用户名: 密码: 验证码:
酯基锡合成及其对PVC热稳定性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自荷兰Akzo公司发明第一个酯基锡化合物以来,关于酯基锡及其中间体的合成方法和复配研究一直非常活跃。近年来,仍然不断有新型酯基锡产品涌现并应用于制备PVC环保和透明制品,开发新型酯基锡化合物和改进合成方法是该领域的研究热点。我国在该领域的研究起步于上世纪九十年代,并进行了小规模的仿效生产,因工艺路线不成熟、事故频发和产品质量不稳定而没有实现大规模的产业化。其中产品质量问题是瓶颈问题,主要体现在产品放置几周后易出现沉淀、变色及臭味较重三个方面。本论文提出了合成酯基锡的新方法,突破了这一瓶颈问题,通过复配研究,制备了低毒环保型复合酯基锡热稳定剂。
     本文的研究内容主要由三部分组成:(1)混合溶剂法合成中间体酯基二氯化锡(丁酯)的合成路线研究,重点讨论合成条件对产物组份和性能的影响;(2)Na2CO3水溶液-有机溶剂混合溶剂法合成酯基锡热稳定剂的合成路线研究,考察产物的静、动态热稳定性和流变性能,并对NaHCO3法合成产物中产生沉淀的原因和种类进行分析;(3)对酯基锡(甲酯)与甲基硫醇锡、金属皂、抗氧剂双酚A和水滑石进行复配研究,制备酯基锡(甲酯)/甲基硫醇锡、酯基锡(甲酯)/双酚A/水滑石两种复合热稳定剂,并分析两种复合热稳定剂对PVC的热稳定机理。具体研究工作简要概括如下:
     本文采用三氯甲烷和四氢呋喃混合溶剂代替易燃易爆的乙醚作为反应介质,以Sn粉、丙烯酸丁酯分别与HCl气体、HCl气体和浓盐酸混合物、浓盐酸反应合成中间体酯基二氯化锡(丁酯)。重点研究了合成条件对中间体中各组分比例的影响。
     实验结果表明,反应温度和通入HC1的方式是影响反应的主要因素,所合成的中间体是(C4H9OCOCH2CH2)2SnCl2和(C4H9OCOCH2CH2)SnCl3的混合物,主要成份是(C4H9OCOCH2CH2)2SnCl2,其含量为88.97%,反应收率大于90%。
     本文用Na2CO3混合溶剂法和相转移催化剂,以酯基二氯化锡(甲酯)和酯基二氯化锡(丁酯)为中间体,巯基乙酸异辛酯为原料合成酯基锡(甲酯)和酯基锡(丁酯)。考察了合成方法、Na2CO3水溶液的质量分数和反应温度对产物收率、Sn含量和热稳定性的影响;通过HPLC、IR和1H-NMR等方法,重点研究了Na2CO3混合溶剂法和NaHCO3法合成酯基锡(甲酯)和酯基锡(丁酯)的组成和结构,分析了酯基锡(甲酯)易出现沉淀的原因;通过与甲基硫醇锡对比,详细考察了两种热稳定剂的静、动态热稳定性、透明性和流变性能。
     研究结果表明,NaHCO3法合成的酯基锡(甲酯)中的沉淀是酯基锡氢氧化物,是由中间体酯基二氯化锡与副产物水发生水解反应的副产物;采用Na2CO3混合溶剂法合成酯基锡(甲酯),由于反应体系是液相体系,在相转移催化剂的作用下,中间体酯基二氯化锡反应得更完全,因此减轻或消除了生成沉淀的可能性。所合成的产物放置3个月以上无沉淀,产物的静态热稳定时间好于NaHCO3法合成的产物;在影响酯基锡合成的反应条件中,Na2CO3水溶液的质量分数是最主要的,产物收率达到95%以上。在PVC加工温度下,酯基锡的加工稳定性、透明性和流变性能均能和甲基硫醇锡相媲美。
     本文考察了酯基锡(甲酯)与甲基硫醇锡、金属皂、抗氧剂双酚A和水滑石之间的协同效应,制备了酯基锡(甲酯)/甲基硫醇锡(1:1)复合热稳定剂和酯基锡(甲酯)/抗氧剂双酚A/水滑石(2:0.7:2.5)环保型复合热稳定剂。分析了两种复合热稳定剂抑制PVC的降解过程,提出了复合酯基锡对PVC的热稳定机理,测试了复合酯基锡/PVC复合体系的动态加工稳定性、透明性和力学性能。
     研究结果表明,酯基锡(甲酯)与甲基硫醇锡以1:1复配,其静态热稳定时间长于单独使用2份酯基锡(甲酯),比单独使用2份甲基硫醇锡静态热稳定时间短,两者复配,改善了酯基锡的初期着色性和加工安全性,透明性好;酯基锡与硬脂酸钙和硬脂酸钡的协同效应较好,硬脂酸锌与酯基锡不但没有协同效应,还会加速PVC的降解;环保、低毒的酯基锡(甲酯)/抗氧剂双酚A/水滑石(2:0.7:2.5)复合热稳定剂对PVC有良好的热稳定性和加工安全性。经钛酸酯改性的水滑石在PVC中有良好的分散性和相容性,进而提高了PVC复合体系的热稳定性和力学性能。分析结果表明,水滑石与酯基锡(甲酯)有较好的协同效应。
Studies on synthesis method and composite of ester-tin are in progress actively, since the first ester-tin compound was produced by Akso company Holland in 1976. In recent years, new (ester-tin) products are manufactured ceaselessly and applied to produce environment friendly and transparent PVC products, and the intensive study was concentrated on developing new synthesis routes and new compounds. Studies on this field started in the early 1990s in china, and the patterned manufactures were in progressed on small scales. However, the products were not industrialized massively because of immature process routes, accidents and unstable quality that precipitation, colouration and strong smell may occur within several days after being synthesized. In this paper, in order to solve this problem a new ester-tin synthesis route was proposed so that novel composite ester-tins with low tin content and low toxicity were prepared.
