用户名: 密码: 验证码:
三苯乙炔基硅烷树脂及其SiC/C(TiN/C)复合木陶瓷的制备、结构和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文的主要目标是:先制备高耐热、高碳率的热固性三苯乙炔基硅烷树脂,然后以它们为基体,利用木材的天然构造,结合Sol-Gel直接浸渍方法,经过热处理,制备SiC/C(TiN/C)复合木陶瓷;再研究树脂和复合木陶瓷的结构与性能,为SiC/C(TiN/C)复合木陶瓷的进一步工业化应用提供理论和实验依据。
     主要创新工作如下:
     1)用乙烯基三氯硅烷和苯基三氯硅烷为原料,苯乙炔基镁为格氏试剂,通过格氏反应制备了乙烯基三苯乙炔基硅烷(VTPES)和苯基三苯乙炔基硅烷(PTPES)。用FT-IR、1H-NMR、13C-NMR和~(29)Si-NMR等手段分析证实,合成的化合物为目标产物。用DSC分析显示,单体VTPES的熔点为85℃,聚合起始温度为289℃;单体PTPES的熔点在115℃,聚合起始温度为336℃,它们的加工窗口都在200℃以上。用kissinger方法处理DSC曲线,经过计算得到两种单体的活化能分别为114.25kJ/mol和153.89kJ/mol,反应级数为0.92和0.93,符合一级动力学方程。用TGA分析显示,两种单体的聚合物的热分解温度在550℃左右,经过800℃处理后聚合物的残炭量可达75%。
     2)分别用氧化铁和金属镍为催化剂,研究了不同温度和催化剂对聚乙烯基三苯乙炔基硅烷树脂(PVTPES)石墨化程度的影响。用XRD分析表明,当热处理温度增加到1590℃时,聚合物的石墨化度超过86%,随着催化剂含量的增加,晶面间距d002从0.3439nm降低到0.3361nm,接近理想石墨的晶面间距。热处理温度大大低于无催化剂情况下石墨化所要求的温度。用电镜分析显示,石墨化产物结晶度高,形态多样,呈环状、棒状或胶囊状。比较氧化铁和镍在1590℃下的催化效果:当镍含量从3%增加到15%时,晶面间距d002在0.3372nm左右变化,而氧化铁催化体系其晶面间距d002逐渐降低到0.3361nm;拉曼图谱分析显示镍催化硅烷树脂的R值为1.03,而氧化铁催化其R值为0.51,氧化铁在1590℃下显示更好的催化石墨化效果。
     3)系统研究了溶剂极性、热处理温度和木粉粒子尺寸对木粉自身相对结晶度和热稳定性的影响。研究发现:随着溶剂极性的增加,木粉的被抽提物从3.75%增加到7.22%,相对结晶度从46.5%增加到52.9%,热分解温度从319℃降低到304.7℃,其原因是弱极性溶剂有助于木粉中热稳定性较高的木质素的去除;同样当热处理温度处于低于170℃的范围时,随着温度的增加,木粉的相对结晶度略有升高,从46.9%增加到50%;温度超过200℃,木粉中纤维素的结晶区被破坏,木粉的热稳定性降低。当木粉尺寸从35μm增加到250μm时,木粉的相对结晶度从42.6%增加到45.8%,受传热滞后影响,木粉的热分解温度从293.4℃增加到329.5℃。
     4)以氧化铁和镍为催化剂,研究了不同含量和温度对杉木粉催化石墨化的影响,探讨了催化机理。用XRD分析显示,当热处理温度从900℃增加到1590℃时,杉木粉的石墨化度可达95%;当催化剂含量增加到15%时,d002接近于0.3354nm,石墨化度几乎达到100%。并且随着温度的增加,氧化铁与碳反应生成碳化铁,催化石墨化过程遵循碳化物形成-分解机理进行;而镍在升温过程中保持稳定,催化石墨化过程遵循溶解-析出机理。对比氧化铁和镍的XRD和拉曼图谱分析表明,在1400℃下镍对木粉具有更好的催化石墨化效果,而在1590℃下炭化6小时,两种催化体系的R值均为0.6,显示相同的催化效果。
     5)用Sol-Gel方法,成功将正硅酸四乙酯(TEOS)溶胶浸渍到炭化杉木的管胞和纹孔中。当反复浸渍次数到9次时,炭化杉木增加量可达145.2%。将浸渍物分别在800℃和1590℃下炭化,经SEM分析显示,较高温度下,杉木炭的管胞和纹孔结构同时收缩,管胞壁变薄,从2-4nm减少到小于2nm,同时SiO_2粒子逐渐由无定形向晶态转换,并发生SiO_2粒子与碳源之间的固-固和液-固反应,从而生物质C逐渐向SiC转化,最终形成SiC木陶瓷。
     将钛酸四丁酯(TNBT)直接浸渍到杉木炭中。在温度达800℃时,TNBT分解生成的无定形TiO_2完全变成晶态,然后逐渐与保护气氛氮气反应,到1200℃时完全生成TiN晶粒,这些TiN粒子逐渐沉积到炭的表面形成TiN木陶瓷。随着温度升到1590℃,由于TiN状态稳定,体系仅发生炭的石墨化转化。经过N2等温吸附脱附测试显示:TiN木陶瓷孔结构的一部分为杉木炭原有的孔,孔径约在4nm左右;另一部分为TiN晶粒生成所产生的新孔,孔径约12nm左右。
     将单体VTPES常温下分别浸渍到SiC木陶瓷和TiN木陶瓷中,热处理后制得SiC/C复合木陶瓷和TiN/C复合木陶瓷。经过摩擦性能测试:两种复合木陶瓷均具有很好的耐磨性,随着浸渍次数和热处理温度的增加,两种陶瓷材料的磨耗量逐渐降低并趋于定值。
The purpose of our investigation is to prepare polytri(phenylethynyl)]silane resin with highthermal stability and char yield, then using this resin as matrix to synthesize SiC/C(TiN/C)composite woodceramics, which was prepared in virtue of nature structure of fir by Sol-Gelimpregnation method via thermal treatment. Furthermore, the studies of structure and properties ofresin and ceramics provide theoretical and experimental foundation for the industrialization of SiC/C(TiN/C) composite woodceramics.
     The major creative works are listed as following:
     1) Using vinyltrichlorosilane and phenyltrichlorosilane as raw materials, phenylethynylmagnesium as Grignard reagent, vinyl tri(phenylethynyl)silane〔(ph-C≡C)3-Si-C=CH2〕(VTPES) andphenyl tri(phenylethynyl)silane〔(ph-C≡C)3-Si-ph〕(PTPES) were synthesized by Grignard reaction.Their molecular structures were characterized by means of nuclear magnetic resonance (1H-NMR,13C-NMR,~(29)Si-NMR), Fournier transform infrared (FT-IR). The corresponding kinetic parameters,such as activation energy (Ea), pre-exponential factor (A) and the order of the reaction (n), were alsoobtained according to the Kissinger method by differential scanning calorimetry (DSC). The resultsshow that their melting points of VTPES and PTPES were84℃and116℃, and their curing peaktemperatures were285℃and336℃, respectively, which indicated that the two monomers had botha wide processing window over200℃. The activation energy was114.25kJ/mol and153.89kJ/mol,and the order of the reaction (n) was0.92and0.93. The curing reaction rates were consistent with afirst-order kinetic equation. TGA showed that the decomposed temperature of the two polymers wasabout550℃and the char yield was beyond75%at800℃.
