用户名: 密码: 验证码:
离子注入与真空退火对氧化钛薄膜结构和抗凝血性能影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗凝血性是与血液接触的生物器械和人工器官中存在的主要问题,提高抗凝血性对于这类生物材料的发展和应用至关重要。无机材料表面的血液相容性与材料的结构性能,特别是表面特性有密切关联,因此,考察材料表面结构性能与抗凝血性之间的关系,了解材料表面与血液之间的界面作用行为,揭示抗凝血表面改性机制,探索材料处理工艺和方法,对于调控和制备具有优良血液相容性医疗器械和生物材料的发展具有重要的理论指导和实际应用意义。
     本论文利用非平衡磁控溅射技术合成了一定结构和性能的氧化钛薄膜;利用离子注入以及真空退火对氧化钛薄膜进行了后续改性处理。利用扫描电镜(SEM)和原子力显微镜(AFM)对薄膜表面形貌和粗糙度进行了分析;综合采用X射线衍射(XRD)、X射线光电子能谱(XPS)、价带谱(VXPS)和傅里叶红外光谱(FTIR)对薄膜的结构和成分进行了表征;利用四探针电阻仪和接触角测试仪对薄膜的导电性和表面能进行了测量;采用体外评价方法对薄膜的血液相容性进行了评价。
     通过对离子注入和真空退火对氧化钛薄膜结构、性能以及抗凝血性的考察,建立了氧化钛薄膜结构与性能之间一定的联系,对氧化钛薄膜的抗凝血机理进行了一定的解释,主要结论如下:
     1.离子注入和真空退火对氧化钛结构和性能的影响
     (1)真空退火后,单晶Ti02以及氧化钛薄膜由近似无色变为深蓝色,薄膜导电性提高,薄膜表面存在Ti3+,表面羟基含量增加,亲水性提高,表面能极性分量增加。热致氧空位和低价钛的产生导致:①氧化钛薄膜的能带结构发生变化,方块电阻降低;②对光波的特异性吸收使得氧化钛呈深蓝色;③H2O在氧空位分解生成-OH,表面羟基含量增加,亲水性提高,表面能极性分量增加。
     (2)真空退火后,氧化钛薄膜优异的亲水性在一定时间的存放后丧失,表面羟基含量减少。环境物质在高活性氧化钛薄膜表面的复杂解离、吸附反应导致表面氧空位被愈合,羟基被替代或掩盖,亲水性降低。
     (3)离子注入造成氧化钛薄膜晶体结构损伤,薄膜导电性提高。真空退火对晶格损伤有修复作用,同时导致薄膜方块电阻进一步降低。离子改性薄膜的亲水性和表面吸附态同时受到离子注入、退火和氧化钛薄膜的共同影响而表现出多样性变化。
     2.氧化钛薄膜结构性能与血液相容性的联系
     (1)真空退火导致的羟基化表面使得氧化钛薄膜的抗凝血性显著提高。
     ①表面羟基含量增加,使得薄膜表面亲水性以及表面能极性分量提高,富含羟基的、亲水的、表面能极性分量与色散分量比值高的氧化钛薄膜表面有利于减少纤维蛋白原的吸附量、维持其正常构象、减少血小板的激活,从而使得氧化钛薄膜的抗凝血性能提高。
     ②表面氧空位和低价钛在产生羟基化表面的同时还会形成n性半导体特征的能带结构,抑制纤维蛋白原变性,从而提高薄膜的抗凝血性。
     ③当氧化钛薄膜表面的氧空位被逐渐愈合,羟基被其他吸附物替代或掩盖,薄膜的亲水性降低、表面能极性分量与色散分量比值降低,氧化钛薄膜在退火后优异的抗凝血性能逐渐丧失。
     (2)离子注入改性处理后,当薄膜表面吸附氧比例如果超过50%,将导致表面黏附血小板激活程度的加剧,退火处理如果使吸附氧比例降至50%以下则会降低血小板的激活程度。
The antithrombogenicity remains a primary problem for the biomaterials used in blood-contacting medical devices and artificial organ, the improvement of anticoagulation is therefore critical for the development and application of these biomaterials. There is a close relationship between the hemocompatibility of inorganic materials surface and the structure and properties, especially the surface characteristics, of materials. In this light, it is necessary to investigate the causal relationship between materials surface characteristics and antithrombogenicity, understand the interactions occur in the interface between blood and materials, reveal the mechanism of enhancing antithrombogenicity by surface modification, and explore the technics and methods of material processing. The results of above studies are of theoretical significance and practical value in the design of biomaterials and medical device with good hemocompatibility.
     In this work, titanium oxide films with diverse structures and properties were fabricated by unbalanced magnetron sputtering, and then utilize ion implantation and vacuum annealing to modify the film.
     The surface topography and roughness of the films were analyzed by Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM). The structure and composition of the film were characterized by X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and its valence band spectroscopy (VXPS), Fourier Transform Infrared Spectroscopy (FTIR). Four-point probe resistance meter and contact angle apparatus were employed to measure the electroconductibility and surface energy respectively. In vitro test is used to evaluate the hemocompatibility of Ti-O film.
