用户名: 密码: 验证码:
烟曲霉和念珠菌属体外药敏实验相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章烟曲霉生物膜体外模型构建及其药物敏感性研究
     第一节烟曲霉生物膜体外模型构建及结构观察
     目的通过构建体外烟曲霉生物膜模型来研究生物膜的形成和结构特点。方法在预先放置细胞爬片的24孔组织培养板中进行烟曲霉生物膜构建(使用烟曲霉标准菌株AF293)。在不同的培养时间(O、2、4、6、8、10、12、16、24、48、72h)取出细胞爬片,进行FUN-1荧光染色。然后通过共聚焦激光扫描显微镜(CLSM)对生物膜的形成过程进行观察,并使用甲基四氮盐(XTT)减低法评价生物膜生长过程中活力的变化。结果烟曲霉生物膜形成过程中4h开始出现孢子的黏附;8h开始出现孢子的萌发;随后的10-16h菌丝迅速生长,相互交错,出现生物膜的立体三维结构;16-24h生物膜厚度继续快速生长;24h-72h其厚度不再增加。XTT检测结果发现在0-24h之间,生物膜活力随着生物膜成长时间而增加,直至24h后不再显著变化。结论烟曲霉能够在体外形成典型生物膜结构,该结构的形成过程及特征与其他微生物生物膜相似。
     第二节烟曲霉生物膜体外药物敏感性研究
     目的探讨烟曲霉生物膜对临床常用抗真菌药物的药物敏感性。方法建立96孔细胞培养板的烟曲霉生物膜模型。参照CLSI M-38A2推荐的丝状真菌微量液基稀释法对15株烟曲霉的悬浮状态及其生物膜状态进行药物敏感性测定。抗真菌药物包括两性霉素B、伏立康唑和米卡芬净。生物膜药物敏感性采用甲基四氮盐(XTT)减低法进行评价。结果烟曲霉悬浮状态对3种抗真菌药物的敏感性结果:15株菌株对三种抗真菌药物两性霉素B、伏立康唑、米卡芬净均为敏感;烟曲霉生物膜状态对3种抗真菌药物的敏感性结果:只有2株菌对伏立康唑敏感;15株菌对两性霉素B、米卡芬净都不敏感。结论烟曲霉生物膜的药物敏感性较游离状态明显降低,抑制生物膜的形成将有助于提高药物敏感性。
     第二章低热联合抗真菌药物对烟曲霉生物膜形成影响的研究
     第一节低热对烟曲霉生物膜形成影响的动态研究
     目的探索不同低热效应对烟曲霉生物膜形成的影响。方法将烟曲霉AF293的菌悬液(1×105孢子/m1)接种于预先放置细胞爬片的24孔组织培养板中,分别在三种不同低热效应下(37℃、39℃和41℃)进行培养,构建烟曲霉生物膜。分别于培养4、8、10、16、24、48、72h后使用FUN-1荧光染料染色,并运用激光共聚焦扫描显微镜(CLSM)观察各组生物膜生长情况及其厚度变化。实验数据采用t检验法进行统计分析。结果不同温度低热作用下对孢子的黏附率、黏附浓度无差异。但高温热效应能够加速孢子萌芽,加快菌丝的生长速度。但是同时高温也会导致菌丝的极性生长减弱,最终导致生物膜形成厚度的减小。结论低热效应能够减弱烟曲霉的极性生长状态,减弱其垂直方向生长的能力,进而将减少生物膜厚度形成。
     第二节低热联合抗真菌药物对体外烟曲霉生物膜药物敏感性影响的研究
     目的探讨不同低热作用联合不同抗真菌药物对烟曲霉生物膜活力的影响。方法建立96孔组织培养板烟曲霉生物膜模型。参照CLSI M-38A推荐的微量液基稀释法,同时联合不同的低热(37℃、39℃和41℃)对生物膜形成的早期阶段(4h)及晚期阶段(24h)进行药物敏感性测定。三种抗真菌药物浓度范围均为0.06~2.0μg/mL。使用甲基四氮盐(XTT)减低法和结晶紫分光光度法分别对生物膜活力和生物膜量进行检测。结果生物膜形成的早期阶段米卡芬净、伏立康唑各个药物浓度组在39℃或41℃作用下与37℃组无显著差异。然而两性霉素B组在37℃作用下,相对于39℃或41℃组能够更好的抑制生物膜的活力及其形成量。生物膜形成的晚期阶段,米卡芬净、伏立康唑和两性霉素B在39℃或41℃组,相对于37℃各个药物浓度组都能够更加有效的抑制生物膜活力及形成量。结论在生物膜形成的晚期阶段使用低热效应联合抗真菌药物将有可能成为有效的烟曲霉生物膜治疗手段。
     第三章卡泊芬净、米卡芬净对念珠菌药物敏感性实验的动态研究
     第一节卡泊芬净、米卡芬净对念珠菌体外药物敏感性的动态研究
     目的动态研究卡泊芬净、米卡芬净体外对念珠菌的药物敏感性。方法参照CLSI公布M-27A2方案微量液基稀释法分别测定卡泊芬净、米卡芬净、氟康唑对85株念珠菌的体外药物敏感性,并连续7d观测结果。结果48h卡泊芬净对白念珠菌、光滑念珠菌及其他念珠菌MIC50.MIC90中位数分别为0.030μg/mL.0.030μg/mL、0.060μg/mL、0.125μg/mL、0.125μg/mL、0.500μg/mL。48h米卡芬净对白念珠菌、光滑念珠菌及其他念珠菌MIC50、MIC90中位数分别为0.030μg/mL、0.060μg/mL、0.060μ/mL、0.250μg/mL、0.500μg/mL。48h氟康唑对白念珠菌、光滑念珠菌及其他念珠菌MIC80、MIC10o中位数分别128μg/mL、64μg/mL、128μg/mL、2μg/mL、32μg/mL。85株念珠菌中未见对3种药物同时耐药的菌株。卡泊芬净组白念珠菌MIC50、MIC9024h后不再升高;光滑念珠菌MIC5072h后不再升高,MIC90120h后不再升高;其他念珠菌组MIC50168h、MIC9096h后不再升高。米卡芬净组白念珠菌、光滑念珠菌MIC50、MIC9024h后不再升高;其他念珠菌MIC50、MIC9。在72h后不再升高。结论卡泊芬净、米卡芬净对念珠菌属有较好的抗菌作用,其中对白念珠菌、光滑念珠菌作用更强,且MICs随着作用时间延长而升高并存在药物特异性和念珠菌种属特异性。
     第二节卡泊芬净、米卡芬净对念珠菌体外药敏实验产生“矛盾现象”的动态研究
     目的:观察念珠菌在卡泊芬净、米卡芬净低浓度时被抑制、高浓度时出现菌落生长的“矛盾现象”的动态变化。方法在体外药敏实验中,采用CLSI公布的M-27A2方案微量液基稀释法分别测定85株念珠菌对卡泊芬净、米卡芬净产生“矛盾现象”的发生率。连续观察7d。结果48h,白念珠菌、光滑念珠菌、近平滑念珠菌、热带念珠菌、都柏林念珠菌及其他念珠菌种产生“矛盾现象”的发生率在卡泊芬净组分别为90.0%、20.0%、41.7%、37.5%、33.3%、28.6%,各菌出现该现象的起始,终点药物浓度分别为4/16、8/32、8/32、2/8、2/8、8/32μg/ml;48h后,仅近平滑念珠菌、光滑念珠菌和其他念珠菌种该现象发生率仍升高。48h,在米卡芬净组仅白念珠菌、热带念珠菌、都柏林念珠菌产生“矛盾现象”,发生率分别为5.O%、25.0%、33.3%,各菌出现该现象的起始/终点药物浓度分别为4/16、4/32、1/8μg/m1;72h,光滑念珠菌出现该现象。结论“矛盾现象”的产生及出现的时间存在念珠菌种间差异性和棘白菌素类药物特异性。卡泊芬净出现“矛盾现象”的发生率高于米卡芬净。各菌株对卡泊芬净、米卡芬净产生“矛盾现象”的发生率与MIC的高低无明显相关性。
Chapter I Construction of aspergillus fumigates biofilm in vitro and its susceptibility to antifungal agents
     Section I The construction and architecture study of aspergillus fumigates biofilm in vitro
     Objective To study the development and architecture characteristics of aspergillus fumigates biofilm in vitro. Method Aspergillus fumigates AF293was used to construct the aspergillus fumigates biofilm in vitro on a plastic cell culture coverslip in24-well microculture plates. The biofilms were checked at the time points0、2、4、6、8、10、12、16、24、48、72h. After stained by FUN-1, they were recorded by scanning laser confocal microscopy (CLSM). XTT assay was used to evaluate the metabolic activity of biofilm at various time points during biofilm formation. Result A.fumigatus conidial began to adhere to the support at4h and began to germinate at8h; Hyphae began to intertwine forming a monolayer after the quick hyphae growth (10-16h); The complex three-dimensional architecture was set up at24h without depth increase from24h to72h. The metabolic activity of biofilm was increasing as time went until24h. Conclusion A.fumigates biofilm was successfully established. The process of biofilm formation and the architecture characteristics were much the same as biofilm of other microbes.