     2) Catalytic graphitization of poly [vinyl tri(phenylethynyl)]silane resin (PVTPES) with ironoxide and nickel between900℃and1590℃under nitrogen atmosphere was investigated. Theeffects of the catalyst content and the heat treatment temperature (HTT) on the graphitization werestudied. The structural change in the graphitization process was also characterized by X-raydiffraction (XRD), High-resolution transmission electron microscopy (HRTEM) and laser Raman(LR). The XRD results show that the (002) diffraction angle increased from25.95°to26.50°, andthe graphitization degree was also beyond86%when the HTT increased from900℃to1590℃,which indicated that the two catalysts had excellent catalytic effect at low temperature. The (002)diffraction angle closed to26.50°and the graphitization degree closed to86%when the catalystcontent increased from3%to15%. HRTEM images indicate that the graphitic carbon materialspossessed a high graphitization with coil, rod and capsule morphology.
     Comparative analysis of catalytic effect of Ni and Fe2O3was investigated at1590℃. The (002)diffraction angle changed between26.40°and26.42°with increasing the catalyst content, and thecorresponding R (ID/IG) value was1.03. While the diffraction angle closed to the26.56°using ironoxide as catalyst and the corresponding R value was0.51, which indicated that iron oxide was moreeffective than nickel at1590℃.
     3) The effects of solvent polarity, HTT and particle size on relative crystallinity index (Ic) andthermal stability of fir powder were investigated by XRD, thermal gravity analysis (TGA),derivative thermogravimetry (DTG) and FT-IR. The results show that the percentage of extractionincreased from3.75%to7.22%when the solubility parameter varied from7.3to12.1, and the Icalso increased from46.5%to52.9%. On the contrary, the decomposed temperature decreased from319℃to304.7℃. When the HTT was at below170℃, the Ic was increased from46.9%to50%as the increase of temperature. Beyond200℃, the crystalized cellulose began to melt, resulting in adecrease of thermal stability. The Ic slightly decreased from46.8%to42.6%and the thermalstability decreased from329.5℃to293.4℃as the particle sizes decreased from400μm to35μm.
     4) Catalytic graphitization of fir powder with iron oxide and nickel between900℃and1590℃under nitrogen atmosphere was investigated. The effects of the catalyst content, the HTT andholding time on the graphitization were analyzed, and the structural change was also studied byXRD, HRTEM and LR. XRD results show that the (002) diffraction angle increased from26.04°to26.50°, and the graphitization degree was also beyond95%when the HTT increased from900℃to1590℃. Noticeably, the iron oxide reacted with carbon to form metal carbide and the graphiticcarbon was formed by carbide formation-decomposition mechanism. While the nickel waschemically stable in the experiments and the catalytic graphitic mechanism were carbondissolution-precipitation mechanism. The (002) diffraction angle closed to26.56°and thegraphitization degree was also increased from50%to100%when the catalyst content increasedfrom3%to15%. Comparative analysis of catalytic effect of Ni and Fe2O3showed that nickel wasmore effective than iron oxide at1400℃. But the R values were both0.6when the holding timewas6h at1590℃, which indicated that the two catalysts had the same catalytic effect when the heattreated time was long enough.
     5) Using tetraethylorthosilicate (TEOS) as precursor, SiO_2/charcoal hybrid materials withinterpenetrating network were fabricated by Sol-Gel method. The results show that the weight addedto145.2%when the impregnation times repeated nine times. In the course of carbonization of hybridmaterials from800℃to1590℃, SiO_2particles transformed from amorphous into crystalline and theSiO_2reacted with carbon to form SiC particles or whiskers by solid-solid or solid-liquid reaction,resulting in the formation of SiC woodceramics.
     The direct impregnation of Titanium n-butoxide (TNBT) show that the TiO_2particles obtainedby condensation of TNBT transformed from amorphous to crystalline at low800℃accompany withthe reaction with N2which acted as protection atmosphere to form TiN particles. When thetemperature arrived at1200℃, the reaction finished and the TiN woodceramics was composed ofamorphous carbon, graphitic carbon and TiN crystal. While the TiN crystal was chemical stabilityand the ceramics only transformed from amorphous carbon to graphitic carbon when HTT increasedto1590℃. The N2adsorption and desorption isotherm showed that the pore of the TiNwoodceramics consisted of two parts: one was the original pore structure of fir charcoal with4nm,although the impregnation of TNBT decreased the pore volume, the effect of TNBT on porediameter was slight; another was the pore of TiN crystal with12nm.
     The SiC/C (TiN/C) composite woodceramics were prepared by impregnating the VTPESmonomer in Si (Ti) woodceramics at ambient temperature, then cured and carbonized at designedtemperature. Experimental investigation was conducted on the friction and wear properties of SiC/C(TiN/C) composite woodceramics. The results showed that the wear percentage closed to a certainvalue with increasing the impregnation times and carbonized temperature due to the lubrication ofgraphitic carbon grain.
引文
[1] Liu J Z, Lam J W Y, Tang B Z. Acetylenic Polymers: Syntheses, Structures, andFunctions. Chem. Rev.,2009,109:5799-5867
    [2] Corriu R J P, Douglas W E, et al. Synthesis of Poly (alkynylsilanes) Having Various AromaticGroups in the Backbone. J. Polym. Sci. Polym. Lett.,1990,28(13):431-437
    [3] Itoh M, Inoue K, Iwata K, et al. New Highly Heat-resistant Polymers Containing Silicon:Poly(silyleneethynylenephenyleneethynylene)s. Macromolecules.1997,30(4):694-701
    [4] Buvat P, Jousse F. Synthesis and Properties of New Processable Type Polyarylacetylenes.International SAMPLE Symposium and Exhibition,2001,46:134-144
    [5] Itoh M, Inoue K, Iwata K. A Heat-Resistant Silicon-Based Polymer. Adv. Mater.,1997,9(15):1187-1190
    [6] Ishikawa J, Inoue K, Itoh M. Dehydrogenative Cross-coupling Reactions between Phenylsilaneand Ethynylbenzene in the Presence of Metal Hydrides. J. Organomet. Chem.,1998,552(1-2):303-311
    [7] Itoh M, Inoue K, Hirayama N. Fiber Reinforced Plastics Using a New Heat-resistant SiliconBased Polymer. J. Mater. Sci.,2002,37:3795-3801
    [8] Liu H Q, Harrod J F. Copper(I) Chloride-catalyzed Cross-dehydrocoupling Reactions betweenSilanes and Ethynyl Compounds: A New Method for the Copolymerization of Silanes and Alkynes.Can. J. Chem.,1990,68(7):1100-1104
    [9] Zhou, Q, Xia, F, Ni, L Z, et al. Novel Heat Resistant Methyl-tri (phenylethynyl)silane Resin:Synthesis, Characterization and Thermal Properties. J. Appl. Polym. Sci.,2006,102:2488-2492
