用户名: 密码: 验证码:
高精度光纤传感系统及其在油田测井中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
测井是石油工业中最基本和最关键的环节之一,通过对井下压力、温度等重要物理参量的实时监测,及时获取井下信息,对优化采油方案、提高油田开采效率等有着重要的意义。光纤传感器由于具有体积小、本质安全、灵敏度高、耐高温高压以及抗电磁干扰等优点得到了石油行业的高度关注。准确性、可靠性以及成本问题是光纤传感器在油井监测应用中最受关注的问题。本文围绕这三个问题,主要做了以下工作:
     对光纤EFPI传感器腔长的大范围高分辨率解调技术做了深入的研究与讨论。在详细分析现有腔长解调算法解调性能的基础上提出了游标式解调算法,该算法以傅立叶变换解调算法来跟踪腔长变化,以基于最小均方误差估计的解调算法做腔长的精细解调,实现了EFPI传感器腔长的大动态范围和高分辨率的同时解调。设计了基于光纤F-P干涉仪的微位移传感器来检验游标式解调算法的解调性能。结果表明,游标式解调算法的腔长解调范围达3mm,解调分辨率为0.084nm,相对分辨率达3×10-8。
     为改善光纤EFPI传感器的长期测试可靠性,设计并搭建了基于激光诱导化学气相沉积方法的碳膜生长装置,成功制作出了碳膜涂覆的光纤EFPI传感器(Carbon-coated EFPI sensor, C2EFPI sensor)。并以扫描电子显微镜及拉曼光谱分析作为检测手段分析了沉积温度、沉积压强以及气源种类等因素对碳膜质量的影响,优化了沉积参数。最后,对C2EFPI传感器做了性能测试,结果表明C2EFPI传感器碳膜的拉曼光谱R值为1.03;在九个月的时间内,C2EFPI传感器在300℃及72MPa的环境下腔长波动范围在1nm之内,迟滞误差小于0.01%F.S.,重复性误差小于0.05%F.S.,压强测量偏差优于0.05%F.S.。另外,振动试验表明C2EFPI传感器还有着很强的环境适应性及质量可靠性。
     针对如何降低光纤传感器测井成本的问题,对基于FBG的准分布式温度测试系统做了详细而深入的研究。详细讨论了传感器复用容量、解调精度以及高温封装等关键问题,实现了单通道26个FBG的复用测试以及耐受300℃高温的传感器封装。系统性能的实验测试结果表明在250℃的测温范围内,系统温度测量分辨率优于0.15℃,温度测量误差小于0.5%F.S.,重复性误差小于0.13%F.S.,长期漂移小于0.2%F.S.。
     对光纤分布式温度传感器(DTS)与EFPI压力传感器的复用技术做了详细的分析及讨论。在深入分析DTS及光纤EFPI压力传感器的工作机理的基础上提出了基于宽带光纤波分复用器的复用方案,实现了利用单根光纤来同时测试井筒分布式温度与井下定点压力的测井技术。现场测试结果表明该复用方案操作简单,长期测试性能稳定,与传统测试方案相比,可以节省一根光纤,进一步降低了光纤传感器的测井成本。
Well logging is one of the most important technologies for petroleum industry. Oil down-hole conditions, such as pressure and temperature, are of great values for oil exploration and reservoir management. Optical fiber sensors, with their unique advantages such as small size, high sensibility, immune to electromagnetic interference (EMI) and resistant to harsh environment, have attracted more and more attentions in the field of down-hole monitoring. Accuracy, reliability and high cost are three most important things for optical fiber sensors' applications in down-hole monitoring. In this dissertation, we present detailed, systematic and intensively studies on how to increase the accuracy and reliability of the optical fiber sensor and to cut down the logging cost. The major research works are outlined as followings:
     To increase measurement accuracy of the extrinsic Fabry-Perot interferometric (EFPI) based pressure sensor, we developed a novel demodulation method which is called as cursor-liked demodulating algorithm. This cursor-liked demodulating algorithm combines both advantages of the Fourier transform method and the minimum mean square error estimation based signal processing method, which can generate high resolution and large dynamic range measurment simultaneously. To verify its performance, an EFPI-based displacement sensor is constructed. Experimental results show that this cursor-liked demodulating algorithm can make absolute measurement of the cavity length and provide a resolution as0.84nm and a dynamic range as3mm.