     Section II Study on susceptibility of antifungal drugs against biofilm of aspergillus fumigates
     Objective To study the susceptibility of aspergillus fumigates biofilm to amphotericin B, voriconazole and micafungin. Method15strains suspension and biofilm of aspergillus fumigates were tested by a modified M38-A2method of CLSI biofilm in96-well microculture plates against amphotericin B, voriconazole and micafungin in vitro. XTT reduction assay was used to evaluate the effect of antifungal effect on biofilm. Result The susceptibility of the suspension of aspergillus fumigates to three antifungal agents was listed as follows:15strains were all susceptible to amphotericin B, voriconazole and micafungin; The susceptibility of the biofilm of aspergillus fumigates to three antifungal agents were listed as follows:only2strains were susceptible to voriconazole;15strains were all resistant to amphotericin B and micafungin. Conclusion Compared with suspension, mild heat stress can greatly reduce the susceptibility to antifungal agents.
     Chapter Ⅱ In vitro analyses of mild heat stress in combination with antifungal agents against Aspergillus fumigatus biofilm
     Section Ⅰ Dynamic study on the effect of mild heat stress against Aspergillus fumigatus biofilm formation
     Objective To study the effect of different kinds of mild heat stress aganist biofilm formation. Method Aspergillus fumigatus biofilm was formed on the support of plastic cell culture coverslips in24-well tissue culture plates after adding cell suspension of AF293. Confocal laser scanning microscopy (CLSM) was used to image and quantify Aspergillus fumigatus biofilm formation under three different regimens of continuous mild heat stress: at37,39, and41℃respectively. Results of statistical analyses were tested using Student's/test. Result CLSM analysis showed that higher temperatures induce earlier germination and greater hyphal elongation, but poorer polar growth and reduced biofilm thickness. Compared to37℃, the adhesion rate of conidia to coverslip and the conidial concentration on a coverslip at39℃or41℃is not different from a statistical point of view. Conclusion Mild heat stress has a negative regulation effect on polar growth of hyphae which will reduce the depth of biofilm.
     Section Ⅱ Study on mild heat stress in combination with antifungal drugs against Aspergillus fumigatus biofilm in vitro
     Objective To study the effect of mild heat stress in combination with antifungal agents against Aspergillus fumigatus biofilm. Method Fungal growth has been investigated under the above conditions in combination with antifungal drugs (amphotericin B (AMB), micafungin (MCF), voriconazole (VOC)) at early and late stages. A. fumigatus biofilms were evaluated in vitro using XTT formazan metabolic dye assay and crystal violet (CV) colorimetric assay. Result In the early stage (4h) of biofilm formation, we found that the combination of39or41℃treatment with antifungal drugs (MCF and VOC), produced no visible difference in biomass formation from similar treatments at37℃with the same antifungal drugs (MCF and VOC). Interestingly, AMB treatment at37℃inhibited early stage biofilm formation to a much greater extent than at39and41℃. On the other hand, at the late stage (24h) of biofilm formation, the mild heat treatments at39and41℃with AMB, MFC, and VOC inhibited biomass formation compared to37℃, suggesting a synergistic action of mild heat stress to enhance antifungal drug activity.
     Conclusion Antifungal drug improvement with mild heat treatment at late stage biofilm formation provides useful indications of possible effective strategies in clinical management of aspergillosis.