     Studies in this paper are comprised of three sections:studies on the synthesis of bis(β-butyloxycarbonylethyl) tin dichlorides intermediate by mixing solvents, which was focused on the effects of synthesis conditions to the components and quality of products; Studies on the synthesis methods of ester-tin thermal stabilizers synthesized by Na2CO3 mixing solvents, in which the static thermal stability, the dynamic stability and rheological behavior were tested; Studies on ester-tin, which composited with methyltin mercaptide, metal soap, antioxidant bisphenol a and HLDs were carried out. Two kinds of composite thermal stabilizers of ester-tin(methyl acralate)/methyltin mercaptide(1:1)and ester-tin(methyl acralate)/ antioxidant bisphenol a/HLDs (2:0.7:2.5)were prepared and the mechanisms to PVC were investigated by means of thermal analysis method.
     In this paper, bis(β-butyloxycarbonylethyl) tin dichlorides intermediate was synthesized by Sn powder, butyl acrylate reacted with HCl, HCl/hydrochloric acid and hydrochloric acid separately, and the effects of the reaction conditions such as the ratio of raw materials, temperature and reaction time to the component ratio of intermediate were studied. Results showed that the reaction temperature and the way to pump in HCl were the key factors, and the yield was over 90%. The intermediate was the mixture of (C4H9OCOCH2CH2)2SnCl2 and (C4H9OCOCH2CH2)SnCl3, and (C4H9OCOCH2CH2)2SnCl2 which accounted for 88.97% was the main component.
     Ester-tin(methyl acrylate) and ester-tin(butyl acrylate) were synthesized with Na2CO3 mixing solvents and transfer catalyst. The effects of synthesis methods, reaction temperature, reaction time, catalyst dosages and concentration of Na2CO3 aq. to the yield, Sn content and thermal stability were investgated. The components and structures of two products that produced by means of Na2CO3 aq. and NaHCO3 analyzed by HPLC, IR, and 1-NMR, and the reason of appearing precipitation was proposed. Static and dynamic thermal stability, transparency, rheologic properties of two products were investigated, and the mechanism to suppress PVC degredation was also analyzed by comparing with methyltin mercaptide.
