用户名: 密码: 验证码:
铝碳耐火材料中碳纳米管结构演变、原位形成及材料力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳复合耐火材料具有优异的热震稳定性和抗渣侵蚀性能而被广泛用作转炉、电炉、钢包等炼钢和连铸系统的炉衬材料,而着眼于当前世界各国―低碳经济‖的外部环境,以及进一步满足冶炼洁净钢的要求,传统碳复合耐火材料必然向低碳、超低碳方向发展。但单纯降低传统碳复合耐火材料中的鳞片石墨含量,会导致材料的韧性降低、热震稳定性能变差。碳纳米管(carbonnanotubes, CNTs)作为一种新型纳米碳源具有非常优异的力学性能,将其部分或全部取代鳞片石墨引入到低碳碳复合耐火材料中,有望解决材料韧性低、热震稳定性差的问题。从目前来看,限制碳纳米管在碳复合耐火材料中应用的主要原因是其成本高、在材料中易发生团聚导致分散困难以及高温复杂环境下易发生结构蚀变等。
     针对上述存在的问题,本论文首先探讨了多壁碳纳米管(multi-walled carbon nanotubes,MWCNTs)在高温复杂环境下的结构演变规律,系统研究了MWCNTs表面修饰聚碳硅烷(Polycarbosilane, PCS)以及原位裂解形成SiCxOy陶瓷涂层的工艺条件,以解决MWCNTs在碳复合耐火材料中的结构蚀变问题。另一方面,系统研究了催化剂Fe、Co、Ni的硝酸盐掺杂酚醛树脂的裂解碳结构及原位催化形成碳纳米管的生成机理,旨在为解决碳纳米管的使用成本和分散问题提供另一条途径。在上述研究工作的基础上,研究了碳纳米管复合铝碳耐火材料的显微结构与力学性能之间的关系。本论文可以得到如下结论:
     (1)高温复杂环境下,MWCNTs的结构演变主要与不同硅源作用下体系中Si(g)和SiO(g)的分压密切相关。以Si为硅源时,体系中的Si(g)分压最高,其不断在MWCNTs表面反应和沉积,使得较低温度下MWCNTs表面生成了SiC反应层,而较高温度下MWCNTs演变成SiC纳米线;以Si+SiO_2作为硅源时,体系中的SiO(g)分压最高,其与CO(g)反应并不断沉积,使得MWCNTs表面形成了无定形SiO_2-SiC的反应层结构,且SiO_2反应层的厚度随着处理温度的上升而不断增大;而以Al+SiO_2作为硅源时,体系中Si(g)和SiO(g)的分压均最低,MWCNTs即使经高温(1500)处理后表面也只能生成很薄的反应层。MWCNTs的氧化温度和氧化活化能因其表面形成上述反应层而大幅度提高,主要由反应层的厚度决定的。
     (2)在MWCNTs表面功能修饰PCS,高温作用下原位裂解形成SiCxOy陶瓷涂层,为阻止MWCNTs的结构蚀变提供一条新的途径。MWCNTs的抗氧化性能也因其表面形成的陶瓷涂层而大幅度提高,主要由涂层的厚度决定,与处理过程中PCS的浓度和裂解温度密切相关。
     (3)在铝碳耐火材料中引入MWCNTs会对其显微结构和力学性能产生影响。MWCNTs的引入,提高了不同温度处理后材料的抗折强度、弹性模量和形变位移量等力学性能。当处理温度低于1000时,MWCNTs自身对材料进行增强增韧作用;高于1000时,MWCNTs和原位形成的陶瓷晶须对材料进行协同增强增韧作用。但随着MWCNTs含量的增加,其发生团聚降低了材料的力学性能。经PCS修饰后的MWCNTs在铝碳耐火材料中的分散性大幅度改善,同时材料热处理过程中PCS裂解在MWCNTs表面原位生成SiCxOy陶瓷涂层,阻止了MWCNTs的结构蚀变并提高了MWCNTs与基体之间的界面结合,进一步提高了材料的力学性能和抗氧化性。
     (4)采用过渡金属元素的硝酸盐对酚醛树脂进行掺杂处理,经高温裂解后原位催化形成CNTs,为解决CNTs在碳复合耐火材料中使用成本和分散问题提供一条新的途径。随着处理温度的升高,掺杂树脂裂解碳中形成的碳纳米管等纳米石墨碳结构含量增加,石墨化度不断增加。其中,硝酸镍在掺杂树脂裂解过程中更容易以金属单质形式存在,相对于硝酸铁和硝酸钴来说具有更好的催化性能。同时,上述催化剂还能够促进铝碳耐火材料基质内部AlN、Al4C3和SiC等陶瓷晶须的形成。
     (5)基于上述研究工作,将硝酸镍掺杂酚醛树脂引入到铝碳耐火材料中,在材料内部能够原位催化形成MWCNTs,同时在较高的温度(高于1000)下催化形成更多的陶瓷晶须。原位形成的MWCNTs以及其与陶瓷晶须协同增强增韧作用分别赋予Al_2O_3-C耐火材料在较低(低于1000)和较高温度(高于1000)下更加优异的力学性能。
Carbon containing refractories have been widely used in steelmaking and continuous castingsystems like converter, electric furnace, steel ladles, due to their excellent thermal shock and slagresistance. With a view to current―low carbon economy‖environment all over the world and therequirement to develop clean steel, carbon containing refractories toward low or ultra-lowcarbonization is the direction of development in refractory field. However, decreasing the content ofgraphite flake in the traditional carbon containing refractories can decrease the tougthness anddeteriorate the thermal shock resistance of the refractories. Carbon nanotubes (CNTs) as a kind ofnew carbon sources, possess many excellent mechanical properties. Therefore, when they arepartially or toally used to replac graphite flake and incorporated into carbon containing refractories,the problems of low toughness and bad thermal shock resistance can be solved by this way. From thepresent point of view, the main challenges which limit the usage of CNTs in carbon containingrefractories are their high cost, difficulty in homogeneous dispersion in the matrix as well asstructural transformation and so on.