     To improve the reliability of the EFPI-based pressure sensor, a laser-induced chemical vapor deposition device is set up which can make a type of carbon-coated EFPI (C2EFPI) sensor. The scanning electron microscopy and Raman spectroscopy are used to analyze the carbon coating for their thickness, surface roughness and microstructure. Through optimization of the carbon depositing parameters, hermetic carbon coatings have been grown on the EFPI sensor with an R value of1.03. Then, the performance of the C2EFPI sensor is verified experimentally, and realize an accuracy of0.05%F.S.(full scale) and a hysteresis of0.01%F.S., also the fluctuation of the cavity length is only1nm during nine months with in a harsh environment of72MPa and300℃. Vibration test results demonstrate that the C2EFPI sensor also has a good adaptability to vibration environment and can meet the requirements of high repeatability, high accuracy, long-term reliable measurement in well logging, which is highly valuable for industrial harsh environment applications.
     To reduce the cost of the optical fiber well logging system, we design and develop a quasi-distributed temperature sensor system for down-hole monitoring based on the fiber Bragg grating (FBG). Comparing with other peak-detected algorithms, the direct Gaussian fitting algorithm can achieve a higher precision and more stable demodulation result for the reflection spectrum of the FBG. A triple layer metal tubing protection scheme is proposed to meet the critical measurement requirement of the oil well. Experimental results show that the measurement accuracy is less than0.5%with in a full scale of250℃; the maximum of absolute-resolution is0.15℃; the repeatability is less than0.13%F.S.(250℃), and the long-term stability at250℃is less than0.2%F.S.
     We also present a cost-effective sensing system combining the EFPI-based pressure sensor with the distributed temperature sensor (DTS) to further cut down the cost of optical fiber well logging system. This sensing system can realize accurate pressure measurement in the oil reservoir and temperature profile measurement of the wellbore simultaneously. Because the sensing wave bands of the pressure and temperature sensor are different, the wavelength-division multiplexing (WDM) technology is used to couple these two sensing signals into one single fiber. Field test results show that this sensing system has a good long-term stability in high temperature oil well. The low cost of this sensing system provide a solid foundation to mass applications of fiber optic sensors in oilfields.
引文
[1]赵勇.光纤传感原理与应用技术[M].北京:清华大学出版社,2007.
    [2]Grattan K T V, Sun T. Fiber optic sensor technology:an overview[J]. Sensors and Actuators,2000,82(1):40-61.
    [3]Grattan K T V, Meggitt B T. Optical fiber sensor technology:advanced applications: Bragg gratings and distributed sensors[M]. Boston:Kluwer Academic,2000.
    [4]Grattan K T V, Meggitt B T. Optical fiber sensor technology:fundamentals[M]. Boston:Kluwer Academic,2000.
    [5]廖延彪.光纤光学[M].北京:清华大学出版社,2000
    [6]黎敏,廖延彪.光纤传感器及其应用技术[M].湖北:武汉大学出版社,2008.
    [7]江毅.高级光纤传感技术[M].北京:科学出版社,2008
    [8]Culshaw B, Kersey A. Fiber-optic sensing:a historical perspective[J]. Journal of Lightwave Technology,2008,26(9):1064-1078.
    [9]Gander M J, MacPherson W N, Barton J S, et al. Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications[J]. Sensors Journal, IEEE,2003,3(1):102-107.
    [10]Snaders G A, Zarfaniee B S, Liur Y, et al. Fiber optic gyros for space, marine, and aviation applications[C]. Proceedings of SPIE,1996,2387:61-71
    [11]Denarie Y E, Saouma V E, Iocco A, et al. Concrete fracture process zone characterization with fiber optics[J]. Journal of Engineering Mechanics, 2001,127(5):494-502.
    [12]Tomasel F G, Cortazar 0 D. Health monitoring of steel cables by interrogation of optical fiber grating sensors[J]. Journal of Sound and Vibration.2002, 252(3):573-576.
    [13]Kaji Y, Matsui Y, Kita S, et al. Application of a fiber optic grating strain sensor for the measurement of strain under irradiation environment[J]. Nuclear Engineering and Design,2002,217(3):283-288.