    [10]陈麒,倪礼忠,李杨,等.苯乙炔硅烷及其制备方法. CN Pat:1421446A,2004
    [11]王茂章,杨全红,成会明.碳的结构及其同素异性体.炭素技术,2001,(1):23-28
    [12]贺福.碳的结构.炭素,1984,3:12-20
    [13]稻垣道夫,白石稳,中沟实,等.石墨化度的评价.刘洪波译.炭素技术,1991,5:38-43
    [14]陈蔚然.石墨化过程的热力学和动力学分析.炭素,1982,1:11-16
    [15] Fitzer E, Weisenburger S. Graphitization Studies by in Situ X-ray Technique. Carbon,1974,12(6):657-666
    [16]蒋文忠.炭素工艺学.北京:冶金工业出版社,2009,388
    [17]李玉敏.催化石墨化.炭素,1982,(2):18-20
    [18] Oya A, Otani S. Catalytic Graphitization of Carbon by Various Metals. Carbon,1979,17(2):131-137
    [19]日本炭素材料学会,新炭素材料入门山.中国金属学会炭素材料专业委员会译,1999,37
    [20] Weisweiler W, Subramanian N, Terwiesch B. Catalytic Influence of Metal Melts on theGraphitization of Monolithic Glasslike Carbon. Carbon,1971,9(6):755-761
    [21] Oya A, Yamashita R, Otani S. Catalytic Graphitization of Carbons by Borons. Fuel,1979,58(4):495-500
    [22] Baranieckic,Pinchbeck P H. Some Aspects of Graphitization Induced by Iron and Ferro-siliconAdditions. Carbon,1969,7(2):213-218
    [23] Engle G B. Low-temperature Graphitization of Cokes and Binder-filler Artifacts. Carbon,1972,10(4):409-412
    [24] Inagaki M, Oberlin A, De F S. Texture Change in Hard Carbon on Heat Treatment underPressure. High Temperature-high Pressures,1977,9(4):453-460
    [25] Bokros J C, Price R J. Radiation-induced Dimensional Changes in Pyrolytic Carbons Depositedin Afluidized Bed. Carbon,1966,4(3):441-446
    [26] Yoxokawa,Hosoeawa H, Takegami Y. A Kinetic Study of Catalytic Graphitization of HardCarbon. Carbon,1967,5:475-480
    [27] Wewerra E M, Imprescia R J. The Use of Organometallic Additives to Promote Graphitizationof Carbons Derived From Furfuryl Alcohol Resins, Carbon,1973,11(4):289-297
    [28] Courtney R L, Dulreie S F. The Catalytic Graphitization of Naphthalenediol and a UrethaneFoam-a Feasibility Study. Carbon,1972,10(1):65-68
    [29] Oya A, Marsh H. Review Phenomena of Catalytic Grahitization. J. Mater. Sci.,1982,17:309-322
    [30] Oya A, Otani S. Effects of Particle Size of Calcium and Calcium Compounds on CatalyticGraphitization of Phenolic Resin Carbon. Carbon,1979,17:125-129
    [31] Asari E. An Effect of the Extended Cascade on the Raman Spectra of Ion-Irradiated Graphite.Carbon,2000,38(13):1857-1861
    [32] Wakayama H, Mizuno J, Fukushima Y, et al. Structural Defects in Mechanically GroundGraphite. Carbon,1999,37(6):947-952
    [33] Sharma A, Kyotani T, Tomita A. Comparison of Structural Parameters of PF Carbon from XRDand HRTEM Techniques. Carbon,2000,38(14):1977-1984.
    [34] Oberlin A. Application of Dark-field Electron Microscopy to Carbon Study. Carbon,1979,17(1):7-20
    [35] Dobb M G, Guo H, Johnson D J. Image Analysis of Lattice Imperfections in Carbon Fibres.Carbon,1995,33(8):1115-1120.
    [36] Saadaoui H, Roux J C, Flandrois S. Graphitization of Pyrocarbons: an STM Study. Carbon,1993,31(3):481-486
    [37] Donneta J B, Wang T K, Shen Z M. Atomic Scale STM Study of Pitch-based Carbon Fibers:Influence of Mesophase Content and Heat Treatment Temperature. Carbon,1996,34(11):1413-1418
    [38] Warren B E. X-ray Diffraction in Random Layer Lattices. Phys. Rev.,1941,59(9):693-698
    [39]邱海鹏,赵根祥.利用XRD研究吠喃树脂制备玻璃炭过程中的结构变化.新型炭材料,1999,14(2):49-53
    [40]汪树军. X射线衍射法对树脂炭微观结构测试分析.炭素技术,2000,(6):8-12
    [41] Kovalevski V V, Buseck R, Cowley J M, et al. Comparison of Carbon Inshungite Rocks toOther Natural Carbons: An X-ray and TEM Study. Carbon,2001,39(2):243-256
    [42] Lu L, Sahajwalla V, Kong C, et al. Quantitative X-ray Diffraction Analysis and Its Applicationto Various Coals. Carbon,2001,39(12):l821-1833
    [43] Murthy N S, Dantasl S O, Iqbal Z, et al. X-Ray Diffraction Evidence for the Formation of aDiscotic Phase during Graphitization. Carbon,2001,39(6):809-813
    [44]黄启忠,颜志齐,张名大.高定向热解石墨的两相石墨化现象.炭素,1986,2:10-14
    [45]黄启忠.高定向热解石墨中的两相石墨化对其性能的影响.炭素技术,1986,5:10-13
    [46] Dobiaova L, Stary V, Glogar P, et al. Analysis of Carbon Fibers and Carbon Composites byAsymmetric X-ray Diffraction Technique. Carbon,1999,37(3):421-425
    [47] Robinson I M, Zakikhani M, Day R J, et al. Strain Dependence of the Raman Frequencies forDifferent Types of Carbon Febres. J. Mater. Sci. Lett.,1987,6(10):1212-1214
    [48] Day R J, Robinson I M, Zakikhani M, et al. Raman Spectroscopy of Stressed High ModulusPoly(P-phenylenebenzobisthiazole) Fibers. Polymer,1987,28(11):1833-1840
    [49] Bucci D V, Koczak M J, Schadler L S. Micromechanical Investigations of UndirectionalCarbon/carbon Composites via Micro-raman Spectroscopy. Carbon,1997,35(2):235-245
    [50] Kitajima M, Nakamura K. Evaluation of Local Stress of Carbon Materials by Ramanspectroscopy. J. Nucl. Mater.,1990,175(3):254-257
    [51] Obraztsovaa E D, Fujiib M, Hayashib S, et a1. Raman Identification of Onion-like Carbon.Carbon,1998,36(5-6):821-826
    [52] Hagio T, Nakamizo M, Kobayashi K. Studies on X-ray Diffraction and Raman Spectra ofB-doped Natural Graphite. Carbon,1989,27(2):259-263
    [53] Mcrae E, Walter J. Raman Spectroscopy and C-axis Resistivity of BiCl3-intercalated Graphite.Carbon,2001,39(5):717-723
    [54] Wakayama H, Mizuno J, Fukushima Y, et al. Structural Defects in Mechanically GroundGraphite. Carbon,1999,37(6):947-952
    [55] Wang Y, Alsmeyer D C, Mccreery R L. Raman Spectroscopy of Carbon Materials: StructuralBasis of Observed Spectra. Chem. Mater.,1990,2:557-563
    [56] Katagiri G. Raman Spectroscopy of Graphite and Carbon Materials and Its Recent Application.Carbon,1997,35(5):716-726
    [57] Kotosonov A S, Vinnekov V A, Polozhichin A I, et al. Effect of Chlorine on the Changes ofElectronic Properties of Pyrolytic Carbon in the Course of Graphitization. Carbon,1970,8(3):389-392
    [58] Bayot V, Piraux L, Michenaud J P, et al. Two-Dimensional Weak Localizationin PartiallyGraphitic Carbons. Phys. Rev. B,1990,41(17):11770-11779
    [59] Hishiyama Y, Inagaki M, Kimura S, et al. Graphitization of Carbon Fiber/Glassy CarbonComposites. Carbon,1974,12:249-258
    [60] Ehrburger P, Lahaye J, Bourgeois C. Characterization of Carbon-carbon Composites-1: Texturaland Microstructural Properties. Carbon,1981,19(1):1-5
    [61]程鸿申.电化石墨电刷的X射线衍射研究.炭素,1988,(3):36-43
    [62] Zhen M, Chung D L. Thermal History of Carbon-fiber Polymer-matrix Composite,Evaluated by Electrical Resistance Measurement. Thermochi. Acta,2001,369(1-2):87-93
    [63] Monzyk J W, Lafdi K, Johnson K W. Thermal Diffusivity Measurements of Carbon MaterialsUsing Optical Beam Deflection. Carbon,2000,38(9):1351-1359
    [64] Kanematsu H, Kunied Y, Yodoij, et al. Graphitization of C/C Composites and Their CyclicVoltammograms in Dilute Sulfuric Acid. High Temp. Mater. Processes,1996,15(1-2):63-72
    [65]程鸿申.人造石墨的石墨化度的判断方法.炭素,1984,(3):31-38.