     Through the analysis of the effect of ion implantation and vacuum annealing on structure, property and antithrombogenicity of Ti-O film, to a certain extent, some causal relationships between structure and property have been established. The main conclusions of this dissertation were as follows:
     1. The effect of ion implantation and vacuum annealing on structure and property of Ti-O film
     (1) After treated by vacuum annealing, the color of monocrystal TiO2and Ti-O film turn from approximate colorless to mazarine, the conductivity of film improved, on the surface of film exist Ti3+, hydroxy content, hydrophilia and the polar fraction of surface free energy all increased. The generation of thermally induced oxygen vacancy and low-valent titanium lead to three results:①The energy band structure of the film have been changed, and the square resistance reduced.②The specific absorption of light wave cause the Ti-O film shows mazarine.③When H2O contact with oxygen vacancies, the H2O decomposed to form-OH. Consequently, hydroxy content, hydrophilia and the polar fraction of surface free energy all increased.
     (2) Treated by vacuum annealing, and after a period time, the remarkable hydrophilia of Ti-O film disappear, the hydroxy content on the surface decreased. The complex reactions, which ambience substance take part in and include dissociation and adsorption, take place on the surface of Ti-O film lead to the disappearance of oxygen vacancies, and the hydroxyls were replaced or blanketed, hydrophilia reduced finally.
     (3) Ion implantation cause the damage of crystal structure, this has further led to an improvement in conductivity of film. Vacuum annealing can repair the damage of crystal lattice, and this result in further reduction of film square resistance. The hydrophilia and surface adsorption states of film modified by ion implantation were mediated by effect of the ion implantation and vacuum annealing collectively and present diversity.
     2. The relationship between hemocompatibility and the structure and property of Ti-O film
     (1) Surface hydroxylation caused by vacuum annealing improves the antithrombogenicity of Ti-O film obviously.
     ①With the increase of the surface hydroxy content, hydrophilia and the polar fraction of surface free energy of film surface improved. The Ti-O film with abundant hydroxyl, excellent hydrophilia and high ratio of polar to disperse component of surface free energy could be beneficial to reduce the adsorption of fibrinogen, keep it normal conformation and minimize the platelet adhesion on the surface, so improve the antithrombogenicity of the film.
     ②Oxygen vacancy and low-valent titanium lead to the surface hydroxylation of film and form the energy band structure with n-type semiconductor feature simultaneously, and this structure restrains the degeneration of fibrinogen, thus the antithrombogenicity of the film been improved.
     ③Oxygen Vacancy were be healed, the hydroxylation were be replacement or concealment by other adsorbate, the hydrophilic of the surface decrease, and the ratio of polar component to disperse component of surface free energy decrease, the advantage antithrombogenicity caused by vacuum annealing attenuated gradually.
     (2) If the percentage of adsorption oxygen more than50%after ion implation, the antithrombogenicity would be decrase; furthermore, the blood compatibility of the film will be improve if the percentage of adsorption oxygen less than50%after vacuum annealing treatment.
引文
[1]胡盛寿,孔灵芝.中国心血管病报2005.中国大百科全书出版社.2006:1
    [2]http://www.gov.cn/fwxx/jk/2008-10/29/content_1134234.htm,世界卫生组织:心血管疾病仍是人类死亡首要原因,2008
    [3]Frazier. The development,evolution,and clinical utilization of artificial heart technology. European Journal of Cardio-thoracic Surgery,11 suppl.1997, S29-S31
    [4]T. Mussivand, P. J.hendry, R. G., W. J. Keon. Development of a Ventricular Assist Device for out-of-Hospital Use. The Journal of heart and Lung Transplantation.1999,18(2):166-171