     Chapter Ⅲ Dynamic drug sensitivity test of caspofungin and micafungin to common pathogenic Candida
     Section I Dynamic study on the susceptibilities of caspofungin and micafungin to Candida spp. in vitro
     Objective To assess the dynamic susceptibilities of Candida spp. to caspofungin (CAS) and micafungin (MCF). Method Susceptibilities of Candida isolates to CAS、 MCF and fluconazole (FLZ) was determined by Microdilution Method based on CLSI M27-A2. The results were recorded for seven days. Result After48hours, the median of MIC50and MIC90of C. albicans, C. glabrata, other Candida spp to CAS were0.03and0.03μg/mL,0.06and0.125μg/mL,0.125and0.25μg/mL. The median of MIC50and MIC90of C. albicans, C. glabrata, other Candida spp to MCF were0.03and0.03μg/mL,0.06and0.06μg/mL,0.5and0.25μg/mL. The median of MIC50and MIC90of C. albicans, C. glabrata, other Candida spp. to FLZ were2and 128μg/mL,64and128μg/mL,2and32μg/mL. None of the85isolates of Candida spp. showed cross-resistances to CAS, MCF and FLZ. To CAS, there is no change on MIC50,MIC90of C. albicans after24hous.There was no increase on MIC50,MIC9o of C. glabrata after72hours and120hours respectively. There was no increase on MIC50, MIC90of other Candida spp. after168hours and96hours respectively. In the group of MCF, there was no change on MIC50, MIC90of C. albicans and C. glabrata. There was no increase on MIC50, MIC90of other Candida spp after72hours. Conclusion CAS and MCF may have a great antifungal activity to all of the Candida spp., especially to C. albicans, C. glabrata and the change of MICs which may be related to different kinds of echinocandin and different species of Candida would increase with the time of exposure to the drug.
     Section II Dynamic study on the "paradoxical effect" of echinocandins across candida species in vitro
     Objective To test the incidence of "Paradoxical effect" of candida species across caspofungin (CAS) and micafungin (MCF) in vitro susceptibilities dynamically.
     Method "Paradoxical effecf" of85isolates of different candida species to CAS and MCF was determined by M27-A Microdilution Method based on CLSI in vitro. The results were recorded for seven days. Result After48h, the incidence of "Paradoxical effecf" of C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, C. dubliniensis and other kinds of Candida species was90%,20%,41.7%,37.5%,33.3%,28.6%to CAS, and5%,0%,0%,25%,33.3%,0%to MCF, respectively. The startpoint/endpoint of this effect were4/16,8/16,8/32,2/8,2/8,8/32μg/ml to CAS, and4/16, NA, NA,4/32,1/8, NA (μg/ml) to MCF. After48h, the incidence of this effect of C. parapsilosis, C. glabrata, other kinds of Candida species in the group of CAS were still increasing. After48h, the incidence of this effect of C. albicans, C. glabratas in the group of MCF were still increasing. Conclusions "Paradoxical effect" of Candida species to CAS, MCF in vitro and the time to completely occur was specific in different candida species and different echinocandins. The incidence of "Paradoxical effecf" of CAS was higher than MCF. The incidence of "Paradoxical effecf" of Candida species to CAS, MCF had no relation with MICs.
引文
[1]Wilson LS, Reyes CM, Stolpman M, Speckman J, Allen K, Beney J. The direct cost and incidence of systemic fungal infections. Value Health.2002.5(1): 26-34.
    [2]Jarvis WR, Martone WJ. Predominant pathogens in hospital infections. J Antimicrob Chemother.1992.29 Suppl A:19-24.
    [3]Nucci M, Pulcheri W, Spector N, et al. Fungal infections in neutropenic patients. A 8-year prospective study. Rev Inst Med Trop Sao Paulo.1995.37(5):397-406.
    [4]Kanamaru A, Tatsumi Y. Microbiological data for patients with febrile neutropenia. Clin Infect Dis.2004.39 Suppl 1:S7-S10.
    [5]Rees JR, Pinner RW, Hajjeh RA, Brandt ME, Reingold AL. The epidemiological features of invasive mycotic infections in the San Francisco Bay area, 1992-1993:results of population-based laboratory active surveillance. Clin Infect Dis.1998.27(5):1138-1147.
    [6]Baddley JW, Stroud TP, Salzman D, Pappas PG. Invasive mold infections in allogeneic bone marrow transplant recipients. Clin Infect Dis.2001.32(9): 1319-1324.
    [7]Marr KA, Carter RA, Crippa F, Wald A, Corey L. Epidemiology and outcome of mould infections in hematopoietic stem cell transplant recipients. Clin Infect Dis. 2002.34(7):909-917.
    [8]Cornet M, Fleury L, Maslo C, Bernard JF, Brucker G. Epidemiology of invasive aspergillosis in France:a six-year multicentric survey in the Greater Paris area. J Hosp Infect.2002.51(4):288-296.
    [9]Denning DW, Marinus A, Cohen J, et al. An EORTC multicentre prospective survey of invasive aspergillosis in haematological patients:diagnosis and therapeutic outcome. EORTC Invasive Fungal Infections Cooperative Group. J Infect.1998.37(2):173-180.
    [10]Dasbach EJ, Davies GM, Teutsch SM. Burden of aspergillosis-related hospitalizations in the United States. Clin Infect Dis.2000.31(6):1524-1528.
    [11]Herbrecht R, Denning DW, Patterson TF, et al. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med.2002.347(6): 408-415.
    [12]Mora-Duarte J, Betts R, Rotstein C, et al. Comparison of caspofungin and amphotericin B for invasive candidiasis. N Engl J Med.2002.347(25): 2020-2029.
    [13]Kohno S, Masaoka T, Yamaguchi H, et al. A multicenter, open-label clinical study of micafungin (FK463) in the treatment of deep-seated mycosis in Japan. Scand J Infect Dis.2004.36(5):372-379.
    [14]Filler SG, Sheppard DC. Fungal invasion of normally non-phagocytic host cells. PLoS Pathog.2006.2(12):e129.
    [15]Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. Annu Rev Microbiol.1995.49:711-745.
    [16]Donlan RM. Biofilms:microbial life on surfaces. Emerg Infect Dis.2002.8(9): 881-890.
    [17]Reynolds TB, Fink GR. Bakers' yeast, a model for fungal biofilm formation. Science.2001.291(5505):878-881.