     Based on the problems above, the microstructural evolution of multi-walled carbon nanotubes(MWCNTs) in the high-temperature and complicated enviroment is firstly studied in this thesis.Secondly, in order to slove the problem of structural evolution, MWCNTs are modified withpolycarbosilane (PCS) which pyrolyzes into SiCxOyceramic coating in situ on the surface ofMWCNTs during the heating treatment. On the other hand, the structure of pyrolysis carbon andformation mechanism of CNTs from Fe, Co and Ni nitrate doped phenolic resin are studied atdifferent treated temperatures, in order to offer another way to solve the high cost and dispersionproblem of CNTs used in carbon containing refractories. On the basis of the work above, therelationship between microstructure and mechanical properties of Al_2O_3-C refractories is studied indetail and the conclusions can be drawn as follows:
     (1) In high-temperature and complicated enviroment, the microstructural evolution of MWCNTs isclosely associated with the partial pressures of Si(g) and SiO(g) in the systems using different siliconsources. When Si is used as the silicon source, Si(g) partial pressure in the system is the highest andSiC reaction layer forms on the surface of MWCNTs at low treated remperature due to the depositionand reaction of Si(g). Most of MWCNTs transform into SiC nanowires with gradually increasing thethe coking temperature. Using Si+SiO_2as the silicon source, the partial pressure of SiO(g) is thehighest and amorphous SiO_2-SiC reaction layer forms on the surface of MWCNTs due to thedeposition and reaction between SiO(g) and CO(g). Meanwhile, the thickness of SiO_2layer increaseswith increasing the treated temperature. Using Al+SiO_2as the silicon source, the partial pressures ofSi(g) and SiO(g) are both the lowest. Only a very thin reaction layer forms on the surface ofMWCNTs even after treated at1500oC. Compared with as-received MWCNTs, the oxidationtemperatures and oxidation activation energy of the treated MWCNTs improves greatly, which isdetermined by the thickness of the reaction layer.
     (2) The surface of MWCNTs can be functionally modified with PCS molecules, which pyrolyzesinto SiCxOyceramic coating on the surface of MWCNTs in situ during the heating process, whichoffers a new way to solve the problem of MWCNTs transformation. The oxidation resistance ofcoated MWCNTs improves greatly compared with as-received ones, which is closely related to thePCS concentration and the treated temperatures that determine the thickness of the coating.
     (3) Addition of MWCNTs has a big influence on the microstructure and mechanical properties ofAl_2O_3-C refractories. The mechanical properties such as cold modulus of rupture, modulus of elastics,and deformation displacement of refractories with MWCNTs improve greatly. When the treatedtemperature is lower than1000oC, MWCNTs can strengthen and toughen the materials bythemselves. In addition, when the treated temperature is higher than1000oC, the synergeticstrengthening and toughening mechanisms of MWCNTs and ceramic whiskers can endow theAl_2O_3-C refractories with better mechanical properties compared with that containing only graphiteflake. With increasing the amount of MWCNTs, the mechanical properties of Al_2O_3-C refractoriesdecrease due to the agglomeration of MWCNTs. By comparison with as-received MWCNTs, thedispersion of MWCNTs after functionally modified is greatly improved in the matrix. Meanwhile,SiCxOyceramic coating forms in situ on the surface of MWCNTs during the heating treatmentprocess, which protects the intact structure of MWCNTs and improves the interface bond betweenMWCNTs and the matrix, leading to the improvement on the mechanical properties and oxidationresistance of Al_2O_3-C refractories.
     (4) The CNTs can grow in situ by the catalytic pyrolysis of transition metals nitrate doped phenolicresin, which offers a new way to solve the problems of high cost and dispersion of CNTs in one stepwhen they are used in carbon containing refractories. The graphitization degree of pyrolysis carbonof doped phenolic resin increases greatly due to the catalytic formation of graphite structureincluding the crystalline graphite structure like nano carbon and CNTs with increasing the treatedtemperature. By comparison with Fe and Co nitrate, Ni nitrate has the best catalytic activity due tothe easy existence in the form of metal Ni during the heating treatment of doped phenolic resin. Aswell, except for the formation of MWCNTs, the catalyst can also promote the growth of ceramicwhiskers such as AlN, Al4C3and SiC simultaneously in situ in Al_2O_3-C matrix specimens.
     (5) Based on the work above, Ni nitrate doped phenolic resin replacing as-received one isintroduced into Al_2O_3-C refractories. On the one hand, MWCNTs can form in situ due to the catalyticpyrolysis of doped phenolic resin. On the other hand, the catalyst can promote the formation of AlN,Al4C3and SiC whiskers in the matrix at the temperature higher than1000oC. The in situ formedMWCNTs as well as the synergistic effect of MWCNTs and whiskers can endow the Al_2O_3-Crefractories with much better mechanical properties at different temperature stages.
引文
[1]朱伯铨,张文杰,姚亚双.低碳镁碳耐火材料的研究现状和发展[J].耐火材料,2006,40(增刊):90-95.
    [2]洪学勤,李具中,易卫东,等.洁净钢炉外精炼与连铸用耐火材料及其发展[J].耐火材料,46(2):81-86.
    [3]神克常,朱建平,李立新,等.洁净钢制备技术的研究现状及发展[J].山东冶金,2012,34(2):10-12.
    [4]朱立新,蒋晓放,许春雷,等.宝钢纯净钢生产技术进展[J].钢铁,2000,35(11):15-18.
    [5]潘秀兰,王艳红.纯净钢生产技术初探[J].鞍钢技术,2002,12(6):9-13.
    [6]余志祥,郑万,汪晓川,等.纯净钢的生产实践[J].炼钢,2002,16(3):11-15.
    [7]贾宝军,郑琳,郭斌,等.武钢管线钢生产情况及发展规划[J].焊管,2001,12(1):32-35.
    [8]李桂荣,王宏明.管线钢冶炼工艺特点[J].特殊钢,2002,23(5):23-26.
    [9]李茂林,礼重超,彭涛.攀钢纯净钢生产实践与探讨[J].钢铁钒钛,2001,22(3):15-19.
    [10]李楠.钢与耐火材料的作用及耐火材料的选择[J].耐火材料,2006,40:19-22.
    [11]魏耀武,李楠,潘德福.镁质耐火材料与钢中镁铝尖晶石夹杂形成的热力学关系[J].硅酸盐通报,2006,25(6):34-37.
    [12]陈肇友,田守信.耐火材料与洁净钢的关系[J].耐火材料,2004,38(4):219-225.
    [13] Poirier J, Guiban M A. Development of new submerged nozzles to reduce alumina build up in continuouscasting[C]. Unitecr’95Congress, Kyoto, Japan,1995,(2):79-82.
    [14]何平显,陈荣荣,甘菲芳,等.几种钢包用含碳耐火材料对IF钢增碳的比较[J].耐火材料,2005,39(4):280-282.