    [5]E. Banaysosy, L. Arusoglu, L. Kizner, G. Tenderich, D. Boethig, K. Minami, R. Korfer. Predictors of Survival in Patients Bridged to Transplantation with the Thoratec VAD Device: A Single-Center Retrospective Study on More Than 100 Patients. J. Heart Lung Transplant. 2000,19:964-968
    [6]A.I.Malashenkov, N.I. Rusanov, R.M.Muratov, R.A.Movsesian, B.A.Fursov, V.A.Bykova, G.I.Tsoukerman. Eight years clinical experience with the replacement of the ascending aorta using composite xenopericardial conduit. European Journal of Cardio-thoracic Surgery.2000, 18:168-173
    [7]F.J.Schoen. Approach to the analysis of Cardiac Valve Prostheses as Surgical Pathology or Autopsy Specimens. Cardiovasc.Pathol.1995,4(4):241-255
    [8]杨子彬主编,生物医学工程学(当代医学新理论与新技术丛书,主编巴德年,基础医学卷),黑龙江出版社,2000.6,P240,P521
    [9]武忠综述,石应康审校,组织工程化心脏瓣膜的研究进展,生物医学工程学杂志,2002,19(1):132-134
    [10]杨苹,与血液接触的两类无机薄膜的抗凝血机理研究,西南交通大学,2006年博士论文
    [11]P. K chu, J. Y. Chen, L. P. Wang, N.Huang. Plasma-surface modification of biomaterials. Materials Science and Engineering R.2002,36:143-206
    [12]I. Dion, F. Rouais, L. Trut, C. Baquey, J.R.Monties, P. Havlik. TiN coating:surface characterization and hemocopatibility. Biomaterials.1993,14(3):169-176
    [13]M. I. Jones, D.M. Grant. Protein adsorption and platelet attachment and activation, on TiN,TiC, and DLC coatings on titanium for cardiovascular applications. J.Biomed. Mater.Res.2000,52(2):413-421
    [14]A. Bolz, J. Riedmuller, M. Pflasterer, M. Schaldach. Cardiovascular device coatings of silicon carbide as a new material for artificial heart valves. Biomed. Tech.1989,34:93-94
    [15]Y. Toshio, K. Yukiaki, M. Yoshiniori. Blood compatibility of sputter-deposited alumina films. J. Biomed. Mater.Res.1994,28(2):217-224
    [16]冷永祥.心血管系人工器官表面改性研究.西南交通大学.2005年,博士论文
    [17]N. Huang, P. Yang, X. Cheng, Y. X. Leng, X. L. Zheng, G. J. Cai, Z. H. Zhen, F. Zhang, Y. R. Chen, X. H. Liu,T. F. Xi. Blood compatibility of amorphous titanium oxide films synthesized by ion beam enhanced deposition. Biomaterials.1998,19:771-776
    [18]M. Shirkhanzaeh. XRD and XPS characterization of superplastic TiO2 coating prepared on Ti6A14V surgical alloy by an electrochemical method. J. Mater. Sci. Mater. Med.1995, 6(4):206-210
    [19]J. X. Liu, D.Z. Yang, F. Shi, Y. J. Cai. Sol-gel deposited TiO2 film on NiTi surgical alloy for biocompatibility improvement. Thin Solid Films.2003,429:225-230
    [20]X.H Wang, F. Prokert. H. Reuther, M.F. Maitz, F. Zhang. Chemical composition and biocompatibility of Ti-Ag-O films prepared by ion beam assisted deposition. Surface Coatings Technology.2004,185:12-17
    [21]陈安清,徐德民,王哲等,粒子束辅助沉积氧化钛对改善热解碳抗凝血性能作用的初步研究,无机材料学报,2004,19(5):1203-1206
    [22]I. Tsyganov, M. F. Maitz, E. Wieser, Blood compatibility of titanium-based coatings prepared by metal plasma immersion ion implantation and deposition. Applied Surface Science,2004,235:156-163
    [23]I. Tsyganov, M. F. Maitz, E. Wieser, F. Prokert, E. Richter, A. Rogozin, Structure and properties of titanium oxide layers prepared by metal plasma immersion ion implantation and deposition. Surface and Coatings Technology,2003,174-175:591-596
    [24]Y. X. Leng, J. Y. Chen, H. Sun, P. Yang, G. J. Wan, J. Wang, N. Huang. Properties of titanium oxide synthesized by pulsed metal vacuum arc deposition. Surface and Coatings Technology,2004,176:141-147
    [25]Y. X. Leng, J. Y. Chen, Z. M. Zeng, X. B. Tian, P. Yang, N. Huang, Z. R. Zhou, P. K. Chu, Properties of titanium oxide biomaterials synthesized by titanium plasma immersion ion implantation and reactive ion oxidation. Thin Solid Films,2000,377-378:573-577
    [26]Y. X. Leng, N. Huang, P. Yang, J. Y. Chen, H. Sun, J. Wang, G J. Wan, Y. Leng, P. K. Chu, Influence of oxygen pressure on the properties and biocompatibility of titanium oxide fabricated by metal plasma ion implantation and deposition. Thin Solid Films,2002, 420-421:408-413