    [14]熊燕玲,赵洪,张剑,等.基于超磁致伸缩材料的光纤光栅交流电流传感系统[J].电工技术学报,2006,21(4):16-19.
    [15]Deng J, Xiao H, Huo W, et al. Optical fiber sensor-based detection of partial discharges in power transformers[J]. Optics and Laser Technology,2001, 33(5):306-311.
    [16]Spirin V V, Shlyagin M G, Miridonov S V, et al. Fiber Bragg grating sensor for petroleum hydrocarbon leak detection[J]. Optics and Lasers in Engineering,2000, 32(5):497-503.
    [17]Cibula E, Donlagic D, Stropink C. Minature fiber optic pressure sensor for medical application[C]. Proceedings of IEEE,2001,1:711-714
    [18]江绍基,朱析,汪河洲,等.非对称型法布里-珀罗光纤颅内压传感器[J].中国医学物理学杂志,2005,22(3):548-550
    [19]Paladin D, Iadicicc A, Campopiano S, et al. Not-lithographic fabrication of micro-structured fiber Bragg gratings evanescent wave sensors[J]. Optics Express, 2009,17(2):1042-1054.
    [20]Salmasi A, Yousefi-Koma A, Soorgee M H. Mechanical design and analysis of an intelligent oil well sensory system[C].10th Biennial Conf. on Engineering Systems Design and Analysis, Istanbul Turkey,2010,2:201-205.
    [21]Kersey A D. Optical fiber sensors for permanent downwell monitoring applications in the oil and gas industry[J]. IEICE TRANSACTIONS ON ELECTRONICS,2000, E83-C (3):400-404.
    [22]Glandt C. Reservoir aspects of smart wells[C]. SPE Latin American and Caribbean Petroleum Engineering Conference, Trinidad and Tobago,2003.
    [23]Pinet E. Fabry-Perot fiber-optic sensors for physical parameters measurement in challenging conditions[J]. Journal of Sensors,2009,720980:1-9.
    [24]Qi B, Pickrell G, Zhang P, et al. Fiber optic pressure and temperature sensors for oil down hole application[C]. Proceedings of SPIE,2002,4578:182-188.
    [25]于清旭,王晓娜,宋世德,等.光纤F-P腔压力传感器在高温油井下的应用研究[J].光电子·激光,2007,18(3):299-302.
    [26]Zhao Y, Liao Y, Lai S. Simultaneous measurement of down-hole high pressure and temperature with a bulk-modulus and FBG sensor[J]. Photonics Technology Letters, IEEE,2002,14(11):1584-1586.
    [27]Schroeder R J, Yamate T, Udd E. High pressure and temperature sensing for the oil industry using fiber Bragg gratings written onto side hole single mode fiber[C]. SPIE INTERNATIONAL SOCIETY FOR OPTICAL 1999,26:42-45.
    [28]Nellen P M, Mauron P, Frank A, et al. Reliability of fiber Bragg grating based sensors for downhole applications[J]. Sensors and Actuators A,2003, 103(3):364-376.
    [29]Reinsch T, Henninges J. Temperature-dependent characterization of optical fibres for distributed temperature sensing in hot geothermal wells[J], Measurement Science and Technology,2010,21:094022(8pp).
    [30]史晓峰,蔡志权,李静.分布式光纤测温系统及其在石油测井中的应用[J].石油仪器,2002,16(2):20-23.
    [31]Murphy K A, Gunther M F, Vengsarkar A M, et al. Quadrature phase-shifted extrinsic Fabry-Perot optical fiber sensors[J]. Optics Letters,1991,24(6):273-275.
    [32]Murphy K A, Gunther M F, Vengsarkar A M, et al. Fabry-Perot fiber-optic sensors in full-scale fatigue testing on an F-15 aircraft[J]. Applied Optics,1992, 31(4):431-433.
    [33]Xu J. High Temperature High Bandwidth Fiber Optic Pressure Sensors[D]. Virginia: Virginia Polytechnic Institute and State University,2005.
    [34]Wang A. Optical fiber sensors for energy-production and energy-intensive industries[C]. Proceedings of the SPIE,2002,4920:377-381.