    [18]Mowat E, Butcher J, Lang S, Williams C, Ramage G. Development of a simple model for studying the effects of antifungal agents on multicellular communities of Aspergillus fumigatus. J Med Microbiol.2007.56(Pt 9):1205-1212.
    [19]Liu W, Li L, Sun Y, et al. Interaction of the echinocandin caspofungin with amphotericin B or voriconazole against Aspergillus biofilms in vitro. Antimicrob Agents Chemother.2012.56(12):6414-6416.
    [20]Bugli F, Posteraro B, Papi M, et al. In vitro interaction between alginate lyase and amphotericin B against Aspergillus fumigatus biofilm determined by different methods. Antimicrob Agents Chemother.2013.57(3):1275-1282.
    [21]Rajendran R, Mowat E, McCulloch E, et al. Azole resistance of Aspergillus fumigatus biofilms is partly associated with efflux pump activity. Antimicrob Agents Chemother.2011.55(5):2092-2097.
    [22]Yamaguchi T, Suzuki T, Arai H, Tanabe S, Atomi Y. Continuous mild heat stress induces differentiation of mammalian myoblasts, shifting fiber type from fast to slow. Am J Physiol Cell Physiol.2010.298(1):C140-148.
    [23]Griffin RJ, Dings RP, Jamshidi-Parsian A, Song CW. Mild temperature hyperthermia and radiation therapy:role of tumour vascular thermotolerance and relevant physiological factors. Int J Hyperthermia.2010.26(3):256-263.
    [24]Jiang Q, Cross AS, Singh IS, Chen TT, Viscardi RM, Hasday JD. Febrile core temperature is essential for optimal host defense in bacterial peritonitis. Infect Immun.2000.68(3):1265-1270.
    [25]Cowen LE, Lindquist S. Hsp90 potentiates the rapid evolution of new traits:drug resistance in diverse fungi. Science.2005.309(5744):2185-2189.
    [26]Cho T, Nagao J, Imayoshi R, Kodama J, Morotomi T, Kaminishi H. In vitro efficacy of continuous mild heat stress on the antifungal susceptibility of Candida albicans biofilm formation. Biol Pharm Bull.2012.35(8):1371-1373.
    [27]Edmond MB, Wallace SE, McClish DK, Pfaller MA, Jones RN, Wenzel RP. Nosocomial bloodstream infections in United States hospitals:a three-year analysis. Clin Infect Dis.1999.29(2):239-44.
    [28]Rangel-Frausto MS, Wiblin T, Blumberg HM, et al. National epidemiology of mycoses survey (NEMIS):variations in rates of bloodstream infections due to Candida species in seven surgical intensive care units and six neonatal intensive care units. Clin Infect Dis.1999.29(2):253-8.
    [29]Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals:analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis.2004.39(3): 309-17.
    [30]Wisplinghoff H, Seifert H, Wenzel RP, Edmond MB. Current trends in the epidemiology of nosocomial bloodstream infections in patients with hematological malignancies and solid neoplasms in hospitals in the United States. Clin Infect Dis.2003.36(9):1103-10.
    [31]Kibbler CC, Seaton S, Barnes RA, et al. Management and outcome of bloodstream infections due to Candida species in England and Wales. J Hosp Infect.2003.54(1):18-24.
    [32]Zaoutis TE, Argon J, Chu J, et al. The epidemiology and attributable outcomes of candidemia in adults and children hospitalized in the United States:a propensity analysis. Clin Infect Dis.2005.41(9):1232-1239.
    [33]Stevens DA, Espiritu M, Parmar R. Paradoxical effect of caspofungin:reduced activity against Candida albicans at high drug concentrations. Antimicrob Agents Chemother.2004.48(9):3407-3411.
    [1]Ellis M, Richardson M, de Pauw B. Epidemiology. Hospital medicine (London, England:1998).2000.61(9):605-609.
    [2]Lass-Florl C, Perkhofer S. In vitro susceptibility-testing in Aspergillus species. Mycoses.2008.51(5):437-446.
    [3]Denning DW, Marinus A, Cohen J, et al. An EORTC multicentre prospective survey of invasive aspergillosis in haematological patients:diagnosis and therapeutic outcome. EORTC Invasive Fungal Infections Cooperative Group. J Infect.1998.37(2):173-180.
    [4]Brakhage AA. Systemic fungal infections caused by Aspergillus species: epidemiology, infection process and virulence determinants. Curr Drug Targets. 2005.6(8):875-886.
    [5]Muller FM, Seidler M, Beauvais A. Aspergillus fumigatus biofilms in the clinical setting. Medical mycology.2011.49 Suppl 1:S96-S100.
    [6]Loussert C, Schmitt C, Prevost MC, et al. In vivo biofilm composition of Aspergillus fumigatus. Cell Microbiol.2010.12(3):405-410.
    [7]Mowat E, Lang S, Williams C, McCulloch E, Jones B, Ramage G. Phase-dependent antifungal activity against Aspergillus fumigatus developing multicellular filamentous biofilms. J Antimicrob Chemother.2008.62(6): 1281-1284.
    [8]Seidler MJ, Salvenmoser S, Muller FM. Aspergillus fumigatus forms biofilms with reduced antifungal drug susceptibility on bronchial epithelial cells. Antimicrob Agents Chemother.2008.52(11):4130-4136.
    [9]Mowat E, Butcher J, Lang S, Williams C, Ramage G. Development of a simple model for studying the effects of antifungal agents on multicellular communities of Aspergillus fumigatus. J Med Microbiol.2007.56(Pt 9):1205-1212.
    [10]李丽娟,陈伟,许辉,万喆,李若瑜,刘伟.曲霉生物膜的形成过程与结构特征.中国真菌学杂志.2011.06(2):93-97.
    [1]Ellis M, Richardson M, de Pauw B. Epidemiology. Hospital medicine (London, England:1998).2000.61(9):605-609.
    [2]Denning DW, Marinus A, Cohen J, et al. An EORTC multicentre prospective survey of invasive aspergillosis in haematological patients:diagnosis and therapeutic outcome. EORTC Invasive Fungal Infections Cooperative Group. J Infect.1998.37(2):173-180.
    [3]Brakhage AA. Systemic fungal infections caused by Aspergillus species: epidemiology, infection process and virulence determinants. Curr Drug Targets. 2005.6(8):875-886.