    [27]P. Yang, N. Huang, Y. X. Leng, J. Y. Chen, H. Sun, J. Wang, F. Chen, P. K. Chu, In vivo study of Ti-O thin film fabricated by PⅢ. Surface and Coatings Technology,2002, 156:284-288
    [28]Y.X. Leng, P. Yang, J.Y. Chen, H. Sun, J. Wang, G.J. Wang, N. Huang, X.B. Tian, P.K. Chu, Fabrication of Ti-O/Ti-N duplex coatings on biomedical titanium alloys by metal plasma immersion ion implantation and reactive plasma nitriding/oxidation. Surface and Coatings Technology,2001,138:296-300
    [29]N. Huang, P. Yang, X. Cheng, Y.X. Leng, X.L. Zheng, G.J. Cai, Z.H. Zhen, F. Zhang, Y.R. Chen, X.H. Liu,T.F. Xi, Blood compatibility of amorphous titanium oxide films synthesized by ion beam enhanced deposition. Biomaterials,1998,19:771-776
    [30]N. Huang, P. Yang, Y.X. Leng, J.Y. Chen, H. Sun, J.Wang, GJ.Wang, P.D.Ding,Y.F.Xi, Y.Leng, Hemocompatibility of titanium oxide films. Biomaterials,2003,24:2177-2187
    [31]J.Y. Chen, Y.X. Leng, X.B.Tian, L.P. Wang, N. Huang, P.K. Chu, P. Yang, Antithromboqenic investigation of surface energy and optical bandgap and hemocompatibility mechanism of Ti(Ta+5)O2 thin film. Biomaterials,2002,23:2545-2552
    [32]陈俊英,杨苹,冷永祥,孙鸿,黄楠,医用Ta5+掺杂TiO2生物薄膜材料的合成与性能研究.中国生物医学工程学报,2002,21(5):411-416
    [33]徐禄祥,Ti-O薄膜的制备及其性能研究.西南交大,2005年,硕士论文
    [34]C.K. Chung, M.W. Liao, C.W. Lai. Effects of oxygen flow ratios and annealing temperatures on Raman and photoluminescence of titanium oxide thin films deposited by reactive magnetron sputtering. Thin Solid Films,2009,518(5):1415-1418
    [35]Jurgita Cyviene, Edvinas Navickas, Darius Milcius, Giedrius Laukaitis. Titanium oxide thin films synthesis by pulsed -DC magnetron sputtering. Vacuum,2009,83:S91-S94
    [36]S. Ben Amor, L. Guedri, G. Baud, M. Jacquet, M. Ghedira, Influence of the temperature on the properties of sputtered titanium oxide films. Materials Chemistry and Physics,2002, 77:903-911
    [37]Ya-Qi Hou, Da-Ming Zhuang, Gong Zhang, Ming Zhao, Min-Sheng Wu, Influence of annealing temperature on the properties of titanium oxide thin film. Applied Surface Science, 2003,218:97-105
    [38]S. Fischer, A.W.Munz,K.D.Schierbaum,W.Gopel, The geometric structure of intrinsic defects at TiO2(110) surfaces:an STM study. Surf.Sci.,1995,337:17-30
    [39]J.T. Mayer, U. Diebold, T.E. Madey, E. Garfunkel, Titanium and reduced titania overlayers on titanium dioxide(110). Journal of Electron Spectroscopy and Related Phenomena,1995,73:1-11
    [40]William S. Epling, Charles H.F. Peden, Michael A. Henderson, Ulrike Diebold, Evidence for oxygen adatoms on TiO2(110) resulting from 02 dissociation at vacancy sites. Surface Science,1998,412/413:333-343
    [41]S.H. Cheung, P. Nachimuthu, A.G. Joly, M.H. Engelhard, M.K. Bowman, S.A. Chambers, N incorporation and electronic structure in N-doped TiO2(110) rutile. Surface Science,2007,601:1754-1762
    [42]U. Kolle, J. Moser, M. Gratzel, Dynamics of interfacial charge-transfer reactions in semiconductor dispersions reduction of cobaltoceniumdicarboxylate in colloidal TiO2. Inorg. Chem.,1985,24:2253-2258
    [43]Claudius Kormann, Detlef W. Bahnemannt and Michael R. Hoffmann. Preparation and Characterization of Quantum-Size Titanium Dioxide. J. Phys. Chem.,1988,92:5196-5201
    [44]Guojia J. Fang, Dejie Li, Bao-Lun Yao. Influence of post-deposition annealing on the properties of transparent conductive nanocrystalline ZAO thin films prepared by RF magnetron sputtering with highly conductive ceramic target. Thin Solid Films,2002, 418:156-162
    [45]V.E. Henrich, G. Dresselhaus and H.J. Zeiger, Observation of two-dimensional phases associated with defect states of the surface of TiO2. Phys. Rev.Lett.,1976,36:1335-1339
    [46]Tracy L.Thompson and John T. Yates, Jr. Surface science studies of the photoactivation of TiO2 new photochemical processes. Chem. Rev.,2006,106:4428-4453
    [47]JulianH.Braybook编著,由少华、田青、朱雪涛等译,卜长生、刘秦玉主审,医疗器械和此阿里奥生物相容性评价.中国药品监督管理局医疗器械司、中国药品监督管理局济南医疗器械质量监督检验中心印行,2001.3:122