    [15]陶绍平.钢包内衬用MgO基和Al2O3基耐火材料对钢质量的影响研究[D].郑州:郑州大学博士学位论文,2007.
    [16]田琳,陈树江,张玲,等.碱性耐火材料去除钢中夹杂作用的研究[J].耐火材料,2007,41(增刊):240-243.
    [17]王学达,陈树江,孙加林,等.耐火材料对钢水夹杂的影响[J].硅酸盐学报,2006,34(7):891-893.
    [18]阮国智,李楠. MgO-C耐火材料对钢水的增碳作用及机理的研究进展[J].材料导报,2003,17(7):27-29.
    [19]阮国智,李楠,张智慧.抗氧化剂对Al2O3-C耐火材料增碳作用的影响[J].耐火材料,2007,23(6):32-35.
    [20] Khanna R, Ikramul M H, WANG Y S, et al. Chemical interactions of alumina–carbon refractories with moltensteel at1823K (1550oC): Implications for refractory degradation and steel quality[J]. Metallurgical and MaterialsTransactions B,2011,42(4):677-684.
    [21] Khanna R, Rodgers B, Mccarthy F, et al. Dissolution of carbon from alumina-carbon mixtures into liquid iron:Influence of carbonaceous materials[J]. Metallurgical and Materials Transactions B,2006,27B:623-632.
    [22] Cooper C F, Alexander I C, Hampson C J. The role of graphite on the thermal shock resistance ofrefractories[J]. British Ceramic Transactions,1985,84:57-62.
    [23]高振昕,著.耐火材料显微结构[M].北京:冶金工业出版社,2002.
    [24] Meng B, Peng J H. Effects of in situ synthesized mullite whiskers on flexural strength and fracture toughnessof corundum-mullite refractory materials[J]. Ceramics International,2013,39:1525-1531.
    [25] Zhao G L, Huang C Z, Liu H L, et al. Preparation of in-situ growth TaC whiskers toughening Al2O3ceramicmatrix composite[J]. International Journal of Refractory Metals and Hard Materials,2013,36:122-125.
    [26] Xu C H. Effects of particle size and matrix grain size and volume fraction of particles on the toughing ofceramic composite by thermal residual stress[J]. Ceramics International,2005,31:537-542.
    [27] Zuiderduin W C J, Westzaan C, Hue′tink J, et al. Toughening of polypropylene with calcium carbonateparticles[J]. Polymer,2003,44:261-275.
    [28] Roungos V, Aneziris C G. Improved thermal shock performance of Al2O3-C refractories due to nanoscaledadditives[J]. Ceramics international,2012,38(2):919-927.
    [29] Fan H B, Li Y W, Huang Y P, et al. Microstructures and mechanical properties of Al2O3-ZrO2-C refractoriesusing silicon, microsilica or their combination as additives[J]. Materials Science and Engineering A,2012,545:148-154].
    [30]刘波,刘永峰,刘开琪,等.低碳MgO-C材料的抗热震性研究[J].耐火材料,2010,44(2):123-125.
    [31] Wang L, Xing D M, Zhang H M, et al. MWCNTs reinforced Nafion membrane prepared by a novelsolution-cast method for PEMFC[J]. Journal of Power Sources,2008,176(1):270-275.
    [32] Park S J, Kyong-Min B, Min-Kang S. A study on rheological behavior of MWCNTs/epoxy composites[J].Journal of Industrial and Engineering Chemistry,2010,16(3):337-339.
    [33] Zhang Y L, Zhu M F, Zhang Q H, et al. Solvothermal one-step synthesisof MWCNTs/Ni0.5Zn0.5Fe2O4magnetic composites[J]. Journal of Magnetism and Magnetic Materials,2010,332(14):2006-2009.
    [34] Chen X L, Li Y W, Li Y B, et al. Effect of reactive-Al2O3Addition on the pore size distribution and thermalconductivity of carbon Blocks for Blast Furnace[J]. Advanced Materials Research,2010,97-101:453-456.
    [35]熊坤,徐光亮,李冬梅. SiC复相陶瓷的强化增韧趋势[J].稀有金属,2008,32(1):101-106.
    [36]汪厚植,赵惠忠,顾华志,等.纳米技术在耐火材料中的应用研究[J].武汉科技大学学报,2005,28(2):130-133.
    [37]赵惠忠,汪厚植.纳米技术在耐火材料中的应用及研究进展[J].武汉科技大学学报,2008,31(3):242-246.
    [38] Gokce A S, Gurcan C, Ozgen S, et al. The effect of antioxidants on the oxidation behaviour ofmagnesia–carbon refractory bricks[J]. Ceramics International,2008,34:323-330.
    [39]任桢,马成良,钟香崇.加入Al粉和Si粉对低碳MgO-A12O3-C材料性能的影响[J].耐火材料,2010,44(1):38-40.
    [40] Chen M, Wang N, Yu J K, et al. Oxidation protection of CaO-ZrO2-C refractories by addition of SiC[J].Ceramics International,2007,33:1585-1589.
    [41]李亮,王世峰,陈士冰. Al4SiC4的制备及对镁碳砖抗氧化性能的影响[J].硅酸盐通报,2010,29(6):1412-1416.
    [42]贺智勇,彭小艳,李林,等. ZrB2对低碳镁碳材料抗氧化性能的影响[J].耐火材料,2006,40(4):280-282.
    [43]朱强,于景坤.添加LaB6对低碳镁碳砖抗氧化性能的影响[J].东北大学学报,2006,27(2):173-175.
    [44]朱强,孙勇,于景坤,等. SiC-A12O3复合粉体的合成以及在低碳镁碳砖中的应用[J].材料与冶金学报,2008,7(2):118-121.
    [45] Ma B Y, Zhu Q, Sun Y, et al. Synthesis of Al2O3-SiC Composite and Its Effect on the Properties ofLow-carbon MgO-C Refractories[J]. Journal of Materials Science and Technology,2010,26(8):715-720.
    [46] Ma B Y, YU J K. Synthesis of ZrO2-SiC composite powder and effect of its addition on properties of A12O3-Crefractories[J]. Transactions of Nonferrous Metals Society of China,2007,17:996-1000.
    [47]王志强,朱伯铨,方斌祥.纳米TiC对低碳MgO-C砖抗氧化性及热导率的影响[J].耐火材料,2008,42(6):409-412.
    [48]覃显鹏,李远兵,李亚伟,等.碳氮化钛对低碳镁碳砖性能的影响[J].耐火材料,2007,41(3):208-212.