    [35]Wang A, Xiao H, May R G, et al. Optical fiber sensors for harsh environments[C]. Proceedings of the SPIE,2000,4077:2-6.
    [36]Clowes J R, McInnes J, Zervas M N, et al. Effects of high temperature and pressure on silica optical fibre sensors[C]. In Proceedings of 12th International Conference on Optical Fibre Sensors, Williamsburg, VA,1997,626-629.
    [37]Clowes J R, McInnes J, Zervas M N, et al. Effects of high temperature and pressure on silica optical fiber sensors[J]. IEEE Photonics Technology Letters,1998, 10(3):403-405.
    [38]Clowes J R, Edwards J, Grudinin I, et al. Low drift fibre optic pressure sensor for oil field downhole monitoring[J]. Electronics Letters,1999,35(11):926-927
    [39]Pickrell G R, Yuhong D, Qi B, et al. Investigation of the diffusion of water in optical fibers at elevated temperature and pressure[C]. Proceedings of the SPIE, 2002,4578:239-250.
    [40]Cooper K, Pickrell G, Wang A. Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery[R]. Virginia Polytechnic Institute and State University (US) 2003.
    [41]Huang W, Chiu W K S. Heat and mass transfer in a CVD optical fiber coating process by propane precursor gas[J]. Numerical Heat Transfer, Part A:Applications,2006, 50(2):147-163.
    [42]Kwok K, Chiu W K S. Investigation of open-air laser-induced chemical vapor deposition of carbon on moving optical fibers[J]. Optical Engineering,2005, 44(7):0738011-11.
    [43]Kwok K, Chiu W K S. Open-air carbon coatings on fused quartz by laser-induced chemical vapor deposition[J]. Carbon,2003,41(4):673-680.
    [44]Chen S S, Shiue S T, Cheng K J, et al. Minimization of conical particles in carbon coatings of optical fibers prepared by thermal chemical vapor deposition[J]. Optical Engineering,2008,47(4):0450051-5.
    [45]Chen S S, Shiue S T, Wu Y H, et al. Effects of deposition temperature on the properties of hermetically carbon-coated optical fibers prepared by thermal chemical vapor deposition[J]. Surface and Coatings Technology,2007, 202(4):798-803.
    [46]Shiue S T, He J L, Pan L Y, et al. Thermally induced stress voids in hermetically carbon-coated optical fibers with different coating thickness[J]. Thin Sol id Films, 2002,406(1):210-214.
    [47]Latifi H, Aref S, Afshari M, et al. High pressure measurement by optical fiber fabry-perot sensor for downhole application[C]. Conference of Optical Fiber Sensors, Cancun, Mexico,2006, TuE51:1-5.
    [48]Aref S, Latifi H, Zibaii M, et al. Fiber optic Fabry-Perot pressure sensor with low sensitivity to temperature changes for downhole application[J]. Optics communications,2007,269(2):322-330.
    [49]Aref S, Zibaii M, Latifi H. An improved fiber optic pressure and temperature sensor for downhole application[J]. Measurement Science and Technology,2009, 20:034009(6pp).
    [50]Mitchell G L. Intensity-based Fabry-Perot interferometer sensor. Fiber Optics Sensors:An Introduction for Engineering and Scientists[M]. New York,1991
    [51]Wang A, Xiao H, Wang J, et al. Self-calibrated interferometric-intensity-based optical fiber sensors [J]. Journal of lightwave technology,2001,19(10):1495-1501.
    [52]Lee C E, Taylor H F. Fiber-optic Fabry-Perot temperature sensor using a low-coherence source[J]. Journal of lightwave technology,1991,9(1):129-134.
    [53]Ning Y N, Grattan K T V, Palmer A W. Fibre-optic interferometric systems using low-coherent light sources[J]. Sensors and Actuators A,1992,30(3):181-192.
    [54]Rao Y J, Jackson D A. Recent progress in fibre optic low-coherence interferometry [J]. Measurement Science and Technology,1996,7(7):981-999.
    [55]Arya V, Vries M D, Murphy K A, et al, Exact analysis of the extrinsic Fabry-Perot interferometric optical fiber sensor using Kirchhoff's diffraction formalism[J]. Optic Fiber Technology,1995,1(4):380-384.
