用户名: 密码: 验证码:
低温熔渗反应制备锆基耐超高温陶瓷复合材料及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以高超声速飞行器、固体姿轨控动力系统和第三代远地点发动机为代表的新一代飞行器及关键部件对材料的耐高温性能提出了严峻的挑战,迫切需要开发具有良好力学性能和抗烧蚀性能的耐超高温材料。针对现有耐超高温材料的不足,本文以锆基耐超高温陶瓷复合材料为研究对象,开展低温熔渗反应工艺制备及其性能研究。
     首先系统分析了各种锆基耐超高温陶瓷和锆合金性能,设计了低温熔渗反应目标材料体系和浸渗剂种类。选择W-ZrC、ZrB_2-ZrC、ZrB_2材料分别代表金属-陶瓷、陶瓷-陶瓷和单相陶瓷三种材料体系作为目标材料;选择Zr_2Cu合金作为浸渗剂实现熔渗反应低温化。该浸渗剂熔点只有1000℃左右,Zr含量较高,异质元素Cu与目标产物不浸润、不反应,可随着熔渗反应过程中的体积膨胀而从锆基复合材料中挤出,残留的少量Cu在高温条件下还能起到发汗冷却的作用。
     根据目标材料体系,选择预制体原料,设计预制体结构,分析了熔渗反应可行性。选择WC、B4C和B分别为W-ZrC、ZrB_2-ZrC和ZrB_2基复合材料的熔渗预制体原料,计算出三种预制体的理论孔隙率分别为50.1%、58.3%和49.3%,热力学计算及实验验证了它们都可以与Zr_2Cu在低至1200℃反应生成目标产物。
     通过研究低温熔渗反应制备W-ZrC复合材料的预制体成型工艺及熔渗工艺,制备得到性能较好的W-ZrC复合材料。最佳工艺条件为:以4μmWC粉为原料,3wt%PCS作粘结剂,在20MPa压力下成型,1600℃烧成制备多孔刚性预制体,与过量Zr_2Cu合金在真空条件下加热到1400℃保温5h。制备得到的W-ZrC复合材料中W相含量为35.4vol%,ZrC相含量为57.7vol%,残余合金为6.9vol%。
     低温熔渗反应制备的W-ZrC复合材料具有良好的力学性能、抗烧蚀性能和抗热震性能。其断裂韧性为7.0MPa·m1/2,1800℃弯曲强度是室温强度的1.2倍,实现了金属W对ZrC陶瓷的增韧以及ZrC陶瓷对金属W高温力学性能的改进;相对于文献报道的Mo-ZrC、ZrC-SiC等材料,W-ZrC复合材料具有更好的抗热震性能,其热震临界温度为450℃;W-ZrC复合材料的抗烧蚀性能优异,氧乙炔焰烧蚀30s后,其线烧蚀率仅为0.0033mm·s-1,质量烧蚀率仅为0.0012g·s-1。
     通过研究WC与Zr_2Cu合金在不同情况下的反应产物结构,建立了WC与Zr_2Cu熔体间的熔渗反应机理模型。当Zr_2Cu熔体与WC接触后,受熔体影响,WC中碳原子往外扩散,逐步形成W2C相和W相,最终完全转化成W相。碳原子扩散进入熔体后,与锆原子反应生成ZrC相,弥散分布在熔体中。不饱和ZrC相中含W、Cu元素,C原子饱和后,Cu被挤出,W则在降温过程中脱熔析出。由于孔隙结构的影响,导致局部区域熔体过量或不足。在熔体过量情况下,锆原子扩散进入W晶粒内部形成W2Zr相和W-Zr固溶体。当熔体不足时,W原子扩散进入ZrC晶格形成(W,Zr)C固溶体。
     首次采用低温熔渗反应工艺制备ZrB_2-ZrC基复合材料,系统研究了原料粒度、粘结剂含量和熔渗温度对复合材料的影响。最佳工艺条件为:150μmB4C粉为原料,15wt%的PCS作粘结剂,20MPa压力成型,1600℃烧成,然后在1200℃真空条件下熔渗过量Zr_2Cu合金3h。制备得到的ZrB_2-ZrC基复合材料中ZrB_2含量为65.0vol%,ZrC含量为28.1vol%,残余合金含量为6.9vol%左右。
     低温熔渗反应制备的ZrB_2-ZrC基复合材料具有优异的耐高温性能和抗烧蚀性能。其常温弯曲强度为360.3MPa,弯曲模量为200.8GPa,断裂韧性为12.1MPa·m1/2,1600℃氩气保护下高温处理1h后,复合材料弯曲强度提高了30.4%,弯曲模量提高了为26.2%,断裂韧性提高了12.4%。在氧乙炔焰条件下考核300s后,复合材料的质量烧蚀率为-0.00063g·s-1左右,线烧蚀率为-0.0033mm·s-1左右,其烧蚀机理以氧化反应为主。
     深入研究了B4C与Zr_2Cu的反应机理,具体涉及到界面反应和溶解析出两种机制。当Zr_2Cu熔体接触到预制体中B4C颗粒时,发生表面反应,B原子具有更好的反应活性,首先生成ZrB_2,残余C然后反应生成ZrC相。随着熔体浸渍通过产物层,其活性由于锆原子的消耗而下降,富Cu液体残留在产物晶粒间隙处,为反应传质提供通道。同时,B原子也溶解在富Cu熔体中,Zr原子与这些溶解的B原子反应析出ZrB_2晶粒,这是溶解析出机制。
     首次采用低温熔渗反应工艺制备了ZrB_2基复合材料。具体工艺是以无定形硼粉为原料,15wt%PCS为粘结剂,100MPa压制成型,1600℃Ar保护下烧成,然后在1200℃真空条件下熔渗Zr_2Cu合金3h。熔渗制备的ZrB_2基复合材料主要由200nm左右的ZrB_2晶粒组成。
     ZrB_2基复合材料具有较好的力学性能及抗烧蚀性能。其弯曲强度为414.3MPa,模量为183.6GPa,断裂韧性为5.5MPa·m1/2。原料中添加SiC粉后,复合材料具有更好的抗烧蚀性能,其线烧蚀率为0.0013mm·s-1,质量烧蚀率为0.0028g·s-1,烧蚀后试样表面形成的氧化层有利于提高材料的抗烧蚀性能。
     最后对三种低温熔渗反应工艺及其制备的复合材料进行了总结对比,发现B4C具有较高的反应活性,制备的ZrB_2-ZrC基复合材料成本最低,并且该材料具有较低的密度、优异的断裂韧性和良好的抗烧蚀性能。
The extreme operational conditions encountered for hypersonic and space vehiclesas well as rocket propulsion systems present a great challenge to the development ofultra high temperature materials. New and innovative structural materials capable ofprolonged operation at temperatures above2000℃are required for future spacesystems. In this paper, zirconium based ultra high temperature ceramics compositeswere proposed to be prepared by reactive melt infiltration at relative low temperature,furthermore, the properties of the composites were also investigated.