    [49]岳卫东,钟香崇,石凯.低碳Al2O3-β-SiAlON烧成滑板的热机械性能及显微结构[J].耐火材料,2006,40(5):342-345.
    [50]杨学军,丘哲明.纳米炭黑对酚醛树脂烧蚀防热性能的影响[J].固体火箭技术,2004,27(2):141-144.
    [51]李亚伟,王廷力,金胜利.碳源对不烧Al2O3-Al-C质滑板强度的影响[J].武汉科技大学学报,2008,31(6):561-564.
    [52]马立红,金丛进.碳的种类对铝锆碳滑板性能的影响[J].耐火材料,2007,41(2):153-154.
    [53]邵荣丹,张文杰,顾华志,等.超细炭素原料对Al2O3-ZrO2-C材料性能及微孔结构的影响[J].耐火材料,2005,39(5):330-332.
    [54]李林.低碳镁碳复合材料性能提高的途径及材料显微结构的研究[D].北京:北京科技大学博士学位论文,2005.
    [55]李享成,潘剑渡,朱伯铨.石墨含量对A12O3-C材料物理化学性能的影响[J].硅酸盐通报,2010,24(2):395-398.
    [56] Zhang S. Next generation carbon-containing refractory composites[J]. Industrial Ceramics,2007,27(1):15-20.
    [57] Liu B, Sun J L, Tang G S, et al. Effects of nanometer carbon black on performance of low-caron MgO-Ccomposites[J]. Journal of Iron and Steel Research International,2010,17(10):75-78.
    [58]罗明,李亚伟,金胜利,等.碳纳米管增强陶瓷基复合材料的研究与展望[J].材料导报,2010,24(专辑15):155-158.
    [59] Shinichi T, Tsunemi O, Taijiro M, et al. Technological philosophy and perspective of nanotech refractories[C].Nippon Steel Technical report No.98, July,2008.
    [60]郭敬娜,田先明,洪学勤.低碳镁碳砖抗热震性能的改进[J].武汉科技大学学报,2008,31:212-213.
    [61]程智,马卫兵,柳军,等.炭素原料对低碳镁碳耐火材料抗热震性的影响[J].武汉科技大学学报,2008,31(4):3-7
    [62] Yoshida A, Hishiyama Y. Exfoliated graphite from various intercalationcompounds[J]. Carbon,1991,29:1227-1231.
    [63] Celzard A, Krzesinska M, Be′gin D, et al. Preparation, electrical and elastic properties of new anisotropicexpanded graphite-based composite[J]. Carbon,2002,40:557-566.
    [64]王晨,康飞宇,顾家琳.铁钴镍合金粒子/石墨薄片复合材料的制备与吸波性能研究[J].无机材料学报,2010,25(4):406-410.
    [65]赵芸芳. Fe-膨胀石墨插层复合物EGIC的制备与表征[J].化学与黏结,2009,31(1):21-24.
    [66] Chen X, Zheng Y P, Kang F, et al. Preparation and structure analysis of carbon/carbon composite made fromphenolic resin impregnation into exfoliated graphite[J]. Journal of Physics and Chemistry of Solids,2006,67:1141-1144.
    [67]张丽,译.洁净钢生产用钢包内衬的改进[J].耐火与石灰,2008,33(2):31-34.
    [68]杨红,孙加林,谭营.钢包用低碳MgO-C砖开发与应用[J].冶金能源,2009,28(3):47-50.
    [69]吕仁祥,方元德,刘在春,等.低碳微膨胀镁碳砖的研究与应用[J].山东冶金,2007,29(增刊):82-83.
    [70]佟晓军,王玉清,黄丽香,等.纳米炭黑对铝锆碳滑板的制造及其性能的影响[J].耐火材料.2007,41(4):290-291
    [71] Tamura S, Ochiai T, Takanage S, et al. Nano-tech refractories-1: The development of the nano-structuralmatrix[C]. UNTECR’03Congress Proceeding:517-520.
    [72] Takanage S, Ochiai T, Tamura S, et al. Nano-tech refractories-2: The application of the nano structural matrixto MgO-C bricks[C]. UNTECR’03Congress Proceedings:521-524.
    [73] Ochiai S. Development of refractories by applying nano-technology[J]. Journal of the Technical Association ofRefractories,2005,25(1):4-11.
    [74]高宏适,译.提高低碳质MgO-C砖抗剥落性的研究[J].国外耐火材料,2005,30(1):57-59.
    [75] Mousom B, Sukumar A, Ritwik S. Nano carbon containing MgO-C refractories: effect of graphite content[J].Ceramics International,2012,38:4909-4914.
    [76] Mousom B, Sukumar A, Ritwik S. Study on low carbon containing MgO-C refractory: Use of nanocarbon[J].Ceramics International,2012,38:2339-2346.
    [77]朱宏伟,著.碳纳米管[M].北京:机械工业出版社,2005.
    [78] Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally high young’s modulus observed for individual carbonnanotube[J]. Nature,1996,381:678-680.
    [79] Yu M F, Lourie O, Dyer M J, et al. Strength and breaking mechanism of multi-walled carbon nanotubes undertensile load[J]. Science,2000,287:637-640.
    [80] Aneziris C G, Li Y W, Jin S L. Kohlenstoffgebundene feuerfeste Formkoerpern oder Massen mit einerhochfesten Bindephase und Verfahren zur ihrer Herstellung[P]. Deutsche Patentanmeldung Nr.102009005629.7.
    [81] Aneziris C G, Jin S L, Li Y W, et al. Interactions of carbon nanotubes in Al2O3-Crefractories for sliding gateapplication[C]. UNITECR’09Congress Proceedings, Salvador, Brazil,2009.
    [82] Li Y W, Chen X L, Li Y B, et al. Effect of multi-walled carbon nanotubes on the thermal conductivity andporosity characteristics of blast furnace carbon refractories[J]. Metallurgical and Materials Transactions A,2010,41(9):2383-2388.
    [83] Aneziris C G, Jansen H, Hampel M, et al.催化活化树脂碳化后碳结构及其结合镁碳砖的力学行为[J].炼钢,2007,23(2):45-49.
    [84]李亚伟,王国飞,赵雷,等.一种耐火材料用改性酚醛树脂及其制备方法[P].中国专利: CN101245128A
    [85]赵雷,谢婷,李亚伟,等.一种耐火材料用活化改性酚醛树脂及其制备方法[P].中国专利: CN101270218
    [86]李亚伟,谢婷,赵雷.氧化镍掺杂酚醛树脂热解碳的结构及抗氧化性研究[J].武汉科技大学学报,2011,34(1):18-22.