    [56]Liu T, Fernando G F. A frequency division multiplexed low-finesse fiber optic Fabry-Perot sensor system for strain and displacement measurements[J]. Review of Scientific Instruments,2000,71:1275-1278.
    [57]Shen F, Wang A. Frequency-estimation-based signal-processing algorithm for white-light optical fiber Fabry-Perot interferometers[J]. Applied optics,2005, 44(25):5206-5214.
    [58]Jiang Y. Fourier-transform phase comparator for the measurement of extrinsic Fabry-Perot interferometric sensors[J]. Microwave and Optical Technology Letters, 2008,50(10):2621-2625.
    [59]Qi B, Pickrell G R, Xu J C, et al. Novel data processing techniques for dispersive white light interferometer [J]. Optical Engineering,2003,42(11):3165-3171.
    [60]Han M, Zhnag Y, Shen F, et al. Signal-proeessing algoritmh for white-light fiber extrinsic Fabry-Perot interfermoetric sensors[J]. Optics Letters,2004, 29(15):1736-1738.
    [61]Jing Z, Yu Q. White light optical fiber EFPI sensor based on cross-correlation signal processing method[C]. in Proc.6th Int. Symp. Test and Measurement,2005, 4:3509-3511.
    [62]荆振国.白光非本征法布里一珀罗干涉光纤传感器及其应用研究[D].辽宁:大连理工大学.2006.
    [63]宋世德,于清旭.一种光纤F-P传感器腔长的解调方法[P].中国,20061004617.4,2006,03,21
    [64]宋世德.长周期光纤光栅的特性及传感应用研究[D].辽宁:大连理工大学.2006.
    [65]Wang Q, Zhang L, Sun C, et al. Multiplexed Fiber-Optic Pressure and Temperature Sensor System for Down-Hole Measurement[J]. Sensors Journal, IEEE,2008, 8(11):1879-1883.
    [66]Wang Y, Chen S, Zhang P, et al. A novel down-hole fiber optic sensor based on Fabry-Perot cavity and fiber Bragg gratings[C]. Proceedings of SPIE,2010, 7851 (06):1-9.
    [67]Hill K 0, Fuji i Y, Johnson D C, et al. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication[J]. Applied Physics Letters,1978, 32(10):647-649.
    [68]Kawasaki B S, Hill K O, Johnson D C, et al. Narrow-band Bragg reflectors in optical fibers[J]. Optics Letters,1978,3(2):66-68.
    [69]Meltz G, Morey W W, Glenn W H. Formation of Bragg gratings in optical fibers by a transverse holographic method[J]. Optics Letters,1989,14(15):823-825.
    [70]Hill K 0, Malo B, Bilodeau F, et al. Bragg Gratings Fabricated In Monomode Photosensitive Optical Fiber By UV Exposure Through A Phase Mask[J]. Applied Physics Letters,1993,62(10):1035-1037.
    [71]Lemaire P J, Atkins R M, Mizrahi V, et al. High-pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers[J]. Electron. Lett.,1993,29(13):1191-1193.
    [72]Morey W W, Meltz G, Glenn W H. SPIE Conference on Fiber Optic and Laser Sensors [C]. Boston; MA (USA),1989.
    [73]Mihailov S J, Smelser C W, Lu P, et al. Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation[J]. Optics Letters,2003,28(12):995-957.
    [74]Bernier M, Faucher D, Vallee R, et al. Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800nm[J]. Optics Letters,2007,32(5):454-456.
    [75]Thomas J, Voigtlander C, Schimpf D, et al. Continuously chirped fiber Bragg gratings by femtosecond laser structuring[J]. Optics Letters,2008, 33(14):1560-1562.
    [76]Bernier M, Sheng Y, Vallee R.Ultrabroadband fiber Bragg gratings written with a highly chirped phase mask and Infrared femtosecond pulses[J]. Optics Express,2009, 17(5):3285-3290.
    [77]Udd E, Haugse E D, Trego A. Fiber optic grating corrosion and chemical sensor[P]. USP 6144026,2000.
    [78]FRIEBELE E J. Fiber Bragg grating strain sensors:present and future applications in smart structures[J]. Optics & Photonics News,1998,9(8):33-37.