    [66]徐仲榆.含碳原料在碳化石墨化过程中磁化率的变化.炭素,1982,(2):12-17
    [67] Wang C, Zhu Z, Hou X, et al. Damping Characteristics of CVI-densified Carbon-carbonComposites. Carbon,2000,38(13):1821-1824
    [68]侯向辉,李贺军.王灿,等.热解碳基碳/碳复合材料的内耗特征与机制.复合材料学报,2001,18(1):89-92
    [69] klemm D, Heublein B, Fink H, et al. Cellulose: Fascinating Biopolymer and Sustainable RawMaterial. Angew. Chem. Int. Ed.,2005,44(22):3358-3393
    [70]徐有明.木材学.北京:中国林业出版社,2006,3-15
    [71] Hon D N-S, Shiraishi N. Chemical Modification of Wood Materials. New York: Marcel Dekker,1996,1-5
    [72]胡云楚,陈茜文.木材热分解动力学的研究.林产化学与工业,1995,15(4):45-49
    [73]周端发,韩雅芳,李树索.高温结构材料.国防工业出版社,2006,370
    [74]钱军民,金志浩,乔冠军.木材陶瓷研究进展.无机材料学报,2003,18(4):715-724
    [75] Okabe T, Saito K. Development of Woodceramics. In: Yamamoto R. Proceedings of the3rdIUMRS International Conference of Materials. Amsterdam: Elsevier Science B V,1994,681-684
    [76]马荣,乔冠军,金志浩.木材陶瓷.兵器材料科学与工程,1998,21(6):45-48
    [77] Byrne C E, Nagle D C. Carbonization of Wood for Advanced Material Applications. Carbon,1997,35:259–266.
    [78] Singh M. Ecoceramics: Ceramics from Wood. Adv. Mater. Processes,2002,160(3):39-41
    [79]周曦亚,刘晋龙.木陶瓷的研究进展.中国陶瓷工业,2006,13(2):38-41
    [80] Cao J, Rambo C R, Sieber H. Manufacturing of Microcellular Biomorphous Oxide CeramicsFrom Native Pine Wood. Ceram. Int.,2004,30:1967-1970
    [81] Herzog A, Klingner R, Vogt U, et al. Wood-derived Porous SiC Ceramics by Sol Infiltrationand Carbothermal Reduction. J. Am. Ceram. Soc.,2004,87(5):784-793
    [82] Hou G, Jin Z, Qian J. Effect of Starting Si Contents on the Properties and Structure ofBiomorphic SiC Ceramics. J. Mater. Process Technol.,2007,182:34-38
    [83] Castro1V, Fujisawa1M, Hata T. Silicon Carbide Nanorods and Ceramics from Wood. Key Eng.Mater.,2004,264-268:2267-2270
    [84]钱军民,王继平,金志浩.木材陶瓷和Si粉原位反应烧结制备多孔SiC的研究.硅酸盐学报,2003,7(31):635-640
    [85]蔡宁,马荣,乔冠军,等.材陶瓷化反应机理的研究.无机材料学报,2001,4(16):763-768
    [86]钱军民,金志浩.生物形态SiC陶瓷的研究.陶瓷科学与艺术,2003,6:9-15
    [87] Akagaki T, Hokkirigawa K, Okabe T, et al. Friction and Wear of Woodceramics Under Oil andWater Lubricated Sliding Contacts. J. Porous Mater.,1997,6(4):197-204
    [88] Colombo P, Mera G, Riedel R, et al. Polymer-derived Ceramics:40Years Research andInnovation in Advanced Ceramics. J. Am. Ceram. Soc.,2010,93(7):1805-1837
    [1]黄发荣.先进树脂基复合材料.北京:化学工业出版社,2008,85
    [2] Luneva L K, Sladkov A M, Korshak V V. Synthesis of Organosilicon and OrganogermaniumPolymers Containing Diacetylenic Groupings in the Chain. Izv. Akad. Nauk. SSSR,1968,1:160-163
    [3] Freeburger M E, Spialter L. Vinyl-, Allyl-, and Phenylethynylsilanes: Effect of Silicon on TheirReactions as Dienophiles and the Synthesis of Phenylated Phenyl-and Benzylsilanes. J. Organomet.Chem.,1970,35(3):652-658
    [4] Lang H R, Blau S, Rheinwald G, et al. Synthese, Koordinationsverhalten Und ThermolyseAlkinylfunkionalisierter übergangsmetall-komplexe; kristallstruktur(Mo2(η5-C5H5)2(CO)4((μ4-η2:2:2:2-Me3SiC≡C-C≡CSiMe3)-Co2(CO)6)). J. Organomet. Chem.,1995,494(1-2):65-73
    [5] Ishikawa J, Inoue K, Itoh M. Dehydrogenative Cross-coupling Reactions between Phenylsilaneand Ethynylbenzene in the Presence of Metal Hydrides. J. Organomet. Chem.,1998,552(1-2):303-311
    [6] Oro L A, Fernandez M J, Esteruelas M A. Hydrosilylation of Alkenes by Iridium Complexes. J.Mol. Catal.,1986,37:151-156
    [7] Lukevics E, Pudova O, Sturkovich R. Hydrosilylation of Ethynylsilanes with Dimethyl(2-thienyl)silane. J. Organomet. Chem.,1988,346:297-303
    [8] Liu H Q, Harrod J F. Copper(I) Chloride-catalyzed Cross-dehydrocoupling Reactions betweenSilanes and Ethynyl Compounds: A New Method for the Copolymerization of Silanes and Alkynes.Can. J. Chem.,1990,68(7):1100-1104
    [9] Itoh M, Mitsuzuka M, Utsumi T, et al. Dehydrogenative Coupling Reactions betweenHydrosilanes and Monosubstituted Alkynes Catalyzed by Solid Bases. J. Organomet. Chem.,1994,476(2):C30-C31
    [10] Krieble R H, Burkhard C A. Cyclic Dimethylpolymethylenedioxysilanes. J. Am. Chem. Soc.,1947,69:2689-2692
    [11] Tannenbaum S, Kaye S, Lewenz G F. Synthesis and Properties of Some Alkylsilanes. J. Am.Chem. Soc.,1953,75:3753-3757
    [12] Bond A C, Brockway L O. The Molecular Structures of Mono-, Di-and Trimethylsilane. J. Am.Chem. Soc.,1954,76:3312-3316
    [13] Richey R S. Grignard Reagents: Mechanism of Grignard Reagent Formation. New York: JohnWiley&Sons,2000,15
    [14] Itoh M, Inoue K, Iwata K, et al. New Highly Heat-resistant Polymers Containing Silicon:Poly(silyleneethynylenephenyleneethynylene)s. Macromolecules.1997,30(4):694-701
    [15] Chen Q, Li Y, Dai Z L, et al. Synthesis and Characterization of Methyl-di(phenylethynyl)silaneand its Network Polymer, Acta. Chim. Sin.,2005,63(3):254-258
    [16] Barton T J, Sina I M, Pang Y. Thermal and Catalytic Polymerization ofDiethynyldiphenylsilane. Macromolecules,1991,24(6):1257-1260
    [17]徐金峰.炔基化芳香族化合物的合成及其聚合研究.上海:华东理工大学博士论文,2007,70