     Results showed that the precipitation in ester-tin (methyl acrylate) synthesized by NaHCO3 was ester-tin hydroxide which was formed by the byproducts from the hydrolysis of bis(β-butyloxycarbonylethyl) tin dichlorides. Ester-tin (methyl acrylate) synthesized by Na2CO3 aq. was clear over 3 months, because in this reaction system, bis(β-butyloxycarbonylethyl) tin dichlorides reacted fully with mercaptoester catalyzed under transfer catalysist without ester-tin hydroxide was not formed in products. Thermal stability of the products made by Na2CO3 mixing solvents was better than that of making by NaHCO3. Ester-tin(butyl acrylate) synthesized by Na2CO3 mixing solvents was clear over 1 year, the concentration of Na2CO3 aq. was the most important of all the factors. The processing stability, transparency and flowing properties of two kinds of ester-tin were similar with methyltin mercaptide under PVC processing conditions.
     The synergism between ester-tin(methyl acrylate) with methyltin mercaptide, metal soaps, antioxidant bisphenol a and HLDs were investigated. How ester-tin (methyl acrylate)/methyltin mercaptide, ester-tin(methyl acrylate)/antioxidant bisphenol a/HLDs compound stabilizers to suppress the degradation process of PVC were analyzed. The dynamic thermal stability, transparency, and dynamic properties of compound ester-tin/PVC were also tested.
     Experimental results indicated that there was little synergism between ester-tin(methyl acrylate) and methyltin mercaptide, but the first stage pigmentation processing safety and transparency were improved; There were synergisms among barium stearate, calcium stearate and ester-tin(methyl acrylate), but zinc stearate not only had no synergistic effect but also could accelerate the degradation of PVC; Ester-tin(methyl acrylate)/bisphenol a/ HLDs modified by titanate (2:1:2.5) environmental compound stabilizers exhibited a better thermal stability, HLDs modified by titanate had not only a famous synergistic effect but also a better dispersity and consistency in PVC as well, so the thermal stability and mechanical properties of PVC composites were improved.
引文
[1]寇俊丽,林彦军,刘明明.无毒PVC热稳定剂的研究现状与发展趋势[J].中国氯碱,2006,(2):1-5.
    [2]BENSEMRA N, TRAN V H, GUYOT A.Thermal dehydrochlorination and stabilization of poly(vinyl chloride) in solution:part Ⅴ. influence of structural defects in the polymer[J]. Polymer Degradation and Stability,1990, 28:173-184.
    [3]马玫,胡行俊.PVC加工稳定性研究-复合铅体系[J].合成材料老化与应用,2008,37(1):16-19.
    [4]JINDRA P, KIM F, PAOELEN D. New insight into the formation of structural defects in poly(vinyl chloride)[J]. Marcromolecules,2005,38:6352-6366.
    [5]DEMIR H., MISIPAHIOGLU, BALKOSE D., et al. Effect of additives on flexible PVC foam formation[J]. Journal of Materials Processing Technology, 2008,195:144-153.
    [6]RADU B, MICHAEL F. Degradation and stabilization of poly(vinylchloride). V-Reaction mechanism of poly(vinyl chloride) degradation [J]. Polymer Degradation and Stability,1995,47(1):33-57.
    [7]蒋平平,崇明本,魏林玉.环境友好PVC复合热稳定剂研究新进展[J].塑料助剂,2002,(4):1-6.
    [8]TRAN V H, NGUYEN T.P., MOLINIE P. Thermal stabilization of PVC via the polaron mechanism[J]. Polymer Degradation and Stability,1996,53:279-288.
    [9]EMILIO E, ALFREDO T. Application of marine biotechnology in the production of natural biocides for testing on environmentally innocuous antifouling coatings[J].2007,4(2):191-202.
    [10]段儒哲,蒋平平,张晓燕.工业PVC用环保型热稳定剂的研究新进展[J].精细化学品,2007,15(6):1-5.