    [4]Herbrecht R, Denning DW, Patterson TF, et al. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med Overseas Ed.2002. 347(6):408-415.
    [5]Maschmeyer G, Haas A, Comely OA. Invasive aspergillosis:epidemiology, diagnosis and management in immunocompromised patients. Drugs.2007.67(11): 1567-1601.
    [6]Lass-Florl C, Perkhofer S. In vitro susceptibility-testing in Aspergillus species. Mycoses.2008.51(5):437-446.
    [7]Donlan RM. Biofilms:microbial life on surfaces. Emerg Infect Dis.2002.8(9): 881-890.
    [8]Muszkieta L, Beauvais A, Pahtz V, et al. Investigation of Aspergillus fumigatus biofilm formation by various "omics" approaches. Front Microbiol.2013.4:13.
    [9]Mowat E, Lang S, Williams C, McCulloch E, Jones B, Ramage G. Phase-dependent antifungal activity against Aspergillus fumigatus developing multicellular filamentous biofilms. J Antimicrob Chemother.2008.62(6): 1281-1284.
    [10]Seidler MJ, Salvenmoser S, Muller FM. Aspergillus fumigatus forms biofilms with reduced antifungal drug susceptibility on bronchial epithelial cells. Antimicrob Agents Chemother.2008.52(11):4130-4136.
    [11]Pierce CG, Uppuluri P, Tristan AR, et al. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat Protoc.2008.3(9):1494-1500.
    [12]Lass-Florl C, Perkhofer S. In vitro susceptibility-testing in Aspergillus species. Mycoses.2008.51(5):437-446.
    [13]Lass-Florl C. In vitro susceptibility testing in Aspergillus species:an update. Future Microbiol.2010.5(5):789-799.
    [14]Pfaller MA, Boyken L, Hollis RJ, et al. In vitro susceptibility of clinical isolates of Aspergillus spp. to anidulafungin, caspofungin, and micafungin:a head-to-head comparison using the CLSIM38-A2 broth microdilution method. J Clin Microbiol.2009.47(10):3323-3325.
    [15]Chandrasekar PH, Sobel JD. Micafungin:a new echinocandin. Clin Infect Dis. 2006.42(8):1171-1178.
    [1]Muller FM, Seidler M, Beauvais A. Aspergillus fumigatus biofilms in the clinical setting. Medical mycology.2011.49 Suppl 1:S96-S100.
    [2]Loussert C, Schmitt C, Prevost MC, et al. In vivo biofilm composition of Aspergillus fumigatus. Cell Microbiol.2010.12(3):405-410.
    [3]Petering RC, Webb C. Treatment options for low back pain in athletes. Sports Health.2011.3(6):550-555.
    [4]Hasday JD, Fairchild KD, Shanholtz C. The role of fever in the infected host. Microbes and infection/Institut Pasteur.2000.2(15):1891-1904.
    [5]Jiang Q, Cross AS, Singh IS, Chen TT, Viscardi RM, Hasday JD. Febrile core temperature is essential for optimal host defense in bacterial peritonitis. Infect Immun.2000.68(3):1265-1270.
    [6]Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA. Biofilm formation by the fungal pathogen Candida albicans:development, architecture, and drug resistance. J Bacteriol.2001.183(18):5385-5394.
    [7]Donlan RM. Biofilms:microbial life on surfaces. Emerg Infect Dis.2002.8(9): 881-890.
    [8]Cho T, Nagao J, Imayoshi R, Kodama J, Morotomi T, Kaminishi H. In vitro efficacy of continuous mild heat stress on the antifungal susceptibility of Candida albicans biofilm formation. Biol Pharm Bull.2012.35(8):1371-1373.
    [9]Harris SD, Momany M. Polarity in filamentous fungi:moving beyond the yeast paradigm. Fungal Genet Biol.2004.41(4):391-400.
    [10]Zhang L, Feng D, Fang W, et al. Comparative proteomic analysis of an Aspergillus fumigatus mutant deficient in glucosidase I (AfCwh41). Microbiology (Reading, England).2009.155(Pt 7):2157-2167.
    [11]Castillo-Lluva S, Alvarez-Tabares I, Weber I, Steinberg G, Perez-Martin J. Sustained cell polarity and virulence in the phytopathogenic fungus Ustilago maydis depends on an essential cyclin-dependent kinase from the Cdk5/Pho85 family. J Cell Sci.2007.120(Pt 9):1584-1595.
    [12]Meyer V, Arentshorst M, Flitter SJ, et al. Reconstruction of signaling networks regulating fungal morphogenesis by transcriptomics. Eukaryot Cell.2009.8(11): 1677-1691.
    [13]Chen S, Song Y, Cao J, et al. Localization and function of calmodulin in live-cells of Aspergillus nidulans. Fungal Genet Biol.2010.47(3):268-278.
    [14]Momany M. Growth control and polarization. Medical mycology.2005.43 Suppl 1:S23-25.
    [15]Scheffer J, Ziv C, Yarden O, Tudzynski P. The COT1 homologue CPCOT1 regulates polar growth and branching and is essential for pathogenicity in Claviceps purpurea. Fungal Genet Biol.2005.42(2):107-118.
    [1]Wilson LS, Reyes CM, Stolpman M, Speckman J, Allen K, Beney J. The direct cost and incidence of systemic fungal infections. Value Health.2002.5(1):26-34.
    [2]Jarvis WR, Martone WJ. Predominant pathogens in hospital infections. J Antimicrob Chemother.1992.29 Suppl A:19-24.
    [3]Nucci M, Pulcheri W, Spector N, et al. Fungal infections in neutropenic patients. A 8-year prospective study. Revista do Instituto de Medicina Tropical de Sao Paulo. 1995.37(5):397-406.
    [4]Rees JR, Pinner RW, Hajjeh RA, Brandt ME, Reingold AL. The epidemiological features of invasive mycotic infections in the San Francisco Bay area,1992-1993: results of population-based laboratory active surveillance. Clin Infect Dis.1998. 27(5):1138-1147.
    [5]Muller FM, Seidler M, Beauvais A. Aspergillus fumigatus biofilms in the clinical setting. Medical mycology.2011.49 Suppl 1:S96-S100.