    [18]周权.耐高温苯乙炔硅烷及苯乙炔封端聚(甲基硅烷-碳硼烷)的合成、表征及性能研究.上海:华东理工大学博士论文,2006,37
    [19] Melissaris A P, Litt M H. New High-Tg, Heat-Resistant, Cross-Linked Polymers.1. Synthesisand Characterization of Di-p-ethynyl-substituted Benzyl Phenyl Ether Monomers. Macromolecules,1994,27(4):883-887
    [20] Sastri S B, Keller T M, Kenneth M. Studies on Cure Chemistry of New Acetylenic Resins.Macromolecules,1993,26(23):6171-6174
    [21] Kissinger D E. Reaction Kinetic in Differential Thermal Analysis. Anal. Chem.,1957,29(11):1702-1706
    [22] Zhou, Q, Xia, F, Ni, L Z, et al. Novel Heat Resistant Methyl-tri (phenylethynyl)silane Resin:Synthesis, Characterization and Thermal Properties. J. Appl. Polym. Sci.,2006,102:2488-2492
    [23] Dai Z L, Chen Q, Ni L Z, et al. Curing Kinetics and Structural Changes of aDi[(N-m-acetenylphenyl) Phthalimide]ether/[(methyl) Diphenylacetylene]Silane Copolymer. J. Appl.Polym. Sci.,2006,100:2126-2130
    [24] Sastri S B, Armistead J P, Keller T M. Cure Kinetics of a Multisubstituted Acetylenic Monomer.Polymer,1995,36(7):1449-1454
    [25] Ratio J J, Dynes P J, Hammeresh C L. The Synthesis and Thermal Polymerization of4,4′-diethynylphenyl Ether. J. Polym. Sci. Polym. Chem.,1980,18:1035-1046
    [1] Oya A, Otani S. Catalytic Graphitization of Carbon by Various Metals. Carbon,1979,17(2):131-137
    [2] Oya A, Yamashita R, Otani S. Catalytic Graphitization of Carbons by Borons. Fuel,1979,58(4):495-500
    [3] Oya A, Otani S. Effects of Particle Size of Calcium and Calcium Compounds on CatalyticGraphitization of Phenolic Resin Carbon. Carbon,1979,17:125-129
    [4] Otani S, Oya A, Akagami J. The Effect of Nickel on Structural Development in Carbons. Carbon,1975,13(5):353-356
    [5] Oya A, Mochizuki M, Otani S. An Electron Microscopic Study on the Turbostratic CarbonFormed in Phenolic Resin Carbon by Catalytic Action of Finely Dispersed Nickel. Carbon,1979,71(1):71-76
    [6] Oya A, Otani S. Influence of Particle Size of Metal on Catalytic Graphitization ofNon-graphitizing Carbons. Carbon,1981,19(5):391-400
    [7] Inomata K, Otake Y. Nanoscopic Observation of Mesoporous Carbons Prepared by CatalyticCarbonization of Fe-and Ni-containing Phenol Formaldehyde Resins. J. Mater. Sci.,2009,44(15):4200-4204
    [8] Dhakate S R, Mathur R B, Bahl O P. Catalytic Effect of Iron Oxide on Carbon/CarbonComposites During Graphitization, Carbon,1997,35(12):1753-1756
    [9] Yokokawa C, Hosokawa K, Takegami Y. Low Temperature Catalytic Graphitization of HardCarbon. Carbon,1966,4(4):459-465
    [10] Yi S J, Chen J H,, Hai H Y, et al. Effect of Graphite Oxide on Graphitization of Furan ResinCarbon. Carbon,2010,48(3):912-928
    [11] Courtney R L, Dulreie S F. The Catalytic Graphitization of Naphthalenediol and a UrethaneFoam-a Feasibility Study. Carbon,1972,10(1):65-68
    [12] Isono Y, Yoshida A, Hishiyama Y, et al. Carbonization and Graphitization of Shavings FieldAway from Kapton. Carbon,2004,42(8-9):1799-1805
    [13] Kokaji K, Oya A, Maruyama K, et al. Carbonization and Graphitization Behavior ofDecacyclene. Carbon,1997,35(2):253-258
    [14] Zaldivar R J, Kobayashi R W, Rellick G S. Carborane-catalyzed Graphitization inPolyarylacetylene-derived Carbon-carbon Composites. Carbon,1991,29(8):1145-1153
    [15] Anton R. On the Reaction Kinetics of Ni with Amorphous Carbon. Carbon,2008,46:656-662
    [16] Iijima S. Helical Microtubules of Graphitic Carbon. Nature,1991,354:56-58
    [17]于澎,刘根山.热处理温度对炭/炭复合材料性能的影响.中南工业大学学报,2003,34(5):476-479
    [18] Li H P, Zhao N Q, He C N, et al. Catalytic Synthesis of Carbon Nanostructures UsingFe(OH)3/Al as Catalyst Precursors. J. Alloys Compd.,2009,468:64-68
    [19] Oh J H, Lee S K, Han K P, et al. Effects of the Different Heat Treatments on the Growth andFormation of Iron Silicide on Si(100). Thin Solid Films,1999,341:160-164
    [20] Narciso F J, Rodriguez F. Synthesis of SiC from Rice Husks Catalyzed by Iron, Cobalt orNickel. J. Mater. Sci.,1996,31:779-784
    [21] Homma Y, Kobayashi Y, Ogino T. Role of Transition Metal Catalysts in Single-walled CarbonNanotube Growth in Chemical Vapor Deposition J. Phys. Chem. B.,2003,107:12161-12164
    [22] Wang C L, Ma D, Bao X H. Transformation of Biomass into Porous Graphitic CarbonNanostructures by Microwave Irradiation. J. Phys. Chem. C.,2008,112:17596-17602
    [23] Garcia A B, Cameán I, Pinilla J L, et al. The Graphitization of Carbon Nanofibers Produced byCatalytic Decomposition of Methane: Synergetic Effect of the Inherent Ni and Si. Fuel,2010,89:2160-2162
    [24] Nakamizo M, Kammereck R, Walker P L. Laser Raman Studied on Carbons. Carbon,1974,12:259-267
    [25] Shimodaira N, Masui A. Raman Spectroscopic Investigations of Activated Carbon Materials. J.Appl. Phys.,2002,92(2):902-909
    [26] Sadezky A, Muckenhuber H, Grothe H, et al. Raman Microspectroscopy of Soot and RelatedCarbonaceous Materials: Spectral Analysis and Structural Information. Carbon,2005,43(8):1731-1742