    [87] Stamatin I, Morozan A, Dumitru A, et al. The synthesis of multi-walled carbon nanotubes (MWNTs) bycatalytic pyeolysis of the phenol-formaldegyde resins[J]. Physica E,2007,37:44-48.
    [88] Jansen H, Aneziris C G, Hampel M, et al. Microstructure and mechanical behavior of magnesia-carbon bricksbonded by catalytically activated resins[C]. UNTECR’07Congress Proceeding:38-42.
    [89] Yoshitsugu D, Morikawa K, Yoshitomi J. Improvement of the durability of ZG materials by nano-technology[C]. UNTECR’07Congress Proceeding:349-352.
    [90] Haren K, Morikawa K, Yoshitomi J, et al. Improvement of thermal spalling resistance of alumina-graphitematerials by nano-technology[C]. UNTECR’07Congress Proceeding:358-361.
    [91]谢婷.过渡金属化合物掺杂酚醛树脂/沥青及其在MgO-C材料中应用[D].武汉:武汉科技大学硕士学位论文,2009.
    [92]王国飞.过渡金属化合物掺杂酚醛树脂及其在铝锆碳材料中应用[D].武汉:武汉科技大学硕士学位论文,2009.
    [93]雷晓谋.酚醛树脂原位催化裂解碳纳米管的生成及其应用研究[D].武汉:武汉科技大学硕士学位论文,2008.
    [94]郭巍,安胜利.二茂铁的加入对铝碳耐火材料性能的影响[J].硅酸盐通报,2007,26(5):1011-1015.
    [95]张文杰,李楠,著.碳复合耐火材料[M].北京:科学出版社,1990.
    [96] Yamguchi A. Behavior of SiC and Al added to carbon containing Refractories[J]. Taikabutsu Overseas,1984,4(3):14-18.
    [97] Yamguchi A. Thermochemical analysis of reaction processes of aluminum and aluminum compound in carboncontaining Refractories[J]. Taikabutsu Overseas,1987,7(2):4-13.
    [98] Yamguchi A. Affects of oxygen and nitrogen partial pressure on stability of metal, carbide, nitride and oxide incarbon containing Refractories[J]. Taikabutsu Overseas,1987,7(1):11-16.
    [99]彭德林,赵璐华,杜立明.陶瓷颗粒增强钛基复合材料的研究进展[J].钛工业进展,2010,27(2):1-8.
    [100]张存满,徐政,许业文.弥散SiC颗粒增韧Al2O3基陶瓷的增韧机制分析[J].硅酸盐通报,2001,5:48-51.
    [101]兰俊思,丁培道,黄楠. SiC晶须和Ti(C, N)颗粒协同增韧Al2O3陶瓷刀具的研究[J].材料科学与工程学报,2004,22(1):59-63.
    [102]罗学涛,陈小君,黄前军,等.定向SiC晶须增韧Si3N4陶瓷的制备及热震性能研究[J].无机材料学报,2004,19(3):553-558.
    [103]胡继林,肖汉宁,李青,等.碳热还原法合成TiC-SiC复合粉末及其生长机理[J].中国金属学报,2011,21:1131-1136.
    [104] Zhu T B, Li Y W, Luo M, et al. Microstructure and mechanical properties of MgO-C refractories containinggraphite oxide nanosheets (GONs)[J]. Ceramics International,2013,39(3):3017-3025.
    [105] Yi X X, Li Y W, Sang S B, et al. Effects of microsilica powder on microstructure and mechanical propertiesof fired alumina-zirconia-carbon sliding gate plates under different firing atmospheres[J]. Refractories Worldforum,2011,3:107-112.
    [106] Zhang S, Marriott N J, Lee W E. Thermochemitry and microstructures of MgO-C Refractories containingvarious antioxidants[J]. Journal of the European Ceramic Society,2001,21:1037-1047.
    [107] Fan H B, Li Y W, Sang S B. Microstructures and mechanical properties of Al2O3-C refractories with siliconadditive using different carbon sources[J]. Materials Science and Engineering A,2011,528:3177-3185.
    [108]易献勋,李亚伟,桑绍柏,等. SiO2微粉对Al2O3-ZrO2-C材料力学性能的影响[J].耐火材料,2011,45(4):253-256.
    [109]易献勋,李亚伟,桑绍柏,等.铝粉、硅粉加入比例对Al2O3-ZrO2-C材料力学性能的影响[J].耐火材料,2011,45(3):180-183.
    [110]石凯,卫忠贤,钟香崇. Al2O3-Al-C材料加热过程的变化[J].耐火材料,2007,41(1):21-25
    [111] Zhu B Q, Zhu Y N, Li X C, et al. Effect of ceramic bonding phases on the thermo-mechanical properties ofAl2O3-C refractories[J]. Ceramics International,2013, doi.org/10.1016/j.ceramint.2013.01.024.
    [112]翟亚伟,李勇,刘磊.硅铁含量对反应烧结Fe-Si3N4-SiC复合材料性能的影响[J].耐火材料,2010,44(4):268-271.
    [113]翟蕊,杨光义,吴仁兵,等. FeSi熔体中SiC晶须的VLS生长[J].复合材料学报,2007,24(5):97-102.
    [114]于威,郑志远,刘丽辉,等.铁诱导低温SiC薄膜的合成[J].功能材料与器件学报,2002,8(3):267-270.
    [115]武向阳,靳国强,郭向云.溶胶-凝胶中Fe催化剂用量对β-SiC堆积缺陷和形貌的影响[J].新型炭材料,2005,20(4):324-328.
    [116]梁峰,李楠.催化剂及煅烧温度对合成SiC晶须的影响[J].耐火材料,2009,43(5):359-362.
    [117]谢朝晖,叶方保.二茂铁对MgO-C耐火材料基质显微结构的影响[J].材料导报,2009,23(5):115-118.
    [118] Karamian E, Monshi A, Bataille A, et al. Formation of nano SiC whiskers in bauxite-carbon compositematerials and their consequences on strength and density[J]. Journal of the European ceramics Society,2011,31(14):2677-2685.
    [119] Zhang S C, Fahrenholtz W G, Hilmas G E, et al. Pressureless sintering of carbon nanotube–Al2O3composites[J]. Journal of the European Ceramic Society,2010,30:1373-1380.
    [120] Bi S, Su X J, Hou G L, et al. Microstructural characterization of alumina-coated multi-walled carbonnanotubes synthesized by hydrothermal crystallization [J]. Physica B,2010,405:3312-3315.