    [11]RONALD E H. Process for making organotin dihalides and trihalides and stabilizers prepared therefrom:United States,4080363[P].1978-03-21.
    [12]吕婵婷.新型有机高分子型锡热稳定剂合成[D].大连:大连理工大学,2007.3-5.
    [13]QINREN O, CHENWEN W. Determination of butyltin and octyltin stabilizers in poly(vinyl chloride) products by headspace solid-phase microextraction and gas chromatography with flame-photometric detection [J]. Anal Bioanal Chem, 2006,386:376-381.
    [14]IWAO O. Chemistry and fate of organotin antifouling biocides in the environment[J]. Hdb Env Chem,2006,5(Part O):17-50.
    [15]MADOKA O, TAKAOMI A, SAYAKA M, et al. Distribution and fate of organotin compounds in japanese coastal waters [J]. Water Air Soil Pollut,2007, (178):255-265.
    [16]MINKYU C, HEE-GU C, HYO-BANG M, et al. Spatial and temporal distribution of tributyltin (TBT) n seawater, sediments and bivalves from coastal areas of Korea during 2001-2005[J]. Environ Monit Access,2009, (151):301-310.
    [17]KARIN B. Organotin compounds in sediments from the gota Iv estuary[A]. Water, Air, and Soil Pollution,2002, (135):131-140.
    [18]KARL F. Worldwide occurrence of organotins from antifouling paints and effects in the aquatic environment[J]. Hdb Env Chem,2006, (5):71-100.
    [19]PABL O R, GUEZ G L, JORGE R E. Monitoring the degradation and solubilisation of butyltin compounds during in vitro gastrointestinal digestion using "triple spike" isotope dilution GC-ICP-MS[J]. Anal Bioanal Chem,2005, (381):3801-387.
    [20]于振花.海洋环境中有机锡的形态分析及其代谢降解研究[D].青岛:中国科学院研究生院,2009:5-6.
    [21]BETHANY B, ALESSANDRO M, LAWRENCE Q, et al. Dealkylation of organotin compounds by biological dithiols:toward the chemistry of organotin toxicity[J]. J. AM. CHEM. SOC,2003, (125):13316-13317.
    [22]潘朝群,康英姿.绿色环保PVC热稳定剂的研究进展[J].弹性体,2006,16(6):56-60.
    [23]张连春.有机锡热稳定剂在PVC加工中的应用[J].聚氯乙烯,2003,(5):41-43.
    [24]于广河,韩永和,江从宇,等.PVC用SS-218硫醇甲基锡热稳定剂[J].塑料,2003,32(3):18-19.
    [25]KARPIAK V C, EYER C L. Differential gliotoxicity of organotins [J]. Cell Biology and Toxicology,1999, (15):261-268.
    [26]方志永,吴斌,雍晓嘉,等.一起有机锡中毒事件调查分析[J].浙江预防医 学,2008,6(2):36-37.
    [27]胡建辉,何坚.一起亚急性三甲基氯化锡中毒事故的调查[J].职业与健康,2003,19(12):23-24.
    [28]汪涛锋,叶焙,江世履,等.三甲基氯化锡(TMT)的毒性及对甲基硫醇锡开发工作的几点建议[J].塑料助剂,2003(3):28-29.
    [29]AKZO N V Company. Process for making organotin dihalides and trihalides and stabilizers prepared:Holand,7790176[P].1976-12-24.
    [30]GARAD M V. Novel chelated compounds of β-carbobutoxyethyltin trichloride[J]. Inorg-Anica Chimica Acta,1984, (87):79-81.
    [31]XIANMEI S, XIANGGAO M. Crystal structure and spectroscopic and coordination properties of obis(4-fluorobenzohydroxamato) dimethyltin(V)[J]. Chinese Struct Chem,2008,27(6):684-686.
    [32]PIELICHOWSKI K, WIERZMOTYSIA B. Influence of polyesterurethane plasticizer on the kinetics of poly (vinyl chloride) decomposition process [J]. 2006,86(1):207-212.