    [48]D.L.Wise, Biomaterials and Bioengineering handbook. New York, Marcel Dekker Inc., 2000, P205
    [49]虞颂庭,翁铭庆主编.生物医学工程的基础与临床.天津科学技术出版社,1988,135-136
    [50]王春仁,杨子彬,奚延斐.生物材料表面血浆蛋白的吸附.国外医学生物医学工程分册,1995,18(6):334-338
    [51]S. Y. Jung, S. M. Lim, F. Albertorio, G. Kim, et. al. The vroman effect:a molecular level description of fibrinogen displacement. J. Am. Chem. Soc.2003,125 (42):12782-12786
    [52]阮长耿.血栓与止血.江苏科学技术出版社,1994.3,P103-129
    [53]王振义,李家增,软长耿.血栓与止血—基础理论与临床.第二版.上海科学技术出版社,1996:83
    [54]程青,王国斌.上海生物医学工程,2001.2(3):1-33
    [55]P. Vadgama. Surface and interface of biomaterials. Woodhead Publishing Limited and CRC Press LLC.2005:95-200
    [56]Mohammed Yaseen, Xiubo Zhao, Amy Freund, Alexander M. Seifalian, Jian R. Lu. Surface structural conformations of fibrinogen polypeptides for improved biocompatibility. Biomaterials.2010,31:3781-3792
    [57]J. D.Andrade, V. L. Hlady, R. A. Van Wagene. Effects of plasma protein conformation and activity. Pure & Appl. Chem.1984,56(10):1345-1360
    [58]L. Paul, C. P. Sharma. Preferential adsorption of albumin onto a polymer surface:an understanding. J. Colloid Interface Sci.1981,84:546
    [59]D. R. Lu, K. Park. Effect of surface hydrophobicity on the conformational changes of adsorbed fibrinogen. Journal of Colloid and Interface.1991,144(1):271-281
    [60]T. L. Bonfied, E. Colton, J. M. Anderson. Plasma protein adsorbed biomedical polymers: activation of human monocytes and induction of interleukin 1. J Biomd Mater Res.1989, 23(6):535-548
    [61]张汉炎,张秀芳,公衍道,赵南明.人纤维蛋白原与聚四氟乙烯表面间相互作用的研究.科学通报.1996,41(10):939-942
    [62]Park Kinam, Gemeinhart Richard A., Park Haesun. Movement of fibrinogen receptors on the ventral membrane of spreading platelets. Biomaterials.1998,19:387-395
    [63]黄嘉,乐以伦,郑昌琼.血浆蛋白质在生物材料表面吸附时的Vroman效应.生物医学工程杂志.1999,16(3):371-376
    [64]D. H. Kaeble and J. Moacanin. A surface energy analysis of bioadhesion. J. Polymer. 1977,18(5):475-482
    [65]P. K. Sharma, K. Hanumantha Rao. Advances in Colloid and Interface Science.2002, 98:341-463
    [66]G. E. Stoner. Electrosorption of amino acids peptides and proteins in relation to the compatibility of materials and the human body. J. Biomd Mat. Res.1965,3:655
    [67]P.Baurschmidt, M.Schaldach. The electrochemical aspects of the thrombogenicity of a material. J.Bioeng.1977,1:261-278
    [68]P.Baurschmidt, M.Schaldach. Alloplastic materials for heart valve prosthesis. Med. Biol. Eng. Comput.1980,18:496-502
    [69]R. Thull. Physicochemical principles of tissue material interactions. Biomolecular Engineering.2002,19:43-50
    [70]P.N.Sawyer. Electrode-biologic tissue interactions at interfaces-a review. Biomaterials Medical Devices and Artificial Organs.1984,12(3-4):161-196
    [71]奚廷斐,王春仁,田文华.四种国产嵌段聚醚聚氨酯材料血液相容性的评价.中国生物医学工程学报.]989,6(4):279-283
    [72]李天全,万昌秀.测定FG-血小板结合亲和力变化的新方法.中国生物医学工程学报.1998,97(2):332-334
    [73]朱永法,王如骥.纳米材料的表征与测试技术.化学工业出版社,2006:171-174
    [74]郭沁林.X射线光电子能谱.物理,2007,3:405-410
    [75]黄惠忠,等.论表面分析及其在材料研究中的应用.科学技术文献出版社,2002:17
    [76]H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, and F. Levy. Ellectrical and optical properties of TiO2 anatase thin films. J. Appl. Phys.1994,75:2042-2047
    [77]J.L. Sullivan, W. Yu, S.O. Saied. A study of the compositional changes in chemically etched, Ar ion bombarded and reactive ion etched GaAs(100) surfaces by means of ARXPS and LEISS. Applied Surface Science.1995,90:309-319
    [78]Victor V. Atuchin, Valery G. Kesler, Natalia V. Pervukhina, Zhaoming Zhang. Ti 2p and O 1s core levels and chemical bonding in titanium-bearing oxides. Journal of Electron Spectroscopy and Related Phenomena.2006,152:18-24
    [79]Pham M, Reuther H, Matz W, Mueller R, Steiner G, Oswald S, Zyganov I. Surface induced reactivity for titanium by ion implantation. J Mater Sci Mater Med.2000,11:383-91
    [80]Christof Wo 11. The chemistry and physics of zinc oxide surfaces. Progress in Surface Science.2007,82:55-120