    [79]赵山泉.光纤光栅传感技术在大结构监测中的应用进展[J].传感器技术,2004,23(6):5-7.
    [80]Okabe Y, Tsuji R, Takeda N. Application of chirped fiber Bragg grating sensors for identification of crack locations in composites[J]. Composites Part A,2004, 35(1):59-65.
    [81]Takashima S, Asanuma H, Nutsuma H. A water flowmeter using dual fiber Bragg grating sensors and cross correlation technique[J]. Sensors and Actuators A,2004, 106(1):66-74.
    [82]Martelli C. Strain and temperature characterization of photonic crystal fiber Bragg gratings[J]. Optics Letters,2005,30(14):1785-1787.
    [83]Kersey A D, Didden F. CiDRA:leveraging mulitchannel telecommunications technology for enhanced downhole monitoring capabilities in the oil and gas industry[C]. Proceedings of SPIE 1999,3860:35-41.
    [84]Bostick F X. Commercialization of fiber optic sensors for reservoir monitoring[C]. 2003. Offshore Technology Conference, Houston, Texas,2003,15320-MS
    [85]Zisk E. Optical in-well permanent monitoring-initial promise now a reality?[C]. Offshore Technology Conference, Houston, Texas,2005,17529-MS.
    [86]陈海峰,肖立志,张元中,等.油气井永久性光纤Bragg光栅传感监测系统安装设计[J].地球物理学进展,2008,23:257-262.
    [87]http://www.cidra.com/.
    [88]王琦.光纤EFPI/FBG传感测井系统关键技术研究[D].辽宁:大连理工大学,2009.
    [89]http://www.weatherford.com/.
    [90]Schroeder R J, Ramos R T, Yamate T. Fiber optic sensors for oil field services[C]. Proceedings of SPIE,1999,3860:12-22.
    [91]Eric L G, Gerald R B, Michael S. Borehole development of fiber optic distributed temperature sensors[C]. Proceedings of SPIE,2003,5278:42-50.
    [92]http://www.sabeus.com/
    [93]乔学光,李婷,王宏亮,等.耐高温光纤Bragg光栅的响应特性研究[J].应用光学,2007,28(2):209-211.
    [94]吴海峰.井下高温高压光纤光栅传感器的理论与现场测试研究[D].陕西:西安石油大学,2009.
    [95]王宏亮,邬华春,冯德全,等.高温高压油气井F光纤光栅传感器的应用研究[J].光电子·激光,2011,22(1):16-19.
    [96]付建伟,肖立志,张元中.油气井永久性光纤传感器的应用及其进展[J].地球物理学进展,2004,19(3):515-523.
    [97]张向林,陶果.油气井生产测井中的光纤传感技术[J].地球物理学进展,2005,20(3):796-800.
    [98]陈海峰,肖立志,张元中,等.光纤Bragg光栅在油气工业中的若干应用及进展[J].地球物理学进展,2006,21(2):572-577.
    [99]朱红,倪家升,石智栋,等.适于油井状态监测的光纤压力传感器[C].全国第十二次光纤通信暨第十三届集成光学学术会议论文集,2005:893-897.
    [100]吕京生,刘小会,干吕,等.光纤油井压力温度监测系统[J].山东科学,2009,21(6):37-39.
    [101]刘小会,吕京生,王吕.新型光纤高温高压传感器的研究[J].山东科学,2009,21(6):33-36.
    [102]Barnowski M K, Jensen S M. Fiber waveguides:A novel technique for investigating attenuation characteristics[J]. Applied Optics,1976,15(9):2112-2115
    [103]Rogers A. Polarisation optical time domain reflectometry[J]. Electronics letters, 1980,16(13):489-490.
    [104]Hartoga A H, Payne D N. Remote measurement of temperature distribution using an optical fibre[C]. Proc.8th ECOC, Cannes,1982:215-220.
    [105]Hartog A H. A distributed temperature sensor based on liquid core optical fiber[J]. IEEE Journal of Lightwave Technology,1983,1 (3):498-508.
    [106]孙国善.基于Raman散射的分布式光纤温度传感器装置的研究与实现[D].河北:华北电力大学,2010.