    [6]Loussert C, Schmitt C, Prevost MC, et al. In vivo biofilm composition of Aspergillus fumigatus. Cell Microbiol.2010.12(3):405-410.
    [7]Mowat E, Lang S, Williams C, McCulloch E, Jones B, Ramage G. Phase-dependent antifungal activity against Aspergillus fumigatus developing multicellular filamentous biofilms. J Antimicrob Chemother.2008.62(6): 1281-1284.
    [8]Petering RC, Webb C. Treatment options for low back pain in athletes. Sports Health.2011.3(6):550-555.
    [9]Hasday JD, Fairchild KD, Shanholtz C. The role of fever in the infected host. Microbes and infection/Institut Pasteur.2000.2(15):1891-1904.
    [10]Jiang Q, Cross AS, Singh IS, Chen TT, Viscardi RM, Hasday JD. Febrile core temperature is essential for optimal host defense in bacterial peritonitis. Infect Immun.2000.68(3):1265-1270.
    [11]Cho T, Nagao J, Imayoshi R, Kodama J, Morotomi T, Kaminishi H. In vitro efficacy of continuous mild heat stress on the antifungal susceptibility of Candida albicans biofilm formation. Biol Pharm Bull.2012.35(8):1371-1373.
    [12]Ji Y, Yang F, Ma D, et al. HOG-MAPK signaling regulates the adaptive responses of Aspergillus fumigatus to thermal stress and other related stress. Mycopathologia.2012.174(4):273-282.
    [13]Brajtburg J, Powderly WG, Kobayashi GS, Medoff G. Amphotericin B:current understanding of mechanisms of action. Antimicrob Agents Chemother.1990. 34(2):183-188.
    [14]Winkler A, Arkind C, Mattison CP, Burkholder A, Knoche K, Ota I. Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress. Eukaryot Cell.2002.1(2):163-173.
    [15]Zhao C, Jung US, Garrett-Engele P, Roe T, Cyert MS, Levin DE. Temperature-induced expression of yeast FKS2 is under the dual control of protein kinase C and calcineurin. Mol Cell Biol.1998.18(2):1013-1022.
    [16]Arendrup MC, Perkhofer S, Howard SJ, et al. Establishing in vitro-in vivo correlations for Aspergillus fumigatus:the challenge of azoles versus echinocandins. Antimicrob Agents Chemother.2008.52(10):3504-3511.
    [17]Gardiner RE, Souteropoulos P, Park S, Perlin DS. Characterization of Aspergillus fumigatus mutants with reduced susceptibility to caspofungin. Medical mycology. 2005.43 Suppl 1:S299-305.
    [18]Mowat E, Williams C, Jones B, McChlery S, Ramage G. The characteristics of Aspergillus fumigatus mycetoma development:is this a biofilm. Medical mycology.2009.47 Suppl 1:S120-126.
    [19]Beauvais A, Schmidt C, Guadagnini S, et al. An extracellular matrix glues together the aerial-grown hyphae of Aspergillus fumigatus. Cell Microbiol.2007. 9(6):1588-1600.
    [20]Martins M, Uppuluri P, Thomas DP, et al. Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms. Mycopathologia. 2010.169(5):323-331.
    [21]Martins M, Henriques M, Lopez-Ribot JL, Oliveira R. Addition of DNase improves the in vitro activity of antifungal drugs against Candida albicans biofilms. Mycoses.2012.55(1):80-85.
    [22]Rajendran R, Williams C, Lappin DF, Millington O, Martins M, Ramage G. Extracellular DNA release acts as an antifungal resistance mechanism in mature Aspergillus fumigatus biofilms. Eukaryot Cell.2013.12(3):420-429.
    [23]Shopova I, Bruns S, Thywissen A, Kniemeyer O, Brakhage AA, Hillmann F. Extrinsic extracellular DNA leads to biofilm formation and colocalizes with matrix polysaccharides in the human pathogenic fungus Aspergillus fumigatus. Front Microbiol.2013.4:141.
    [24]Alcazar-Fuoli L, Clavaud C, Lamarre C, et al. Functional analysis of the fungal/plant class chitinase family in Aspergillus fumigatus. Fungal Genet Biol. 2011.48(4):418-429.
    [25]van Munster JM, van der Kaaij RM, Dijkhuizen L, van der Maarel MJ. Biochemical characterization of Aspergillus niger CfcI, a glycoside hydrolase family 18 chitinase that releases monomers during substrate hydrolysis. Microbiology (Reading, England).2012.158(Pt 8):2168-2179.
    [1]Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis:a persistent public health problem[J]. Clin Microbiol Rev,2007,20(1):133-163.
    [2]National committee for Clinical laborataory Standards. Reference method for broth dilution antifungal susceptibility testing of yeasts[S]. Approved standard M27-a.1997.
    [3]Pfaller MA, Boyken L, Hollis RJ, et al. In vitro susceptibility of invasive isolates of Candida spp. to anidulafungin, caspofungin, and micafungin:six years of global surveillance[J]. J Clin Microbiol,2008,46(9):3184-3185.
    [4]Mora-Duarte J, Betts R, Rotstein C, et al. Comparison of caspofungin and amphotericin B for invasive candidiasis [J]. N Engl J Med. 2002,347(25):2020-2029.
    [5]Pappas PG, Rotstein CM, Betts RF, et al. Micafungin versus caspofungin for treatment of candidemia and other forms of invasive candidiasis[J].Clin Infect Dis,2007,45(7):883-893.
    [6]Marco F, Pfaller MA, Messer SA, et al. Activity of MK-0991 (L-743,872), a new echinocandin, compared with those of LY303366 and four other antifungal agents tested against blood stream isolates of Candida spp[J]. Diagn Microbiol InfectDis,1998,32(1):33-37.
    [7]乔建军,刘伟,万喆,等.米卡芬净对分离自中国的念珠菌和曲霉临床株体外抑菌活性的研究[J].中国真菌学杂志,2007,2(1):5-9.
    [8]李岷,沈永年,吕桂霞,等.棘白菌素对氟康唑耐药的念珠菌体外药物敏感性的研究[J].中国真菌学杂志,2009,4(2):78-81.
    [9]Barry AL,Pfaller MA, Brown SD, et al.Quality control limits for broth icrodilution susceptibility tests of ten antifungal agents [J].J Clin Microbiol, 2000,38(9):3457-3459.
