
    [53]林文松.微量溶质元素在金属晶界的偏聚[J].热处理,2004,19(2):18-21.
    [54]Messlor Jr R W.The effect of phosphorus and sulfur on susceptibility to weld hot cracking in austenitic stainless steel[J].Weld Journal,1999,78(12):387-394.
    [55]Wilson E A,Edwards BC,Nasim M.A study of grain boundary embrittlement in an Fe-8Mn alloy[J].Material Science Engineering A,2000,281(1-2):56-60.
    [56]Swart HC,Greeff AP,Louw C W,et al.The influence of sulphur segregation on the oxidation of industrial FeCrMo steel[J].Corrosion Scince,2000,42(6):991-996.
    [57]吴平,贺信莱.晶界非平衡偏聚研究的回顾与展望[J]。金属学报,1999,35(10):1009-1013.
    [58]Mclean D.Grain Boundarie in Metals[M].London:Oxford University Press,1957:118
    [59]Aust K T,Hanneman G E,Niessen P,et al.Solute induced harding near grain boundaries in zone fefined metals[J].Acta Metall,1968,16:292-299.
    [60]贺信莱,诸幼义等。硼向奥氏体晶界的非平衡偏聚[J].金属学报,1982,18(1):11-16。
    [61]杨相寿.SG强效变质剂-一种含K,Na的多功能钢铁变质剂.山工铸造论文集,1985(1):55-62.
    [62]余宗森,卢先利.我国稀土在钢中应用的进展与前景[J].稀土信息,2001(10):4-6.
    [63]魏新刚,张英.稀土在钢中的应用与作用[J].内蒙古石油化工,2007(8):37-38.
    [64]李春龙.稀土在钢中的应用及需注意的一些问题[J].稀土,200,22(4):2-8.
    [65]易大伟,刘炳,吴笛.符合变质对铸造压铸模具钢组织和性能的影响[J].热加工工艺,2007,36(9):9-12.
    [66]《稀土在钢铁中的应用》编委会.稀土在钢铁中的应用[M].北京:冶金工业出版社,1987.
    [67]董若景.冶金原理[M].北京:机械工业出版社,1980,191-195.
    [68]沈利群.稀土元素在模具材料的应用[J].模具技术,1994(4):80-82..
    [69]陈列,佐辉,苗红生等.3Cr2W8V热作模具钢的稀土合金处理[J].特殊钢。2005,26(5):51-53.
    [70]王娟,王树奇,崔向红灯.V/C对铸造热作模具钢热疲劳性能的影响[J].铸造.,2007,56(3):251-255.
    [71]王庆亮,徐明华,续维,吴晓春等.热作模具钢h13热处理研究[J].上海钢研,2004(4):46-50.
    [72]兰杰.新型铸造模具钢的研究[M].上海:上海交通大学出版社,2001,12-13.
    [73]余心宏,董秋月,祁海军.压铸模型腔龟裂失效[J].1991(2):86-87.
    [74]Cui Xianghong,Wang Shuqi,Jiang Qichuan,Chen Kangmin.Research on Thermal Wear of Cast Hot Forging Die Steel Modified by Rare Earths[J].Journal of Rare Earths.2007,25(1):88-92.
    [75]Shu-qi WANG,Kang-min CHEN,Xiang-hong CUI,Qi-chuan JIANG,Bian HONG.E ffect of Alloying Elements on Thermal Wear of Cast Hot-Forging Die Steels[J].Journal of Iron and Steel Research,2006,13(5):53-59.
    [76]Sébastien Amiable,Stéphane Chapuliot,Andref Constantinescu,Antoine Fissolo.A comparison of lifetime prediction methods for a thermal fatigue experiment[J].International Journal of Fatigue,2006,28(7):692-706.
    [77]Anders Persson,Sture Hogmark,Jens Bergstrom.Thermal fatigue cracking of surface engineered hot work tool steels[J].Surface and Coatings Technology,2005,191(2-3):216-227.
    [78]Johnny Sjostrom,Jens Bergstrom.Thermal fatigue testing of chromium martensitic hot-work tool steel after different austenitizing treatments[J].Journal of Materials Processing Technology,2004,153-154(10):1089-1096.
    [79]C.M.D.Starling,J.R.T.Branco.Thermal fatigue of hot work tool steel with hard coatings[J].Thin Solid Films,1997,308-309(31):436-442.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700