    [107]Dakin J P, Pratt D J, Bibby G W. Distributed anti-Stokes ratio thermometry[C]. Proc. of 3th OFS, San Diego, USA,1985, Postdeadline paper PD-3.
    [108]Dakin J P, Pratt D J, Bibby G W, et al. Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector[J]. Electronics letters, 1985,21(13):569-570.
    [109]Dakin J P, Pratt D J, Bibby G W. Temperature distribution measurement using Raman ratio thermometry[J]. SPIE Fiber Optic and Laser Sensors,1985,566(5):249-256.
    [110]Hartog A H, Leach A, Gold M. Distributed temperature sensing in solid-core fibres[J]. Electronics letters,1985,21(23):1061-1062.
    [111]Dakin J. Review of optic fiber gas sensors[C]. Proceedings of SPIE,1998, 1011(8):173-182.
    [112]张在宣,金尚忠,王剑锋,等.分布式光纤拉曼光子温度传感器的研究进展[J].中国激光,2010,37(11):2749-2761.
    [113]Brown K, Brown A W, Colpitts B G. Combined Raman and Brillouin scattering sensor for simultaneous high-resolution measurement of temperature and strain[C]. Proceedings of SPIE,2006,6167(16):1-10.
    [114]Soto M A, Nannipieri T, Signorini A, et al. Raman-based distributed temperature sensor with lm spatial resolution over 26km SMF using low-repetition-rate cyclic pulse coding[J]. Optics Letters,2011,36(13):2557-2559.
    [115]Zhang Y, Keiser G, Marzinsky C, et al. Applications of optical fiber sensors in the oil refining and petrochemical industries[C], Conference on sensors of IEEE, 2011:246-249.
    [116]Dewynter V, Rougeault S, Magne S, et al. Brillouin optical fiber distributed sensor for settlement monitoring while tunneling the metro line 3 in Cairo, Egypt[C]. Proceedings of SPIE,2009,7503(5M):1-4.
    [117]毕卫红,张燕君,苑宝义.基于光散射的分布式光纤温度传感器网络及其在智能电网中的应用[J].燕山大学学报,2010,34(5):377-382.
    [118]郑晓亮,胡业林.基于分布式光纤测温技术的井下电缆温度监测系统设计[J].煤碳工程,2009(9):19-21.
    [119]谷建平.基于分布式光纤温度传感的原油管道泄漏检测系统研究[D].河北:燕山大学,2009.
    [120]http://sensa.org/.
    [121]http://www.sensornet.co.uk/
    [122]http://www.sensortran.com/
    [123]Suh K, Lee C. Auto-correction method for differential attenuation in a fiber-optic distributed-temperature sensor[J]. Optics Letters,2008,33(16):1845-1847.
    [124]Suh K, Lee C, Sanders M, et al. Active plug & play distributed Raman temperature sensing[C]. Proceedings of SPIE,2008,7004(35):1-5.
    [125]杨三青.井下光纤式压力温度复合传感器设计[J].仪表技术与传感,2000(3):6-7.
    [126]王宏亮,乔学光,周红,等.压力与温度双参量传感优化系统的研制[J].光学学报,2005,25(7):875-880.
    [127]王其富,乔学光,贾振安,等.布里渊散射分布式光纤传感技术的研究进展[J].传感器与微系统,2007,26(7):7-9.
    [128]张伟刚,开桂云,董孝义,等.光纤光栅多点传感的理论与实验研究[J].光学学报,2004,24(3):330-336.
    [129]王海霞.基于分布式光纤的稠油井井筒高温模拟装置设计及信号处理技术研究[D].山东:中国石油大学,2009.
    [130]张新东.基于分布式光纤的稠油井筒模拟实验装置开发[D].山东:中国石油大学,2009.
    [131]刘立成,姜汉桥,赵业卫.应用分布式光纤温度测试技术评价井间热连通[J].西南石油大学学报,2007,29(5):18-20.
    [132]杜海全.油田数控测井地面仪器的发展趋势分析[J].中国科技博览,2011(22):26-26.
    [133]钟彩霞.基于传感器的测井技术在石油测井中的应用[J].科技创新导报,2010(6):24-24.
    [134]吴强.光学[M].北京:科学出版社.2006.