    [33]JESSE E. Plastics additives and modifiers handbook[M]. New York: Van Nostrand Reinchold Association,1992:309-325.
    [34]PETER P K. Poly(vinyl chloride) stabilization mechanisms[J] Adv.Chem.Ser., 1968, (1):85-88.
    [35]TRAN V H, GUYOT A. Polaron mechanism in the thermal degradation of poly(vinyl chloride)[J]. Polymer Degradation and Stability,1991,32:93-103.
    [36]XUEGUANG Z, LIHUA T. Dehydrochlorination of PVC materials at high temperature[J]. Energy&Fuels,2003,17(4):900.
    [37]ARKIS E., BALKOSE D.. Thermal stabilisation of poly(vinyl chloride) by organotin compounds[J]. Polymer Degradation and Stability,2005, (88):46-51.
    [38]PETER P K. Poly(vinyl chloride) stabilization mechanisms[J] Adv.Chem.Ser., 1968, (1):89-90.
    [39]Vrandecic N S, Klaric I, Kovicic I. Thermooxidative degradation of poly(vinyl chloride) and chlorinated polyethylene with different Ca/Zn carboxylates[J]. Journal of Thermal Analysis and Calorimetry,2003, (74):171-180.
    [40]JIMENEZ A, BERENGUER V. Thermal degradation study of poly(vinyl chloride):kinetic analysis of thermogravimetric data[J]. J.Appl Polym.Sci,1993,50(9):1565-1573.
    [41]TRAIAN Z E, NEMES M. et al. Radiation modification of functional properties in PVC/mica electrical insulations[J]. Polymer Bulletin,2006,57: 83-90.
    [42]STARNES W H, PLITZ J. Stabilization of poly(vinyl chloride) by thiols. a mechanistic study[J]. Macromolecules,1978,19(2):373-382.
    [43]胡振锟.新型单烷基有机锡热稳定剂的合成机性能研究[D].南京:南京工业大学,2003:10-11.
    [44]MIKAEL R, THOMAS H. Degradation of poly(vinyl chloride) with increased thermal stability[J]. Macromolecules,1992, (25):6332-6340.
    [45]JOSEPH W B, RONALD E H. A possible mechanism to explain the synergistic effects exhibited by mixtures of alkyltin mercaptoesters as stabilisers for PVC[J]. Polymer Degradation and Stability,1981, (3):285-294.
    [46]唐爱东,黄可龙,唐有根.二-β-丁氧甲酰乙基,s,s’-双巯基乙酸异辛酯基锡合成新工艺[J].中南工业大学学报,2000,31(4):318-320.
    [47]JOSEPH W B, RONALD E H. A Study of mercaptoester/chlorine exchange equlibria exhibited by β-carboalkoxyethyltin compounds[J]. Journal of Organometallic Chemistry,1985, (284):171-180.
    [48]JOSEPH W B, DWORKIN RD. Spectroscopic studies of ligand exchange reactions in alkyl-and ester-tin PVC stabilizers [J]. Journal of Vinyl Technology 1986,8(1):16-19.
    [49]BETHANY B, ALESSANDRO M, LAWRENCE O J, et al. Dealkylation of organotin compounds by biological dithiols:toward the chemistry of organotin toxicity[J]. J.AM.CHEM.SOC.2003,125:13316-13317.
    [50]田玉华.新型有机锡热稳定剂的研究[D].哈尔滨:哈尔滨理工大学,2008:10-12.
    [51]孟兆会.纳米LDHs作为UPVC热稳定剂的研究[D].北京:北京化工大学,2006:7-9.
    [52]TRAIAN Z, NEMES E. Radiation modification of functional properties in PVC/mica electrical insulations [J]. Polymer Bulletin,2006,57:83-90.
    [53]胡中文,王建军,张露露.有机锡热稳定剂及其发展现状和趋势[J].2004,24(2):1-3.
    [54]OKSANG J, JONGHWA J, YOUNSOO S. Structure and properties of diester-tin(Ⅳ) complexes (CH2OOCCH2CH2)2Sn(Ch)CI (Ch= dimethyldithiocarbamate, dihydrobis(pyrazolyl) borate)[J]. Organometallics, 1991, (10):2217-2221.