    [121] Bi S, Hou G L, Su X J, et al. Mechanical properties and oxidation resistance of alumina/multi-walled carbonnanotube composite ceramics [J]. Materials Science and Engineering A,2011,528:1596-1601.
    [122] Mazaheri M, Mari D, Hesabi Z R, et al. Multi-walled carbon nanotube/nanostructured zirconia composites:Outstanding mechanical properties in a wide range of temperature [J]. Composites Science and Technology,2011,71:939-945.
    [123]杨琪,郑意达,胡文彬.氧化铝/碳纳米管复合材料的制备及表征[J].无机化学学报,2007,23(12):2049-2053.
    [124] Zhang T, Kumara L, Du G H, et al. Mechanical properties of carbon nanotubes-alumina nanocompositessynthesized by chemical vapor deposition and spark plasma sintering[J]. Composite: Part A,2009,40:86-93.
    [125] He C N, Tian F, Liu S J. A carbon nanotube/alumina network structure for fabricating alumina matrixcomposites [J]. Journal of Alloys and Compounds,2009,478:816-819.
    [126] Kumari L, Zhang T, Du G H, et al. Synthesis, microstructure and electrical conductivity of carbonnanotube–alumina nanocomposites[J]. Ceramics International,2009,35:1775-1781.
    [127] Kumari L, Zhang T, Du G H, et al. Thermal properties of CNT-Alumina nanocomposites[J]. CompositesScience and Technology,2008,68:2178-2183.
    [128] Li H P, Wang L H, Liang C Y, et al. Dispersion of carbon nanotubes in hydroxyapatite powder by in situchemical vapor deposition [J]. Materials Science and Engineering B,2010,166:19-23.
    [129] Lijie C, Zhenyu R, Neng Y J P, et al. Carbon nanotubes/SiC whisker composite prepared by CVD method [J].Diamond and Related materials,2007,16:531-536.
    [130] Datye A, Wu K H, Gomes G, et al. Synthesis, microstructure and mechanical properties of Yttria StabilizedZirconia (3YTZP)–Multi-Walled Nanotube (MWNTs) nanocomposite by direct in-situ growth of MWNTs onZirconia particles [J]. Composites Science and Technology,2010,70:2086-2092.
    [131] Kumari L, zhang T, Du G H, et al. Thermal properties of CNT-Alumina nanocomposites[J]. CompositesScience and Technology,2008,68:2178-2183.
    [132] Kamalakaran R, Lupo F, Grobert N, et al. Microstructural characterization of C-SiC-Carbon nanotubecomposite flakes [J]. Carbon,2004,42:1-4.
    [133] Estili M, Kawasaki A. An approach to mass-producing individually alumina-decorated multi-walled carbonnanotubes with optimized and controlled compositions[J]. Scripta Materialia,2008,58:906-909.
    [134] Seung I C, kyung T K, Kyong H L, et al. Strengthening and toughening of carbon nanotube reinforcedalumina nanocomposite fabricated by molecular level mixing process[J]. Scripta Materialia,2005,53:793-797.
    [135] Kaleem A, Pan Wei. Effect of Multi-walled Carbon Nanotube on mechanical Properties and ElectricalConductivity of Alumina[J]. Rare Metal Materials And Engineering,2007,36(1):704-706.
    [136] Zhu Y F, Shi L, Liang J, et al. Synthesis of zirconia nanoparticles on carbon nanotubes and their potential forenhancing the fracture toughness of alumina ceramics[J]. Composites,2008,39:1136-1141.
    [137] Yoshiaki M, Yoshinari M, et al. Mechanical properties of SiC composites incorporating SiC-coatedmulti-walled carbon nanotubes[J]. International Journal of Refractory Metals&Hard Materials,2006,25:322-327.
    [138] Wang J, Kou H, Liu X J, et al. Reinforcement of mullite matrix with multi-walled carbon nanotubes[J].Ceramics International,2007,33:719-722.
    [139] Flashaut E, peigney A, Laurent Ch, et al. Carbon nanotube-metal-oxide nanocomposites: microstructure,electrical conductivity and mechanical properties[J]. Acta material,2000,48:3803-3812.
    [140] Balazsi C S, Konya Z, Weber F, et al. Preparation and characterization of carbon nanotube reinforced siliconnitride composites[J]. Materials Science and Engineering,2003,23(68):1133-1137.
    [141] Yamamoto G, Omori M, Hashida T, et al. A novel structure for carbon nanotube reinforced aluminacomposites with improved mechanical properties[J]. Nanotechnology,2008,19:1-7.
    [142]韩伟强,范守善,李庆群,等.采用碳纳米管制备的碳化硅纳米晶须研究[J].无机材料学报,1997,12(6):774-777.
    [143]韩伟强,范守善,李庆群,等.碳化硅纳米晶须生长和显微结构[J].材料研究学报,1998,12(3):335-336.
    [144] Morisada Y, Maeda M, Shibayanagi T, et al. Oxidation resistance of multiwalled carbon nanotubes coatedwith silicon carbide[J]. Journal of the American Ceramic Society,2004,87(5):804-808.
    [145] Morisada Y, Miyamoto Y. SiC-coated carbon nanotubes and their application as reinforcements for cementedcarbides[J]. Materials Science and Engineering A,2004,381:57-61.
    [146] Taguchi T, Igawa N, Yamamoto H, et al. Perparation and characterization of single-phase SiC nanotubes andC-SiC coaxial nanotubes[J]. Physica E,2005,28:431-438.
    [147] Quah H J, Cheong K Y, Lockman Z. Stimulation of silicon carbide nanotubes formation using different ratiosof carbon nanotubes to silicon dioxide nanopowders[J]. Journal of Alloys and Compounds,2009,475(1-2):565-568.
    [148] Martin M, Katarína B, Monika M, et al. Alumina/MWCNTs composites by aqueous slip casting andpressureless sintering[J]. Ceramics International,2013, doi.org/10.1016/j.ceramint.2013.01.087
    [149] Echeberria J, Ollo J, Bocanegra-Bernal M H, et al. Sinter and hot isostatic pressing (HIP) of multi-wallcarbon nanotubes (MWCNTs) reinforced ZTA nanocomposite: Microstructure and fracture toughness[J].International Journal of Refractory Metals&Hard Materials,2010,28:399-406.