    [135]Marcuse D. Loss analysis of single-mode fiber splices[J]. The Bell System Techical Journal.1977,56(5):703-718.
    [136]Han M, Wang A B. Exact analysis of low-finesse multimode fiber extrinsic Fabry-Perot interferometers[J]. Applied Optics,2004,43(24):4659-4666.
    [137]Arya V, DeVries M J, Athreya M. Analysis of the effect of imperfect fiber endfaces on the performance of extrinsic Fabry-Perot interferometric optical fiber sensors[J]. Optical Engineering,1996,35(8):2262-2265.
    [138]Wang W H, Yu Q X, Wang Q Y, et al. Comprehensive Analysis of Factors Impacting on Output Signal of EFPI Fiber-optic Sensor[C]. Proceedings of SPIE,2010, 7544 (6U):1-7.
    [139]Chen J Y, Di Chen J, Geng J X, et al. Stabilization of optical Fabry-Perot sensor by active feedback control of diode laser[J]. Sensors and Actuators A:Physical. 2008,148(2):376-380.
    [140]Zhou X, Yu Q. Wide-Range Displacement Sensor Based on Fiber-Optic Fabry-Perot Interferometer for Subnanometer Measurement[J]. IEEE Sensors Journal.2011, 11(7):1602-1606.
    [141]雷小华,陈伟民,章鹏,等.基于三次样条插值的光纤FP传感器傅里叶变换解调研究[J].光子学报.2008,37(4):705-708
    [142]张伟刚.化学气相沉积:从烃类气体到固体碳[M].北京:科学出版社,2007.
    [143]李强,罗瑞盈,程永宏.热解碳的化学气相沉积机理和组织形貌[J].碳素技术,2003(4):1-6.
    [144]王茂章,杨全红.碳的结构及其同素异性体[J],碳素技术,2001(1):23-28.
    [145]赵金岐,崔立夫.低速光纤碳涂覆工艺的研究[J].光纤与电缆及其应用技术,2010(3):19-21.
    [146]刘树和,白朔,成会明.热解碳[J].碳素,2005,121(1):14-22.
    [147]张魁武.激光化学气相沉积(连载之一)[J].金属热处理,2007,32(6):118-126.
    [148]葛柏青,王豫.激光诱导化学气相沉积制膜技术[J].安徽工业大学学报:自然科学版,2004,21(1):7-10.
    [149]Lin H C, Shiue S T, Cheng Y H, et al. Characteristics of carbon coatings on optical fibers prepared by plasma enhanced chemical vapor deposition using different argon/methane ratios[J]. Carbon,2007,45(10):2004-2010.
    [150]Taylor C A, Chiu W K S. Characterization of CVD carbon films for hermetic optical fiber coatings[J]. Surface and Coatings Technology,2003,168(1):1-11.
    [151]李妙玲,齐乐华,李贺军,等.热解碳光学特性的消光角表征[J].航空学报,2008,29(6):1699-1704.
    [152]Taylor C A, Chiu W K S. Hermetic chemical vapor deposition coatings for environmental sensors[C]. Proceedings of SPIE,2002,4639:152-159.
    [153]张桂菊.应用于高温高压测量的非本征型光纤法布里-珀罗传感器系统研究[D].辽宁:大连理工大学,2006.
    [154]朱浩瀚,秦海琨,张敏,等.光纤布拉格光栅传感解调中的寻峰算法[J].中国激光,2008,35(6):893-897.
    [155]尚秋峰,林炳花.光纤Bragg光栅传感系统典型寻峰算法的比较分析[J].电测与仪表,2010,47(530):1-4.
    [156]于宏亮,张晶,乔学光,等.一种耐高温光纤Bragg光栅温度传感器[J].传感技术学报,2008,21(6):964-966.
    [157]Jaaskelainen M. Fiber Optic Distributed Sensing Applications in Defense, Security and Energy[C]. Proceedings of SPIE,2009,7316(06):1-9.
    [158]邹建.分布式光纤温度测量系统关键技术研究[D].重庆:重庆大学,2005.
    [159]刘受,邹健,黄尚廉.分布式光纤温度传感器系统分辨率确定的理论分析[J].光子学报.1996,25(7):635-639.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700