    [27] Inomata K, Otake Y. Control of Mesoporous and Crystalline Structures in Turbostratic CarbonDerived from Fe-or Ni-doped Phenolic Resin. J. Mater. Sci.,2011,46:2194-2200
    [1] Mwaikambo L Y, Ansell M P. Chemical Modification of Hemp, Sisal, Jute, and Kapok Fibers byAlkalization. J. Appl. Polym. Sci.,2002,84(12):2222-2234
    [2] Schwanninger B, Hinter S. Comparison of the Classical Wood Extraction Method Using aSoxhlet Apparatus with an Advanced Extraction Method. Holz. Roh. Werkst.,2002,60:343-346
    [3] Gonzalez J, Cruz J M, Dominguez H. Production of Antioxidants from Eucalyptus GlobulusWood by Solvent Extraction of Hemicellulose Hydrolysates. Food Chem.,2004,84:243-251
    [4] Mohamed J, Gilles S. A Novel Simple Route to Wood Acetylation by Transesterification withVinylacetate. Holzforschung,2007,61:143-147
    [5] Vichi S, Santini C, Natali N. Volatile and Semi-volatile Components of Oak Wood ChipsAnalysed by Accelerated Solvent Extraction (ASE) Coupled to Gas Chromatography-massSpectrometry (GC–MS). Food Chem.,2007,102:1260-1269
    [6] Wang J S F, Chiu K H J. Extraction of Chromated Copper Arsenate from Wood Wastes UsingGreen Solvent Supercritical Carbon Dioxide. Hazard. Mater.,2008,158:384-391
    [7] Chang T C, Chang H T, Wu C L. Influences of Extractives on the Photodegradation of Wood.Polym. Degrad. Stab.,2010,95:516-521
    [8]胡云楚,陈茜文.木材热分解动力学的研究.林产化学与工业,1995,15(4):45-49
    [9]吴书泓,孙振鸢.前处理方法对杨木木粉改性反应以及改性木粉热流动性的影响.木材工业,1996,9(6):17-20
    [10] Liu W, Mohanty A K, Drzal L T, et al. Effects of Alkali Treatment on the Structure, Morphologyand Thermal Properties of Native Grass Fibers as Reinforcements for Polymer Matrix Composites. J.Mater. Sci.,2004,39:1051-1054
    [11] Hon D N-S, Shiraishi N. Chemical Modification of Wood Materials. New York: Marcel Dekker,1996,5
    [12] He M J, Zhang H D, Chen W X, et al. Polymer Physics. Shanghai, Fudan,2007,56
    [13] Sun R C, Lawther J M, Banks W B. Effects of Pretreatment Temperature and AlkaliConcentration on the Composition of Alkali-soluble Lignins from Wheat Straw. J. Appl. Polym. Sci.,1996,62:1473-1481
    [14] Weise U. Hornification-mechanisms and Terminology. Paperi Jaa Puu-Paper and Timber,1998,80(2):110-115
    [15] Ouajai S, Shanks R A. Composition, Structure and Thermal Degradation of Hemp CelluloseAfter Chemical Treatments. Polym. Degrad. Stab.,2005,89:327-335
    [16] Pandey K K J. A Study of Chemical Structure of Soft and Hardwood and Wood Polymers byFTIR Spectroscopy. Appl. Polym. Sci.,1999,71(12):1969-1975
    [17] Connor R T. Instrumental Analysis of Cotton Cellulose and Modified Cotton Cellulose. NewYork, Marcel Dekker,1972,232-234
    [18] Martins M A, Kiyohara P K. Scanning Electron Microscopy Study of Raw and ChemicallyModified Sisal Fibers. J. Appl. Polym. Sci.,2004,94,2333-2340
    [19] Sibel Y, Esat G. The Effects of Thermal Modification on Crystalline Structure of Cellulose inSoft and Hardwood. Building and Environment,2007,42:62–67
    [20] Sun R C, Lawther J M, Banks W B. Fraction and Structural Characterization of Wheat StrawHemicelluloses. Carbohydr. Ploym.,1996,9(4):325-331
    [21] Wang G, Li W, Li B Q, et al. TG Study on Pyrolysis of Biomass and Its Three ComponentsUnder Syngas. Fuel,2008,87,552-558
    [22] Aydin I. Activation of Wood Surfaces for Glue Bonds by Mechanical Pre-treatment and ItsEffects on Some Properties of Veneer Surfaces and Plywood Panels. Appl. Surf. Sci.,2004,233:268-274
    [23] Abe K, Yamamoto H. Change in Mechanical Interaction between Cellulose Microfibril andMatrix Substance in Wood Cell Wall Induced by Hydrothermal Treatment. J. Wood. Sci.,2006,52,107-110
    [24] Brosse N, Hage R E, Chaouch M. Investigation of the Chemical Modifications of Beech WoodLignin during Heat Treatment. Polym. Degrad. Stab.,2010,95(9):1721-1726
    [1] Byrne C E, Nagle D C. Carbonized Wood Monoliths-characterization. Carbon,1997,35(2):267-273
    [2] Cheng H M, Endo H, Okabe T, et al. Graphitization Behavior of Wood Ceramics and BambooCeramics as Determined by X-ray Diffraction. J. Porous. Mater.,1999,6(3):233-237
    [3] Kim D Y, Nishiyama Y, Wada M, et al. Graphitization of Highly Crystalline Cellulose. Carbon,2001,39(7):1051-1056
    [4] Kubo S, Uraki Y, Sano Y. Catalytic Graphitization of Hardwood Acetic Acid Lignin with NickelAcetate. J. Wood. Sci.,2003,49:188-192
    [5] Hata T, Vystavel T P, Bronsveld J, et al. Catalytic Carbonization of Wood Charcoal: Graphite orDiamond?. Carbon,2004,42(5-6):961-964
    [6] Hata T, Ishimaru K, Fujisawa M, et al. Catalytic Graphitization of Wood-based Carbons withAluminua by Pulse Current Heating. Fuller. Nanotub. Car. N.,2005,13:435-445
    [7] Sevilla M, Fuertes A B. Catalytic Graphitization of Templated Mesoporous Carbons. Carbon,2006,44(3):468-474.
    [8] Sevilla M, Sanchis C, Fuertes A B. Synthesis of Graphitic Carbon Nanostructures From Sawdustand Their Application as Electrocatalyst Supports. J. Phys. Chem. C.,2007,111(27):9749-9756.