    [55]HUTTON R E, OAKES V. Synthesis of novel substituded alkyltin halides[J]. Advan.Chem.Ser.1976,157:123-133.
    [56]魏荣宝,梁娅,卢士荣,等.双(B烷氧羰烷基)羧酸酯的合成及性质[J].化学工业与工程,1997,14(1):46-51.
    [57]魏荣宝,梁娅.酯基硫醇锡PVC热稳定剂的合成[J].应用化学,1997,14(3):78-80.
    [58]魏荣宝,梁娅,吴锦国.有机锡聚合物的界面合成,性质及应用研究[J].天津理工学院学院报,1995,11(4):49-56.
    [59]周智育,吴建新.二硬脂酸稀土马来酸二酯基锡化合物及制备方法和应用:中国,00134519.2[P].2000-12-11[2002-07-17].
    [60]申梓皓,戴险峰,黄君涛.一种新型有机锡类热稳定剂的合成[J].广东化工,2007,32(12):28-30.
    [61]申梓皓,戴险峰,黄君涛,等.一种新型有机锡类PVC热稳定剂的合成研究[J].广东化工,2007,34(11):30-33.
    [62]王岩.聚氯乙烯/水滑石纳米复合材料的热稳定和抑烟性[D].杭州:浙江大学,2007:5-7.
    [63]张莉.镁铝水滑石复合体系对PVC热稳定性能的调整[J].中国塑料,2005,19(5):79-83.
    [64]蒋金博.新型PVC热稳定剂合成、应用及机理研究[D].湖南:湖南大学,2006:34-38.
    [65]陈深情.改性剂对聚氯乙烯紫外光老化性能和抑烟性能的研究[D].成都:四川大学,2007:6-8.
    [66]齐明,钟理.新型有机锡热稳定剂—二丁基锡双(异辛酸巯基乙酯)的合成与表征[J].精细化工,2007,24(4):404-408.
    [67]PRICE L R. Thermal stabilizer compositions for halogen-containing vinyl polymers:United States,7488433[P].2009-12-10.
    [68]JOSEPH W B. Stabilizer composition for stabilizing polymers or copolymers of vinyl chloride:European,83200983.1[P].1984-08-02[1983-01-07].
    [69]刘又年.含硫锑系热稳定剂的合成及其对PVC的热稳定作用机理研究[D].长沙:中南大学,2002:56-57.
    [70]郑林萍,张普玉,于丽.聚氯乙烯辅助热稳定剂B-二酮的合成及应用[J]. 河南大学学报,2006,36(9):51-53.
    [71]NAIMA B, TRAN V H, ALAIN G, et al. Thermal dehydrochlorination and stabilization of poly(vinyl chloride) in solution:part IV-synergistic effects of β-diketone compounds and metal soap stabilizers[J], Polymer Degradation and Stability,1989, (24):89-11.
    [72]GUYOT A, BENSEMRA N, TRAN V H. Thermal dehydrochlorination and stabilisation of poly(vinyl chloride) in solution:part Ⅶ-quaternary stabilizer system with two metal soaps, dihydropyridine and β-diketone[J]. Polymer Degradation and Stability,1991, (32):321-329.
    [73]刘霞,胡应喜,李燕芸,等.二亚磷酸二硬脂醇季戊四醇酯的合成新工艺[J].石油化工高等学校学报,2002,15(6):37-39.
    [74]杨涛.亚磷酸酯在聚氯乙烯中的应用[J].塑料助剂,2003,(4):26-28.
    [75]马青赛,贾润礼.聚氯乙烯无毒热稳定剂的研究进展[J].塑料制造,2007,(8):63-66.
    [76]张洪江.PVC无毒Ca/Zn复合热稳定剂研究[D].天津:天津大学,2003:3-4.
    [77]张莉.铝镁水滑石为基础的复合稳定体系在PVC热稳定性中的应用研究[D].北京:北京化工大学,2006:6-7.