    [81]Jun Chen, Xianran Xing, Ranbo Yu, Jinxia Deng, Guirong Liu. Microstructural characterization of sol-gel derived Pbl-xLaxTiO3 ferroelectrics. Journal of Alloys and Compounds.2005,388:308-313
    [82]北京市辐射中心,北京师范大学低能和物理研究所离子注入研究室.离子注入原理与技术.北京出版社出版.1982:1-10
    [83]K. Takahiro, S. Nagata, M. Kishimoto, S. Yamaguchi, S. Mamiya, K. Gotoh. Lattice disorder induced by nitrogen-ion implantation in single crystal Mn-Zn ferrite. Surface and Coatings Technology.1999,122:108-111
    [84]T. R. Rautray, R. Narayanan, K.H. Kim. Ion implantation of titanium based biomaterials. Progress in Materials Science.2011,56:1137-1177
    [85]P. Ding, F.M. Liu, X.A. Yang, J.Q. Li. Characterization of structure and distortion in the manganese ions implanted TiO2 thin films. Nuclear Instruments and Methods in Physics Research B.2009,267:3109-3113
    [86]S.O. Kucheyeva, J.S. Williams, S.J. Pearton. Ion implantation into GaN. Materials Science and Engineering.2001,33:51-107
    [87]D.Y. Wang, H.C. Lin, C.C. Yen. Influence of metal plasma ion implantation on photo-sensitivity of anatase TiO2 thin films. Thin Solid Films.2006,515:1047-1052
    [88]Jeffrey W. Beeman, Supriya Goyal, Lothar A. Reichertz, Eugene E. Haller. Ion-implanted Ge:B far-infrared blocked-impurity-band detectors, nfrared Physics & Technology.2007,51:60-65
    [89]N. Mottu, M. Vayer, P. Andreazza, Th. Sauvage, G. Blondiaux, R. Erre. Structural modification induced by Mo implantation in stainless steel. Surface and Coatings Technology.2002,151-152:47-50
    [90]T.L. Barr. Recent advances in x-ray photoelectron spectroscopy studies of oxides. J. Vac. Sci. Technol. A.1991:9 (3):1793-1805.
    [91]R. Dogra, A.P. Byrne, Z.S. Hussain, M.C. Ridgway. Atomic scale characterization of ion-induced amorphization of GaAs and InAs using perturbed angular correlation spectroscopy. Nuclear Instruments and Methods in Physics Research B.2008, 266:1460-1463
    [92]D. Rafaja, V. Valvoda, R. Kuzel, A.J. Perry, J.R. Treglio. XRD characterization of ion-implanted TiN coatings. Surface and Coatings Technology.1996,86-87:302-308
    [93]Fa-Min Liu, Peng Ding, Xin-An Yang, Jian-Qi Li. Structural distortion effect in the cobalt ions implanted TiO2 films. Nuclear Instruments and Methods in Physics Research B. 2009,267:3104-3108
    [94]任达森,崔晓莉,张群,杨锡良.章壮健.常温下纳米TiO-2薄膜的制备及其超亲水性研究.真空科学与技术.2002,22(6):421-424
    [95]周红芳.离子注入钛氧薄膜的血液相容性研究.西南交通大学,2006年,硕士论文,P8
    [96]J. Lee, J. Metson, P.J. Evans, R. Kinsey, D. Bhattacharyya. Implanted ZnO thin films: Microstructure, electrical and electronic properties. Applied Surface Science.2007, 253:4317-4321
    [97]V. Suresh Kumar, P. Puviarasu, K. Thangaraju, R. Thangavel, V. Baranwal, F. Singh, T. Mohanty, D. Kanjilal, K. Asokan, J. Kumar. Effect of swift heavy ions of silver and oxygen on GaN. Nuclear Instruments and Methods in Physics Research B.2006,244:145-148
    [98]G. Fuse, M. Sano, H. Murooka, T. Yagita, M. Kabasawa, T. Siraishi, Y. Fujino, N. Suetsugu, H. Kariya, H. Izutani, M. Sugitani. Electrical characteristics due to differences in crystal damage induced by various implant conditions. Nuclear Instruments and Methods in Physics Research B.2005,237:77-82
    [99]T.T. Chau, W.J. Bruckard, P.T.L. Koh, A.V. Nguyen. A review of factors that affect contact angle and implications for flotation practice. Advances in Colloid and Interface Science.2009,150:106-115
    [100]T. Hasebe, T. Ishimaru, A. Kamijo, Y. Yoshimoto, T. Yoshimura, S. Yohena, H. Kodama, A. Hotta, K. Takahashi, T. Suzuki. Effects of surface roughness on anti-thrombogenicity of diamond-like carbon films. Diamond & Related Materials. 2007,16:1343-1348
    [101]U. Diebold. The surface science of titanium dioxide. Surf. Sci. Rep.2003,48:53-229
    [102]D. Krupa, J. Baszkiewicz, J.A. Kozubowski, A. Barcz, J.W. Sobczak, A. Bilinski, M. Lewandowska-Szumiel, B. Rajchel. Effect of dual ion implantation of calcium and phosphorus on the properties of titanium. Biomaterials.2005,26:2847-2856