    [9] Sevilla M, Fuertes A B. Graphitic Carbon Nanostructures from Cellulose. Chem. Phys. Lett.,2010,490(1-2):63-68
    [10] Wang C L, Ma D, Bao X H. Transformation of Biomass Into Porous Graphitic CarbonNanostructures by Microwave Irradiation. J. Phys. Chem. C.,2008,112(45):17596-17602
    [11] Szczygielska A, Burian A, Duber S, et al. Radial Distribution Function Analysis of theGraphitization Process in Carbon Materials. J. Alloys Compd.,2001,328:231-236
    [12] Andrew M, Herring J, Thomas M K, et al. A Novel Method for the Templated Synthesis ofHomogeneous Samples of Hollow Carbon Nanospheres From Cellulose Chars. J. Am. Chem. Soc.2003,125:9916-9917
    [13] Li H P, Zhao N Q, He C N, et al. Catalytic Synthesis of Carbon Nanostructures UsingFe(OH)3/Al as Catalyst Precursors. J. Alloys. Compd.,2009,468:64-68
    [14] Oya A, Marsh H. Review Phenomena of Catalytic Graphitization. J. Mater. Sci.,1982,17:309-322
    [15] Otani S, Oya A, Akagami J. The Effect of Nickel on Structural Development in Carbons.Carbon,1975,13(5):353-356
    [16] Murty H N, Biedermand L E, Heintz A. Catalytic Graphitization of Model Compound Chars byAluminum and Beryllium. Carbon,1973,11(3):163-169
    [17] Murty H N, Biedermand L E, Heintz E A. Apparent Catalysis of Graphitization.3. Effect ofBoron. Carbon,1976,56(3):305-312
    [18] Marsh H, Warburton A P. Catalysis of Graphitization. J. Appl. Chem.,1970,20:133-142
    [19] Yokokawa C, Hosokawa K, Takegami Y. Low Temperature Catalytic Graphitization of HardCarbon, Carbon.1966,4:459-465
    [20] Inagaki M. New Carbons: Control of Structure and Functions; Elsevier: Amsterdam,2000
    [21] Weisweiler W, Subramanian N, Terwiesch B. Catalytic Influence of Metal Melts on theGraphitization of Monolithic Glasslike Carbon. Carbon,1971,9(6):755-761
    [22] Dhakate S R, Mathur R B, Bahl O P. Catalytic Effect of Iron Oxide on Carbon/CarbonComposites during Graphitization. Carbon,1997,35(12):1753-1756
    [23]于澎,刘根山.热处理温度对炭/炭复合材料性能的影响.中南工业大学学报,2003,34(5):476-479
    [24] Zhou H, Peng Q, Huang Z, et al. Catalytic Graphitization of PAN-based Carbon Fibers withElectrodeposited Ni-Fe Alloy. Trans. Nonferrous Met. Soc. China,2011,21:581-587
    [25] Zhang L B, Li W, Peng J H, et al. Raman Spectroscopic Investigation of the WoodceramicsDerived from Carbonized Tobacco Stems/Phenolic Resin Composite. Mate. Des.,2008,29:2066-2071
    [26] Nakamizo M, Kammereck R, Walker P L. Laser Raman Studied on Carbons. Carbon,1974,12:259-267
    [27] Shimodaira N, Masui A. Raman Spectroscopic Investigations of Activated Carbon Materials. J.Appl. Phys.,2002,92(2):902-909
    [28] Oya A, Otani S. Influences of Particle Size of Metal on Catalytic Graphitization ofNon-graphitizing Carbons. Carbon,1981,19(5):391-400
    [29] Sadezky A, Muckenhuber H, Grothe H, et al. Raman Microspectroscopy of Soot and RelatedCarbonaceous Materials: Spectral Analysis and Structural Information. Carbon,2005,43(8):1731-1742
    [30] Sevilla M, Fuertes A B. Easy Synthesis of Graphitic Carbon Nanocoils from Saccharides. Mater.Chem. Phys.,2009,113:208-214
    [31] Sinclair R, Itoh T, Chin R. In Situ TEM Studies of Metal-carbon Reactions. Microsc.Microanal.,2002,8(4):288-304
    [32] Anton R. On the Reaction Kinetics of Ni with Amorphous Carbon. Carbon,2008,46:656-662
    [33] Derbyshire F J, Presland A E B, Trimm D L. Graphite Formation by the Dissolution-precipitation of Carbon in Cobalt, Nickel and Iron. Carbon,1975,13(2):111-113
    [34] Yokokawa,Hosoeawa H, Takegami Y. A Kinetic Study of Catalytic Graphitization of HardCarbon. Carbon,1967,5:475-480
    [35] Inomata K, Otake Y. Nanoscopic Observation of Mesoporous Carbons Prepared by CatalyticCarbonization of Fe-and Ni-containing Phenol Formaldehyde Resins. J. Mater. Sci.,2009,44:4200-4204
    [36] Inomata K, Otake Y. Control of Mesoporous and Crystalline Structures in Turbostratic CarbonDerived from Fe-or Ni-doped Phenolic Resin. J. Mater. Sci.,2011,46:2194-2200
    [1] Qian J M, Wang J P, Jin Z H. Preparation and Properties of Porous Microcellular SiC Ceramicsby Reactive Infiltration of Si Vapor into Carbonized Basswood. Mater. Chem. Phys.,2003,82(3):648-653
    [2] Qian J, Jin Z, Wang J. Structure and Basic Properties of Woodceramics Made from PhenolicResin–basswood Powder Composite. Mater. Sci. Eng. A,2004,368(1-2):71-79
    [3]钱军民,金志浩,王继平.酚醛树脂/木粉复合材料制备木材陶瓷结构变化过程研究.复合材料学报,2004,21(4):18-23
    [4]李淑君,李坚,刘一星.木陶瓷的制造(I)-实木陶瓷.东北林业大学学报,2002,30(4):5-7
    [5]李坚,李淑君.木陶瓷的孔隙结构研究.林产化学与工业.2002,22(4):27-30
    [6]孙炳合,张荻,范同祥,等.木质材料陶瓷化的研究进展.功能材料,2003,34(1):20-23
    [7] Liu Z, Fan T, Ding J, et al. Synthesis and Cathodoluminescence Properties of Porous Wood(fir)-templated Zinc Oxide. Ceram. Int.,2008,34(1):69-74
    [8] Fan T, Li X, Ding J, et al. Synthesis of Biomorphic Al2O3Based on Natural Plant Templates andAssembly of Ag Nanoparticles Controlled within the Nanopores. Microporous Mesoporous Mater.,2008,108(1-3):204-212
    [9] Fan T, Li X, Liu Z, et al. Microstructure and Infrared Absorption of Biomorphic ChromiumOxides Templated by Wood Tissues. J. Am. Ceram. Soc.,2006,89(11):3511-3515
    [10] Suda T, Kondo N, Okabe T, et al. Electrical Properties of Woodceramics. J. Porous Mater.,1999,6(3):255-258
    [11] Okabe T, Saito K, Hokkirigawa K. New Porous Carbon Materials, Woodeeramics: Developmentand Fundamental Properties. J. Porous Mater.,1996,2(3):207-213
    [12] Okabe T, Saito K, Fushitani M, et al. Mechanical Properties of Porous Carbon Material:Woodceramics. J. Porous Mater.,1996,2(3):223-228