    [78]MOHAMED N A, SABAD M W, KHALIL K D, et al. Organic thermal stabilizers for rigid poly(vinyl chloride) III crotonal and cinnamal thiobarbituric acids[J]. Polymer Degradation and Stability,2001, (72):53-61.
    [79]GUPTA M C, VISWANATH S G. Role of metal oxides in the thermal degradation of poly(vinyl chloride)[J]. Ind. Eng. Chem. Res.1998, (37): 2707-2712.
    [80]钟士云,虞雷雷.氧化镁和氧化锌对PVC的热稳定作用研究[J].塑料助剂,2006,(5):35-38.
    [81]YOUNGJAE Y, SUNGSU K, JONGCHAN W, et al. Enhancement of the thermal stability, mechanical properties and morphologies of recycled PVC/clay nanocomposites[J]. Polymer Bulletin,2004, (52):373-380.
    [82]DIYA Y. Structure and thermal properties of exfolited pvc/layered silicate mamocomposites via in situ polymerization[J]. Journal of Thermal Analysis and Calorimetry,2006,84(2):355-359.
    [83]SHIGEO M. Method for inhibiting the thermal or ultraviolet degradation of thermo plastic resin composition having stability to degradation: United States, 4299759[P].1981-11-10.
    [84]SHIGEO M. Processor produeinga vinyl chloride polymer or copolymer in aqueou suspension using a hydrotaleite compoundas suspension stabilizer: United State,4710551[P].1987-12-01.
    [85]WEIBO X, ZHIFANG Z. Polyvinyl chloride/montmorillonite nanocomposites[J]. Journal of Thermal Analysis and Calorimetry,2004, (78): 91-99.
    [86]AOKI T, IIDA Y. Beta-Diketone and hydrotalcite stabilizer compositions for halogen-containing polymers and polymer compositions containing the same: United States,4427816[P].1984-01-24.
    [87]WATANABE K I. Electric wire and cable with coating/covering of polyvinyl chloride family resin composition:United States,7420118[P].2008-09-02.
    [88]李盛兴.聚氯乙烯/纳米水滑石复合树脂的制备和表征[D].杭州:浙江大学,2007:4-7.
    [89]晏苏学,黄建国.水滑石在钙锌复合体系中的热稳定性研究[J].塑料助剂,2007,(6):37-39.
    [90]吴旅良,杨基良,张顺华,等.改性水滑石在钙锌复合稳定剂中的应用研究[J].塑料助剂,2007,(6):29-36.
    [91]HIROHISA I, MASANORI I, YOSHINOBU N, et al. Dispersibility of macromolecular polyols as co-stabilizer in poly(vinyl chloride) and their stabilization effect combined with synergetic metal soap [J]. Polymers & Polymer Composites,2003,11(8):649-662.
    [92]刘芳,李杰.热稳定剂的耐热性、加工性及其对PVC制品透明性的影响[J].聚氯乙烯,2008,36(4):29-35.
    [93].LANIGAN D, WEINBERG E L. Organotin compounds:new chemistry and applications, chapter9[M]. England:Akzo Chemie Liverpool,1976:134-154.
    [94]GUPTA M C, VISWANATH S G. Role of metal oxides in the thermal degradation of poly(vinyl chloride)[J]. Ind.Eng.Chem.Res.,1998, (37): 2707-2712.
    [95]BENES M, MATUSCHEK V. Lifetime simulation and thermal characterization of pvc cable insulation materials[J]. Journal of Thermal Analysis and Calorimetry,2005, (86):1-8.
    [96]RONALD E H, OAKES V. Organotin compounds:new chemistry and applications, chapter8[M].England:Akzo Chemie, Liverpool,1976:122-133.
    [97]王芳,吴旅良.钙/锌复合热稳定剂591A在PVC电线电缆中的应用[J].塑料助剂,2007,62(2):36-39.
    [98]RONALD E H, JOSEPH W B, OAKES V.β-substituted alkyltin halides[J]. Journal of Organometallic Chemmistry,1978, (156):369-382.