    [150] Jiang D L, Zhang J X, lv Z H. Multi-wall carbon nanotubes (MWCNTs)-SiC composites by laminatedtechnology[J]. Journal of the European Ceramic Society,2012,32(7):1419-1425.
    [151] Liu Z Y, Xiao B L, Wang W G, et al. Elevated temperature tensile properties and thermal expansion ofCNT/2009Al composites[J]. Composites Science and Technology,2012,72(15):1826-1833.
    [152] Amartya M, Bryan T T C, Malcolm L H G, et al. Understanding the mechanical reinforcement of uniformlydispersed multiwalled carbon nanotubes in alumino-borosilicate glass ceramic[J]. Acta Materialia,2010,58:2685-2697.
    [153] Nakayama A, Numao S, Nakano S, et al. In-situ observation of structural change in MWCNTsunderhigh-pressure H2gas atmosphere[J]. Diamond&Related Materials,2008,17:548-551.
    [154] Peigney A, Garcia F L, Estourne`s C, et al. Toughening and hardening in double-walled carbonnanotube/nanostructured magnesia composites[J]. Carbon,2010,48:1952-1960.
    [155] Wei T, Fan Z J, Luo G H, et al. The effect of carbon nanotubes microstructures on reinforcing properties ofSWNTs/alumina composite[J]. Materials Research Bulletin,2008,43:2806-2809.
    [156] Xia Z, Riester L, Curtin W A, et al. Direct observation of toughening mechanisms in carbon nanotubeceramic matrix composites[J]. Acta Materialia,2004,52:931-944.
    [157]范锦鹏,赵大庆.多壁碳纳米管-氧化铝复合材料的制备及增韧机理研究[J].纳米技术与精密工程,2004,2(3):182-186.
    [158] Zhang G D, Kuntz J D, Wan J, et al. Single-wall carbon nanotubes as attractive toughing agents inalumina-based nanocomposites [J]. Nature Materials,2003,2:38-42.
    [159]樊海兵.铝碳质耐火材料中碳质原料对显微结构和力学性能的影响[D].武汉:武汉科技大学硕士学位论文,2010.
    [160] Li B S, Wu R B, Pan Y, et al. Simultaneous growth of SiC nanowires, SiC nanotubes, and SiO2/SiC core-shellnanocables [J]. Journal of Alloys and Compounds,2008,462:446-451.
    [161] Segatelli M G, Radovanovic E, GoncalvesVES M C, et al. Investigation of the morphological changespromoted by heating of Si-C-O ceramics derived from a phenyl-rich hybrid polymer. effect of Ni in the polymericprecursor [J]. Journal of the European Ceramic Society,2009,29:3279-3287.
    [162]胡文祖,高胜利,赵凤起.热分析动力学[M].北京:科学出版社,2008.
    [163] Singh A K, Hou Xi M, Chou K C. The oxidation kinetics of multi-walled carbon nanotubes[J]. CorrisionScience,2010,52:1771-1776.
    [164] Guo W M, Xiao H N, Zhang G J. Kinetics and mechanisms of non-isothermal oxidation of graphite in air[J].Corrosion Science,2008,50(7):2007-2011.
    [165] Cordoba J M, Tamayo-Ariztondo J, Molina-Aldareguia J M, et al. Morphology influence of the oxidationkinetics of carbon nanofibers[J]. Corrosion Science,2009,51:926-930.
    [166] Illekova E, Csomorova K. Kinetics of oxidation in various forms of carbon[J]. Journal of Thermal Analysisand Calorimetry,2005,80:103-108.
    [167] Ella E S, Mays T J. Analysis of the oxidation reactivity of carbonaceous materials using thermogravimetricanalysis[J]. Journal of Thermal Analysis and Calorimetry,2005,80:109-113.
    [168] Lu D Y, Xu K, Xu Z D, et al. Kinetics analysis of oxidation of carbon nanotubes, C60and graphite usingmechanism-function method[J]. Chinese Journal Chemical Engineering,2005,13(3):355-360.
    [169] Chen X L, Li Y W, Li Y B, et al. Effect of temperature on the properties and microstructures of carbonrefractories for blast furnace [J]. Metallurgical and Materials Transactions A,2009,40A:1675-1683.
    [170] Renbing B, Wu G, Yi Y, et al. Synthesis of silicon carbide nanorods without defects by direct heating method[J]. Journal of Materials Science,2007,42:3800-3804.
    [171] Nayak G C, Rajasekar R, Chapal K D. Effect of SiC coated MWCNTs on the thermal and mechanicalproperties of PEI/LCP blend[J]. Composites: Part A,2010,41:1662-1667.
    [172] Sun L L, Zhao Y, Duan Y X, et al. Interlaminar shear property of modified glassfiber-reinforced polymer with different MWCNTs[J]. Chinese Journal of Aeronautics,2008,21(4):361–369.
    [173] Akbar S, Beyou E, Cassagnau P, et al. Radical grafting of polyethylene onto MWCNTs: A model compoundapproach[J]. Polymer,2009,50(12):2535–2543.
    [174] Rahman M M, Zainuddin S, Hosur M V, et al. Improvements in mechanical and thermo-mechanicalproperties of e-glass/epoxy composites using amino functionalized MWCNTs[J]. Composite Structures,2012,94(8):2397-2406.
    [175] Morisada Y, Miyamoto Y. SiC-coated carbon nanotubes and their application as reinforcements for cementedcarbides[J]. Materials Science and Engineering A,2004,381:57-61.
    [176] Li H B, Zhang L T, Cheng L F, et al. Polymer-ceramic conversion of a highly branched liquid polycarbosilanefor SiC-based ceramics[J]. Journal of Materials Science,2008,43:2806-281
    [177] Wang H, Li X D, Li X X, wt al. The kinetics of oxidation curing of polycarbosilane fibers[J]. Koream Journalof Chemical Engineering,2004,21:901-904.
    [178] Segatelli M G, Pires A T N, Yoshida I V P, et al. Synthesis and structural characterization of carbon-richSiCxOyderived from a Ni-containing hybrid polymer[J]. Journal of the European Ceramic Society,2008,28:2247-2257.
    [179] Quanly H, Taylor R, Day R J. Conversion of polycarbosilane (PCS) to SiC-based ceramic PartⅡ. Pyrolysisand characterization[J]. Journal of Materials Science,2001,36:4045-4047.
    [180] Shimoo T, Okamura K. Effect of reduced pressure on oxidation and thermal stability ofpolycarbosilane-derived SiC fibers[J]. Journal of Materials Science,2003,38:4973-4979.