    [13] Iizuka H, Fushitani M, Okabe T, et al. Mechanical Properties of Woodceramics: A PorousCarbon Material. J. Porous Mater.,1999,6(3):175-184
    [14] Vogli E, Sieber H, Greil P. Biomorphic SiC-ceramic Prepared by Si-vapor Phase Infiltration ofWood. J. Eur. Ceram. Soc.,2002,22(14-15):2663-2668
    [15] Rambo C R, Sieber H. Novel Synthetic Route to Biomorphic Al2O3Ceramics. Adv. Mater.,2005,17(8):1088-1091
    [16] Sieber H, Rambo C, Cao J, et al. Manufacture of Porous Oxides Ceramics by Replication ofPlant Morphologies. Key Eng. Mater.,2001,206-213:2009-2012
    [17] Cao J, Rusina O, Sieber H. Processing of Porous TiO2-ceramics from Biological Preforms.Ceram. Int.,2004,30(7):1971-1974
    [18] Liu Z, Fan T, Zhang W, et al. The Synthesis of Hierarchical Porous Iron Oxide with WoodTemplates. Microporous Mesoporous Mater.,2005,85(1-2):82-88
    [19] Luo M, Gao J, Zhang X, et al. Processing of Porous TiN/C Ceramics from Biological Templates.Mater. Lett.,2007,61:186-188
    [20] Luo M, Gao J, Yang J. Biomorphic Silicon Nitride Ceramics with Fibrous MorphologyPrepared by Sol Infiltration and Reduction-Nitridation. J. Am. Ceram. Soc.,2007,90(12):4036-4039
    [21] Rambo C R, Muller F A, Muller L, et al. Biomimetic Apatite Coating on Biomorphous AluminaScaffolds. Mat. Sci. Eng. C,2006,26(1):92-99
    [22] Onyestyak G. Pinewood Char Templated Mordenite/Carbon Honeycomb Composite. New J.Chem.,2006,30:1058-1064
    [23] Hon D N, Shiraishi N. Chemical Modification of Wood Materials. New York: Marcel Dekker,1996,4
    [24]李忠,史铁钧,郭立颖.杉木粉/ZrO2网络互穿杂化材料的制备、形态、结构与性能.化工学报,2008,59(11):2922-2928
    [25] Byrne C E, Nagle D C. Carbonized Wood Monoliths-characterization. Carbon,1997,35(2):267-273
    [26] Rambo C R, Cao J, Rusina O, et al. Manufacturing of Biomorphic (Si, Ti, Zr)-carbide Ceramicsby Sol-Gel processing. Carbon,2005,43:1174-1183
    [27]王萍,程晓农,严学华,等.木粉/环氧树脂木材陶瓷的制备与研究.硅酸盐通报,2008,27(1):34-37
    [28]罗民,高积强,乔冠军,等.生物模板法制备木材陶瓷.化学进展,2008,20(6):982-1000
    [29] Qian J, Jin Z. Preparation and Characterization of Porous, Biomorphic SiC Ceramic withHybrid Pore Structure. J. Euro. Ceram. Soc.,2006,26:1311-1316
    [30] Meng G W, Cui Z, Zhang L D, et al. Growth and Characterization of Nanostructured β-SiC viaCarbothermal Reduction of SiO2Xerogels Containing Carbon Nanoparticles. J. Cryst. Growth,2000,209:801-806
    [31] Wei J, Li, K Z, Li H J, et al. Growth and Morphology of One-Dimensional SiC Nanostructureswithout Catalyst Assistant. Mater. Chem. Phys.,2006,95:140-144
    [32] Pickard S M, Derby B. TEM Study of Silicon Carbide Whisker Microstructures. J. Mater. Sci.,1991,26:6207-6217
    [33] Qian J, Wang J, Qiao G, et al. Preparation of Porous SiC Ceramic with a WoodlikeMicrostructure by Sol-Gel and Carbothermal Reduction Processing. J. Euro. Ceram. Soc.,2004,24:3251-3259
    [34] Guterl C, Ehrburger P. Effect of the Properties of a Carbon Substrate on its Reaction with Silicafor Silicon Carbide Formation. Carbon,1997,35(10-11):1587-1592
    [35] Martin H P, Ecke R, Muller E. Synthesis of Nanocrystalline Silicon Carbide Powder byCarbothermal Reduction. J. Eur. Ceram. Soc.,1998,18(12),1737-1742
    [36] Lin Y J, Tsang C P. The Effects of Starting Precursors on the Carbothermal Synthesis of SiCPowders. Ceram. Int.,2003,29(1):69-75
    [37] Saito M, Nagashima S, Kato A. Crystal Growth of SiC Whisker from the SiO (g)-CO System. J.Mat. Sci. Lett.,1992,11(7):373-376
    [38] Guterl C, Mcenaney B, Ehrburger P. SiC Material Produced by Carbothermal Reduction of aFreeze Gel Silica-carbon Artefact. J. Eur. Ceram. Soc.,1999,19(4),427-432
    [39] Herzog A, Klingner R, Vogt U, et al. Wood-derived Porous SiC Ceramics by Sol Infiltrationand Carbothermal Reduction. J. Am. Ceram. Soc.,2004,87(5):784-793
    [40] Klingner R, Sell J, Zimmermann T. Wood-Derived Porous Ceramics via Infiltration of SiO2-Soland Carbothermal Reduction. Holzforschung,2003,57:440-446
    [41]周峰,程晓农,严学华,等.原位反应烧结法制备SiC多孔木材陶瓷.材料科学与工程学报,2008,26(5):757-760
    [42] Zhuan L, Peng X, Xiang X. Tribological Characteristics of C/C-SiC Braking Composites underDry and Wet Conditions. Trans. Nonferrous Met. Soc. China,2008,18:1071-1075
    [43]张克宏.木粉/TEOS杂化材料制备SiC木材陶瓷的研究.硅酸盐通报,2011,30(1):55-60
    [44] W sche R, Klaffke D. Wear of Multiphase SiC Based Ceramic Composites Containing FreeCarbon. Wear,2001,249:220-228
    [45] Wang Y, Wu H. Friction Surface Evolution of Carbon Fibre Reinforced carbon/Silicon Carbide(Cf/C-SiC) Composites. J. Euro. Ceram. Soc.,2010,30:3187-3201
    [46]李淑君,谭海彦,于晶.木陶瓷的耐磨性及其他力学性质.木材工业,2003,17(5):8-10
    [47] Zhang G, Liao H, Li H, et al. On Dry Sliding Friction and Wear Behaviour of PEEK andPEEK/SiC-Composite Coatings. Wear,2006,260:594-600
    [48] Wang W, Jin Z, Xue T, et al. Preparation and Characterization of Morph-genetic C/TiNComposites from Filter Paper. J. Mater. Sci.,2007,42:6684-6688
    [49] White G V, Mackenzie K J, Brown I W, et al. Carbothermal Synthesis of Titanium Nitride. J.Mater. Sci.,1992,27(16):4294-4299
    [50] Jha A, Yoon S J. Formation of Titanium Carbonitride Phases via the Reduction of TiO2withCarbon in the Presence of Nitrogen. J. Mater. Sci.,1999,34(2):307-322
    [51] Shaviv R. Synthesis of TiN and TiNxCy: Optimization of Reaction Parameters. Mater. Sci. Eng.A,1996,209(1-2):345-352
    [52] Azushimaa A, Tannoa Y, Iwata H, et al. Coefficients of Friction of TiN Coatings with PreferredGrain Orientations under Dry Condition. Wear,2008,265:1017-1022
    [53] Antbnio P. Monteiro B. Friction and Wear of TiN Coatings Contribution of CETRIB/INEGI tothe TWA1-1993VAMAS Round-robin. Wear,1996,192:237-240

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700