    [103]潘志峰,袁一方,李清山.退火处理对ZnO薄膜晶体结构和导电性能的影响.光学与光电技术.2006,4:51-54
    [104]Agnese Pavlova, Janis Barloti, Valdis Teters, Janis Locs, Liga Berzina-Cimdina. Investigation of electrical properties of vacuum annealed titanium oxide containing ceramics. Processing and Application of Ceramics.2009,3 (4):187-190
    [105]Z.G. Xia, Q.Li, M. Cheng. Role of oxygen vacancies in the coloration of 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 single crystals. Crystal Research and Technology. 2007,42:511-516
    [106]Yu-Lan Lin, Ting-Jie Wang, Yong Jin. Surface characteristics of hydrous silic-coated TiO particles. Powder Technology.2002,123:194-198
    [107]Ulrich Koelle, Jacques Moser, Michael Graetzel. Dynamics of interfacial charge-transfer reactions in semiconductor dispersions. Reduction of cobaltoceniumdicarboxylate in colloidal titania. Inorg. Chem.1985,24 (14):2253-2258
    [108]Claudius Kormann, Detlef W. Bahnemann, Michael R. Hoffmann. Preparation and characterization of quantum-size titanium dioxide. J. Phys. Chem.1988,92 (18):5196-5201
    [109]Tao He, Jiannian Yao. Photochromism in composite and hybrid materials based on transition-metal oxides and polyoxometalates. Progress in Materials Science.2006,51:810-879
    [110]Michael A. Henderson. A surface perspective on self-diffusion in rutile TiO2. Surface Science.1999,419:174-187
    [111]Jungyol Jo, Hyoshik Choi, Sejin Kang. Resistance increase in TiOx induced by annealing and voltage application. Thin Solid Films.2008,516:8693-8696
    [112]N.R. Mathews, Erik R. Morales, M.A. Cortes-Jacome, J.A. Toledo Antonio. TiO2 thin films-Influence of annealing temperature on structural, optical and photocatalytic properties. Solar Energy.2009,83:1499-1508.
    [113]R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe. Light-induced amphiphilic surface. Nature.1997,388:431-432
    [114]Tykhon Zubkov, Dirk Stahl, Tracy L. Thompson, Dimitar Panayotov, Oliver Diwald, John T. Yates, Jr. Ultraviolet Light-Induced Hydrophilicity Effect on TiO2(110)(1×1). Dominant Role of the Photooxidation of Adsorbed Hydrocarbons Causing Wetting by Water Droplets. J. Phys. Chem. B.2005,109:15454-15462
    [115]崔晓莉,沈杰,任达森,杨锡良,章壮健,江志裕.纳米TiO2薄膜的热致亲水性与光致亲水性机理.化学通报.2003,(3):203-206
    [116]D. Panayotov, J.T. Yates Jr. Electron exchange on TiO2-SiO2 photocatalysts during O2 and organic molecule adsorption-the role of adsorbate electrophilicity. Chemical Physics Letters.2003,381:154-162
    [117]Akira Fujishima, Tata N. Rao, Donald A. Tryk. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C:Photochemistry Reviews.2000,1:1-21
    [118]G. Nimeri, B. Lassen, C.G. Golander, et al. adsorption of fibrinogen and some other proteins from blood plasma at a variety of solid surfaces. Journal of Biomaterials Science. 1991,2:173-181
    [119]Bengt Kasemo. Biological surface science. Surface Science.2002,500:656-677
    [120]M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia. Ti based biomaterials, the ultimate choice for orthopaedic implants -A review. Progress in Materials Science.2009,54:397-425
    [121]I. Tsyganov,T, M.F. Maitz, E. Wieser, E. Richter, H. Reuther. Correlation between blood compatibility and physical surface properties of titanium-based coatings. Surface & Coatings Technology.2005,200:1041-1044
    [122]R.K. Roy, H.W. Choi, J.W. Yi, M.W. Moon, K.R. Lee, D.K. Han, J.H. Shin, A. Kamijo, T. Hasebe, Hemocompatibility of surface-modified, silicon-incorporated, diamond-like carbon films, Acta Biomaterialia.2009,5:249-256
    [123]R. Schaub, E. Wahlstrom, A. Ronnau, E. Laegsgaard, I. Stensgaard, F. Besenbacher. Oxygen-mediated diffusion of oxygen vacancies on the TiO2 (110) surface. Science.2003, 299:377-379
    [124]E. Wahlstrom, E.K. Vestergaard, R. Schaub, A. R(?)nnau, M. Vestergaard, E. L(?)gsgaard, I. Stensgaard, F. Besenbacher. Electron Transfer-Induced Dynamics of Oxygen Molecules on the TiO2 (110) Surface. Science.2004,303:511-513