    [181] Kaneko K, Kakimoto K I. HRTEM and ELNES analysis of polycarbosilane-derived Si-C-O bulk ceramics[J].Journal of Non-Crystalline Solids,2000,270:181-190.
    [182] Segatelli M G, Pires A T N, Yoshida I V P. Synthesis and structural characterization of carbon-rich SiCxOyderived from a Ni-containing hybrid polymer[J]. Journal of the European Ceramic Society,2008,28:2247-2257.
    [183]易献勋.铝锆碳质滑板材料组成、结构与性能研究[D].武汉:武汉科技大学博士学位论文,2011.
    [184] Li Y W, Aneziris C G, Xun X Y, et al. Formation of dumbbell-shaped β-SiC whiskers in Al2O3-ZrO2-Ccomposite refractories[J]. Interceram,2005,20-23.
    [185] Chen X L, Li Y W, Li Y B, et al. Properties and microstructures of blast furnace carbon refractories with Aladditions[J]. Ironmaking Steelmaking,2010,37(6):398-406.
    [186] Li Y W, Chen X L, Sang S B, et al. Microstructures and properties of carbon refractories for blast furnaceswith SiO2and Al additions[J]. Metallurgical and Materials Transactions A,2010,41A:2085-2092.
    [187] Wang J G, Jiang H Y, Jiang N, et al. Study on the pyrolysis of phenol-formaldehyde (PF) resin and modifiedPF resin[J]. Thermochimica Acta,2009,496(1-2):136-142.
    [188] Wang J G, Jiang N, Jiang H Y. Micro-structural evolution of phenol-formaldehyde resin modified by boroncarbide at elevated temperatures[J]. Materials Chemistry and Physics,2010,120(1):187-192.
    [189] Wang J G, Jiang N, Guo Q G, et al. Study on the structural evolution of modified phenol–formaldehyde resinadhesive for thehigh-temperature bonding of graphite[J]. Journal of Nuclear Materials,2006,348:108-113.
    [190] Yi X F, Mishra A K, Kim N H, et al. Synergistic effects of oxidized CNTs and reactive oligomer on thefracture toughness and mechanical properties of epoxy[J]. Composites Part A: Applied Science and Manufacturing,2013, doi.org/10.1016/j.compositesa.2013.02.011.
    [191] Daniel C. Davis, Bradley D. Whelan. An experimental study of interlaminar shear fracture toughness of ananotube reinforced composite[J]. Composites Part B: Engineering,2011,42(1):105-116.
    [192] Seyhan A T, Tano lu M, Schulte K. Tensile mechanical behavior and fracture toughness of MWCNT andDWCNT modified vinyl-ester/polyester hybrid nanocomposites produced by3-roll milling[J]. Materials Scienceand Engineering A,2009,523(1-2):85-92.
    [193] Shin M K, Lee B, Kim S H, et al. Synergistic toughening of composite fibres by self-alignment of reducedgraphene oxide and carbon nanotubes[J]. Nature Communications,2012, DOI:10.1038/ncomms1661.
    [194] Ning J W, Zhang J J, Pan Y B, et al. Fabrication and mechanical properties of SiO2matrix compositesreinforced by carbon nanotubes[J]. Materials Science and Engineering B,2003,357:392-396.
    [195] Go Yamamoto, Keiichi Shirasu, Toshiyuki Hashida, et al. Nanotube fracture during the failure of carbonnanotube/alumina composites[J]. Carbon,2011,49(12):3709-3716.
    [196] Estili M, Kawasaki A, Sakka Y. Highly Concentrated3D macrostructure of individual carbonnanotubes in a ceramic environment[J]. Advanced Materials,2012,24:4322-4326.
    [197] Estili M, Kawasaki A. Engineering strong intergraphene shear resistance in multi-walled carbonnanotubes and dramatic tensile improvements[J]. Advanced Materials,2010,22:607-611.
    [198] Estili M, Kawasaki A, Yamada Y, et al. In situ characterization of tensile-bending load bearing abilityof multi-walled carbon nanotubes in alumina-based nanocomposites[J]. Journal of Materials Chemistry,2011,21:4272-4278.
    [199] Yuen S M, Ma C C, Chuang C Y, et al. Preparation, morphology, mechanical and electrical properties ofTiO2coated multiwalled carbon nanotube/epoxy composites[J]. Composites: Part A,2008,39:119-125.
    [200] Yang H P, Wu S, Duan Y P, et al. Surface modification of CNTs and enhanced photocatalytic activity ofTiO2coated on hydrophilically modified CNTs[J]. Applied Surface Science,2012,258(7):3012-3018.
    [201]徐亮,唐一文,龚书生,等.碳纳米管改性无机-有机水性富锌涂料的制备及其性能[J].腐蚀与防护,2008,29(6):309-312.
    [202] Jiang H Y, Wang J G, Wu S Q, et al. Pyrolysis kinetics of phenol-formaldehyde resin by non-isothermalthermogravimetry[J]. Carbon,2010,48:352-358.
    [203] Auduer M, Oberlin M, Oberlin A, et al. Morphology and crystalline order in catalytic carbonspJ]. Carbon1981,19:217-224.
    [204] Inagaki M, Okada Y, Miura H, et al. Preparation of carbon-coated transition metal particles from mixtures ofmetal oxide and polyvinylchloride[J]. Carbon,1999,37:329-334.
    [205] Inagaki M, Fujita K, Takeuchi Y, et al. Formation of graphite crystals at1000-1200oC from mixtures of vinylpolymers with metal oxides[J]. Carbon,2001,39:921-929.
    [206]张永雄,刘洪波,李晓东.制备大管径纳米碳管的研究[J].中国科技信息,2008,22:44-45.
    [207] Li W Z, Xie S S, Liu W, et al. A structure model and growth mechanism for novel carbon nanotubes[J].Journal of Materials Science,1999,34:2745-2749.
    [208] Ziebro J, Lukasiewicz I, Grzmil B, et al. Synthesis of nickel nanocapsules and carbon nanotubes via mechaneCVD[J]. Journal of Alloys and Compounds,2009,485:695-700.
    [209] Yu Y, Li Z L, Zhang C, et al. Growth of aligned nanotubes on large scale by methane decomposition withdeactivation inhibitor[J]. Journal of Natural Gas Chemistry,2007,16:382-388.
    [210] Hashemi B, Nemati Z A, Faghihi-Sani M A. Effects of resin and graphite content on density and oxidationbehavior of MgO-C refractory bricks[J]. Ceramics International,2006,32(3):313-319.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700