    [1]陈辉,刘维达.新型抗真菌药物卡泊芬净及其在临床的应用.国外医学皮肤性病学分册,2005,31(1):9-11.
    [2]Stevens DA, Espiritu M, Parmar R, et al. Paradoxical effect of caspofungin: reduced activity against Candida albicans at high drug concentrations. Antimicrob Agents Chemother,2004,48(9):3407-3411.
    [3]National committee for Clinical Laborataory Standards. Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard M27-a,1997.
    [4]Chamilo G, Lewis RE, Albert N, et al.Paradoxical effect of echinocandins across candida species in vitro:evidence for echinocandin-specific and candida species-related differences. Antimicrob Agents Chemother,2007,51(6): 2257-2259
    [5]Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis:a persistent public health problem. Clin Microbiol Rev,2007,20(l):133-163.
    [6]Fleischhacker M, Radecke C, Schulz B, et al. Paradoxical growth effects of the echinocandins caspofungin and micafungin, but not of anidulafungin, on clinical isolates of candida albicans and c. dubliniensis. Eur J Clin Microbiol Infect Dis,2008,27(2):127-131.
    [7]Stevens DA, Ichinomiya M, Koshi Y, et al. Escape of candida from caspofungin inhibition at concentrations above the MIC (paradoxical effect) accomplished by increased cell wall chitin; evidence for β-1,6-glucan synthesis inhibition by caspofungin. Antimicrob Agents Chemother,2006,50(9):3160-3161.
    [1]Denning DW. Echinocandin antifungal drugs. Lancet.2003.362(9390): 1142-1151.
    [2]Stevens DA, Espiritu M, Parmar R. Paradoxical effect of caspofungin:reduced activity against Candida albicans at high drug concentrations. Antimicrob Agents Chemother.2004.48(9):3407-3411.
    [3]Hall GS, Myles C, Pratt KJ, Washington JA. Cilofungin (LY121019), an antifungal agent with specific activity against Candida albicans and Candida tropicalis. Antimicrob Agents Chemother.1988.32(9):1331-1335.
    [4]Chamilos G, Lewis RE, Albert N, Kontoyiannis DP. Paradoxical effect of Echinocandins across Candida species in vitro:evidence for echinocandin-specific and candida species-related differences. Antimicrob Agents Chemother.2007. 51(6):2257-2259.
    [5]Ramage G, VandeWalle K, Bachmann SP, Wickes BL, Lopez-Ribot JL. In vitro pharmacodynamic properties of three antifungal agents against preformed Candida albicans biofilms determined by time-kill studies. Antimicrob Agents Chemother.2002.46(11):3634-3636.
    [6]Stevens DA, Espiritu M, Parmar R. Paradoxical effect of caspofungin:reduced activity against Candida albicans at high drug concentrations. Antimicrob Agents Chemother.2004.48(9):3407-3411.
    [7]曾荣,李岷,陈青等.念珠菌对棘白菌素类药物体外药敏实验产生“矛盾现象”的动态研究.中华皮肤科杂志.2012.45(4):243-245.
    [8]Antachopoulos C, Meletiadis J, Sein T, Roilides E, Walsh TJ. Comparative in vitro pharmacodynamics of caspofungin, micafungin, and anidulafungin against germinated and nongerminated Aspergillus conidia. Antimicrob Agents Chemother.2008.52(1):321-328.
    [9]Verwer PE, van Duijn ML, Tavakol M, Bakker-Woudenberg IA, van de Sande WW. Reshuffling of Aspergillus fumigatus cell wall components chitin and beta-glucan under the influence of caspofungin or nikkomycin Z alone or in combination. Antimicrob Agents Chemother.2012.56(3):1595-1598.
    [10]Ingham CJ, Schneeberger PM. Microcolony imaging of Aspergillus fumigatus treated with echinocandins reveals both fungistatic and fungicidal activities. PLoS One.2012.7(4):e35478.
    [11]Nishiyama Y, Hasumi Y, Ueda K, Uchida K, Yamaguchi H. Effects of micafungin on the morphology of Aspergillus fumigatus. J Electron Microsc (Tokyo).2005.54(1):67-77.
    [12]Clemons KV, Espiritu M, Parmar R, Stevens DA. Assessment of the paradoxical effect of caspofungin in therapy of candidiasis. Antimicrob Agents Chemother. 2006.50(4):1293-1297.
    [13]Bayegan S, Majoros L, Kardos G, et al. In vivo studies with a Candida tropicalis isolate exhibiting paradoxical growth in vitro in the presence of high concentration of caspofungin. Journal of microbiology (Seoul, Korea).2010. 48(2):170-173.
    [14]Petraitiene R, Petraitis V, Groll AH, et al. Antifungal efficacy of caspofungin (MK-0991) in experimental pulmonary aspergillosis in persistently neutropenic rabbits:pharmacokinetics, drug disposition, and relationship to galactomannan antigenemia. Antimicrob Agents Chemother.2002.46(1):12-23.
    [15]Wiederhold NP, Kontoyiannis DP, Chi J, Prince RA, Tam VH, Lewis RE. Pharmacodynamics of caspofungin in a murine model of invasive pulmonary aspergillosis:evidence of concentration-dependent activity. J Infect Dis.2004. 190(8):1464-1471.
    [16]Petraitis V, Petraitiene R, Groll AH, et al. Comparative antifungal activities and plasma pharmacokinetics of micafungin (FK463) against disseminated candidiasis and invasive pulmonary aspergillosis in persistently neutropenic rabbits. Antimicrob Agents Chemother.2002.46(6):1857-1869.
    [17]Petraitis V, Petraitiene R, Groll AH, et al. Antifungal efficacy, safety, and single-dose pharmacokinetics of LY303366, a novel echinocandin B, in experimental pulmonary aspergillosis in persistently neutropenic rabbits. Antimicrob Agents Chemother.1998.42(11):2898-2905.
    [18]Roberts J, Schock K, Marino S, Andriole VT. Efficacies of two new antifungal agents, the triazole ravuconazole and the echinocandin LY-303366, in an experimental model of invasive aspergillosis. Antimicrob Agents Chemother. 2000.44(12):3381-3388.
    [19]Wiederhold NP, Kontoyiannis DP, Prince RA, Lewis RE. Attenuation of the activity of caspofungin at high concentrations against candida albicans:possible role of cell wall integrity and calcineurin pathways. Antimicrob Agents Chemother.2005.49(12):5146-5148.