    [99]JOSEPH W B, PETER H, RONALD E H. β-substituted alkyltin halides[J]. J Organometal Chem,1979, (170):21-37.
    [100]田来进,卓润生.新型PVC有机锡类稳定剂中间体-酯基锡的合成[J].山东化工,1996,(1):18-20.
    [101]泰安市精细化工总厂.有机锡稳定化合物及其制备方法和应用:中国,93118446.0[P].1994-07-06[1993-10-12].
    [102]梁亮,崔英德.二-(β-丁氧甲酰乙基锡二氯化物的合成新工艺[J].精细化工,1995,12(1):55-57.
    [103]魏荣宝,粱娅,卢世荣,等.双(β-烷氧羰烷基)锡羧酸酯的合成及性质[J].化学工业与工程1997,14(1):46-51.
    [104]潘明旺,邢胜男,袁金凤.有机锡参与合成P(BA-EHA)/PVC及共混改性PVC的结构与性能[J],聚氯乙烯,2007,(8):5-8.
    [105]魏荣宝,梁娅.酯基锡化合物的合成及性质的研究[J].天津理工学院学报,1997,13(1):68-73.
    [106]魏荣宝,梁娅.PVC有机锡热稳定剂的研究[J].应用化学,1995,12(5):29-32.
    [107]RONALD E H, JOSEPH W B. The synthesis and infrared spectra of organotin(Ⅳ) mercaptoester chlorides[J]. Journal of Organometallic Chemistry, 1976, (105):61-71.
    [108]唐爱东,黄可龙,唐有根.PVC热稳定剂酯基锡的研究现状与展望[J].现代塑料加工应用,1998,10(4):28-31.
    [109]钱庆荣,陈庆华,章文贡.有机锡热稳定剂的研究进展[J].塑料科技,2002,(147):34-36.
    [110]全国塑料标准化技术委员会.GB2917-2002.中华人民共和国国家标准[S].北京:国家标准总局,1983.
    [111]李霞,周丽霞,吴仁涛.二甲基二巯基乙酸异辛酯锡产品质量分析研究[J].2005,19(2):54-57.
    [112]白景美,李树材,曹常在.无味透明软质医用PVC-LMW/PVC-HMW共混物 的研究[J].中国塑料,2006,20(5):14-16.
    [113]刘奇祥.PVC透明粒料生产及配方研究[J].塑料,2000,29(4):44-45.
    [114]李杰,郑德.塑料助剂与配方设计技术[M].北京:化学工业出版社.2005:92-106.
    [115]HOWARD E K, WILLIAM H S.Utility of lewis bases in alkyltin thrithiolate stabilizer systems for poly(vinyl chloride)[J]. Macromolecules,1984, (17): 2241-2243.
    [116]张莉,乔辉,高翔,等.镁铝水滑石及其复合体系对PVC热稳定性能的调控[J].中国塑料,2005,19(5):79-83.
    [117]张莉,乔辉,丁筠,等.镁铝水滑石对PVC热稳定性能的影响[J].塑料工业,2005,(5):214-217.
    [118]刘颖,吴大鸣,郑秀婷,等.纳米水滑石对硬聚氯乙烯热降解行为的影响研究[J].塑料,2004,33(3):44-47.
    [119]吕杰斌.水滑石填充聚氯乙烯材料的制备及性能研究[D].北京:北京化工大学,2001:45-46
    [120]徐家友.聚氯乙烯无毒热稳定剂及其稳定机理的研究[D].成都:四川大学,2005:37-38.
    [121]STARNES W H, PLITZ I M. Chemical stabilization of poly(vinyl chloride) by prior reaction with di(n-butyl)tin bis(n-dodecyl mercaptide)[J]. Chemical Stabilization of Poly(vinyl chloride),1976,9(4):633-639.
    [122]高达利,吴大鸣,刘颖,等.纳米水滑石LDH的有机化改性及其在聚合物中的分散[J].塑料工业,2005,(8):54-56.
    [123]陈晓峰.增塑剂对聚氯乙烯紫外光老化性能影响的研究[D].成都:四川大学,2007:40-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700