    [125]Shinji Takemoto, Tatsuhiro Yamamoto, Kanji Tsuru, Satoshi Hayakawa, Akiyoshi Osaka, Seisuke Takashima. Platelet adhesion on titanium oxide gels:effect of surface oxidation. Biomaterials.2004,25:3485-3492
    [126]M. Veronica Ganduglia-Pirovano, Alexander Hofmann, Joachim Sauer. Oxygen vacancies in transition metal and rare earth oxides:Current state of understanding and remaining challenges. Surface Science Reports.2007,62:219-270
    [127]Benjamin J. Morgan, Graeme W. Watson. ADFT+U description of oxygen vacancies at the TiO2 rutile (110) surface. Surface Science.2007,601:5034-5041
    [128]Hongbin Su, Ping. Yang, Jinbiao Wang, Nan. Huang. First-principles calculations on the geometry and electronic structure of rutile TiO2 (110) surface. Advanced Materials Research Vols.2009,79-82:1201-1204
    [129]L. Kavan, M. Gratzel, S.E. Gilbert, C. Klemenz, H.J. Scheel. Electrochemical and photoelectrochemical investigation of single-crystal anatase, J. Amer. Chem. Soc.1996, 118:6716
    [130]徐禄祥,冷永祥,黄楠.磁控溅射工艺参数对氧化钛薄膜晶体结构的影响.功能材料.2004,(35):3143-3145
    [131]万国江.Ti-O薄膜材料抗凝血性能及电化学机理研究.西南交通大学,2008年,博士论文,P100
    [132]N. Mottu, M. Vayer, P. Andreazza, Th. Sauvage, G. Blondiaux, R. Erre. Structural modification induced by Mo implantation in stainless steel. Surface and Coatings Technology.2002,151-152:47-50
    [133]J.M. Pan, B.L. Maschhoff, U. Diebold, T.E. Madey. Interaction of water, oxygen, and hydrogen with TiO2(110) surfaces having different defect densities. J. Vac. Sci.Technol. A. 1992,10:2470-2476
    [134]M.A.Henderson. Mechanism for the bulk-assisted reoxidation of ion sputtered TiO2 surfaces:diffusion of oxygen to the surface or titanium to the bulk? Surf. Sci.1995,343: L1156-L1160
    [135]雷伊凤.抗凝血氧化钛薄膜的实验及计算研究.西南交通大学,2009年,硕士论文,P44-60
    [136]张滨,孙玉珍,王文皓.关于用UPS测量功函数.物理测试.2007,25:21-23
    [137]S.X. Yin, D.E. Ellis. H2O adsorption and dissociation on defective hematite (0001) surfaces:A DFT study. Surface Science.2008,602:2047-2054
    [138]S. Wendt, R. Schaub, J. Matthiesen, E.K. Vestergaard, E. Wahlstrom, M.D. Rasmussen, P. Thostrup, L.M. Molina, E. Laegsgaard, I. Stensgaard, B. Hammer, F. Besenbacher. Oxygen vacancies on TiO2(110) and their interaction with H2O and 02:A combined high-resolution STM and DFT study. Surface Science.2005,598:226-245
    [139]A. A. Bonapasta, F. Filippone, G. Mattioli, P. Alippi. Oxygen vacancies and OH species in rutile and anatase TiO2 polymorphs. Catalysis Today.2009,144:177-182
    [140]G. Lu, A. Linsebigler, J.T. Yates Jr. Ti3+ defect sites on TiO2(110):Production and Chemical detection of active sites. J. Phys. Chem.1994,98(45):11733-11738
    [141]宋桥台.利用第一性原理对二氧化钛掺杂进行研究.西南交通大学,2008年,硕士论文,P57
    [142]陈建华,龚竹青著.二氧化钛半导体光催化材料离子掺杂.科学出版社,2006:84
    [143]G.S. Shao, F.Y.n Wang, T.Z. Ren, Y.P. Liu, H.Y. Yuan. Hierarchical mesoporous phosphorus and nitrogen doped titania aterials:Synthesis, characterization and visible-light photocatalytic activity. Applied Catalysis B:Environmental.2009,92:61-67
    [144]陈江,郭翔,杨苹,王锦标,郑楠,孙鸿,黄楠.微图形Ti-O薄膜亲水性对细胞行为的影响.功能材料.2010,10(41):1788-1791
    [145]N.B. Holland, R.E. Marchant.Individual plasma proteins detected on rough biomaterials by phase imaging AFM. Journal of Biomedical Materials Research A.2000, 51:307-315
    [146]黄琼俭.LTIC表面抗凝氧化钛薄膜改性及血液相容性研究.西南交通大学,2011年,硕士论文,P53
    [147]Z.Y. Huang, P. Luo, M. Chen, S.R. Pan, D.H. Chen. Microstructure and hemocompatibility of neodymium doped zinc oxide thin films. Materials Letters.2011,65: 2345-2347
    [148]Cristele J. Nonckreman, Sandrine Fleith, Paul G. Rouxhet, Christine C. Dupont-Gillain. Competitive adsorption of fibrinogen and albumin and blood platelet adhesion on surfaces modified with nanoparticles and/or PEO. Colloids and Surfaces B:Biointerfaces.2010,77: 139-149
    [149]K. Baba, R. Hatada. Synthesis and properties of TiO thin films by plasma source ion implantation. Surface and Coatings Technology.2001,136:241-243

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700