    [20]Gardiner RE, Souteropoulos P, Park S, Perlin DS. Characterization of Aspergillus fumigatus mutants with reduced susceptibility to caspofungin. Medical mycology. 2005.43 Suppl 1:S299-305.
    [21]Munro CA, Selvaggini S, de Bruijn I, et al. The PKC, HOG and Ca2+ signalling pathways co-ordinately regulate chitin synthesis in Candida albicans. Mol Microbiol.2007.63(5):1399-1413.
    [22]Stevens DA, White TC, Perlin DS, Selitrennikoff CP. Studies of the paradoxical effect of caspofungin at high drug concentrations. Diagn Microbiol Infect Dis. 2005.51(3):173-178.
    [23]Walker LA, Gow NA, Munro CA. Elevated chitin content reduces the susceptibility of Candida species to caspofungin. Antimicrob Agents Chemother. 2013.57(1):146-154.
    [24]Jimenez-Ortigosa C, Aimanianda V, Muszkieta L, et al. Chitin synthases with a myosin motor-like domain control the resistance of Aspergillus fumigatus to echinocandins. Antimicrob Agents Chemother.2012.56(12):6121-6131.
    [25]Shields RK, Nguyen MH, Press EG, Clancy CJ. Five-minute exposure to caspofungin results in prolonged postantifungal effects and eliminates the paradoxical growth of Candida albicans. Antimicrob Agents Chemother.2011. 55(7):3598-3602.
    [26]Szilagyi J, Foldi R, Bayegan S, Kardos G, Majoros L. Effect of nikkomycin Z and 50%human serum on the killing activity of high-concentration caspofungin against Candida species using time-kill methodology. Journal of chemotherapy (Florence, Italy).2012.24(1):18-25.
    [27]Shields RK, Nguyen MH, Du C, Press E, Cheng S, Clancy CJ. Paradoxical effect of caspofungin against Candida bloodstream isolates is mediated by multiple pathways but eliminated in human serum. Antimicrob Agents Chemother.2011. 55(6):2641-2647.
    [28]Pappas PG, Rotstein CM, Betts RF, et al. Micafungin versus caspofungin for treatment of candidemia and other forms of invasive candidiasis. Clin Infect Dis. 2007.45(7):883-893.
    [29]Betts RF, Nucci M, Talwar D, et al. A Multicenter, double-blind trial of a high-dose caspofungin treatment regimen versus a standard caspofungin treatment regimen for adult patients with invasive candidiasis. Clin Infect Dis. 2009.48(12):1676-1684.
    [30]Klont RR, Mennink-Kersten MA, Ruegebrink D, et al. Paradoxical increase in circulating Aspergillus antigen during treatment with caspofungin in a patient with pulmonary aspergillosis. Clin Infect Dis.2006.43(3):e23-25.
    [31]Ota S, Tanaka J, Kahata K, et al. Successful micafungin (FK463) treatment of invasive pulmonary aspergillosis in a patient with acute lymphoblastic leukemia in a phase Ⅱ study. Int J Hematol.2004.79(4):390-393.
    [1]Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis:a persistent public health problem. Clin Microbiol Rev,2007,20(1):133-163.
    [2]Bassetti M, Ansaldi F, Nicolini L, et al. Incidence of candidaemia and relationship with fluconazole use in an intensive care unit.. J Antimicrob Chemother,2009, 64(3):625-629.
    [3]Ariizumi K, Shen GL, Shikano S, et al. Identification of a novel, dendritic cell-associated molecule, dectin-1, by subtractive cDNA cloning. J Biol Chem, 2000,275(26):20157-20167.
    [4]Herre J, Gordon S, Brown GD. Dectin-1 and its role in the recognition of β-glucans by macrophages. Mol Immunol,2004,40(12):869-876.
    [5]Willment JA, Gordon S, Brown GD. Characterization of the human beta -glucan receptor and its alternatively spliced isoforms. J Biol Chem,2001,276(47): 43818-43823.
    [6]Taylor PR, Brown GD, Reid DM, et al. The beta-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J Immunol,2002,169(7):3876-3882.
    [7]Gantner BN, Simmones RM, Underhill DM. Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J,2005,24(6): 1277-12786.
    [8]Gross O, Gewies A, Finger K, et al. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature,2006,442(7103):651-656.
    [9]Gringhuis SI, Dunnen JD, Litjens M. et al. Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-κB activation through Raf-1 and Syk. Natur Immunol,2009,2(15):203-213
    [10]Netea MG, Brown GD, Kullberg BJ, et al. An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol,2008,6(1): 67-78.
    [11]Rubin-Bejerano I, Abeijon C, Magnelli P, et al. Phagocytosis by human neutrophils is stimulated by a unique fungal cell wall component. Cell Host Microbe,2007,2(1):55-67.
    [12]Kennedy AD, Willment JA, Dorward DW, et al. Dectin-1 promotes fungicidal activity of human neutrophils. Eur J Immunol,2007,37(2):467-478.
    [13]Brown GD, Herre J, Williams DL et al. Dectin-1 mediates the biological effects of beta-glucans. J Exp Med,2003,197(9):1119-1124.
    [14]Taylor PR, Tsoni SV, Willment JA, et al. Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol,2007,8(1):31-38.
    [15]LeibundGut-Landmann S, Gross O, Robinson MJ, et al. Syk-and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol.2007,8(6):630-638.
    [16]Volpe E, Servant N, Zollinger R, et al. A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat Immunol,2008,9(6):588-590.
    [17]Huang W, Na L, Fidel PL, et al. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis,2004,190(3):624-631.
    [18]Li M, Liu ZH, Chen Q, et al. Insoluble beta-glucan from the cell wall of Candida albicans induces immune responses of human THP-1 monocytes through Dectin-1. Chin Med J (Engl),2009,122(5):496-501.
    [19]Gantner BN, Simmons RM, Canavera SJ, et al. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor2. J Exp Med,2003, 197(9):1107-1117.
    [20]Ferwerda G, Meyer-Wentrup F, Kullberg BJ, et al. Dectin-1 synergizes with TLR2 and TLR4 for cytokine production in human primary monocytes and macrophages. Cell Microbiol,2008,10(10):2058-2066

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700