     Firstly, the W-ZrC, ZrB_2-ZrC, and ZrB_2composites were chosen as the resultingmaterials standing for metal-ceramic, ceramic-ceramic, and single-phase ceramicmaterials, respectively. Zr_2Cu was chosen as the infiltrant, because its melting point isonly1000℃, the zirconium content is74.2wt%, copper can be extruded out of theresulting composites easily, and the residual copper can be used as transpiration cooling.
     WC, B4C, and boron were chosen as the raw materials for the three preforms, theycould react with Zr_2Cu at1200℃from thermodynamics calculations and experiments.After reactions, solid volumes increased, to fill all pores and keep the shapes of thepreforms, the theoretical porosities were50.1%、58.3%and49.3%, respectively.
     Preparation of W-ZrC composites by the low temperature reactive melt infiltrationmethod was investigated. The best preform processing was that the raw WC particlesize was about4μm, the preform pressure was20MPa, the content of adhesive PCSwas3wt%. After the preforms were fabricated, they had better to infiltrate with Zr_2Cuat1400℃for5h in vacuum. The resulting W-ZrC composites had a content of5.4vol%W,57.7vol%ZrC, and6.9vol%residual alloy.
     The low temperature reactive melt infiltrated W-ZrC composites had excellentmechanical properties, ablation resistance, and thermal shock resistance. The fracturetoughness was7.2MPa·m1/2, the1800℃flexural strength was1.2times of the roomtemperature value. The thermal shock resistance was better than the reported Mo-ZrC,ZrC-SiC composites, the thermal shock critical temperature was450℃. When thecomposites were ablated by oxyacetylene flame for30s, the linear ablation rate was0.0033mm·s-1, the mass ablation rate was0.0012g·s-1.
     The reaction mechanism between WC and Zr_2Cu was investigated. It was foundthat when the Zr_2Cu melt came in to contact with WC, carbon atoms diffused out to form W2C and then W phase. The diffused carbon atoms in melt reacted with zirconiumatoms to form ZrC, dispersed in the melt. Because of the effect of pore structure in theprefoms, zirconium might be excessive or insufficient in some local place. When themelt was excessive, zirconium atoms diffused into the W grains to form W2Zr phase andW-Zr solid solution phase. While the melt was insufficient, tungsten atoms diffused intothe ZrC grains to form (W,Zr)C solid solution.
     Preparation of ZrB_2-ZrC based composites by reactive melt infiltration at relativelow temperature was firstly investigated. The composites were prepared with150μmB4C particle and15wt%PCS at1200oC had the best properties. They had a content of65.0vol%ZrB_2,28.1vol%ZrC, and6.9vol%residual alloy.
     The ZrB_2-ZrC based composites had outstanding high temperature resistance andablation resistance. The composites had a flexural strength of360.3MPa, a flexuralmodulus of200.8GPa, and a fracture toughness of12.1MPa·m1/2, after the compositeswere treated at1600oC in argon, the flexural strength, modulus, and toughnessincreased to30.4%,26.2%, and12.4%, respectively. After the composites were ablatedby oxyacetylene flame for300s, the mass ablation rate was-0.00063g·s-1, the linearablation rate was0.0033mm·s-1, and the main ablation mechanism wasthermal-chemical process.
     The reaction mechanism between Zr_2Cu and B4C involved surface reaction andsolution-precipitation was proposed. When the infltrating Zr_2Cu metal came intocontact with B4C particles in the preform, a surface reaction happened. Boron atom hada better affinity to react firstly to form ZrB_2, the residual carbon then reacted to formZrC layer. As the melt infiltrated though the product layer to the unreacted B4C surface,the activity of the infiltrant decreased with zirconium atoms consumed continually.Copper rich melt was left in the interstice of products and provided an easier route formass transfer, the melt also attacked B4C substrate and made boron dissolve in the melt,zirconium atoms might react with the dissolved boron in the melt to precipitate ZrB_2grains.
     ZrB_2based composites were also firstly prepared by reactive melt infiltration atrelative low temperature. The amorphous boron powder together with15wt%PCSwere pressured at100MPa and then were sintered at1600℃in argon to produceporous preforms. ZrB_2based composites could be prepared with the preforms andZr_2Cu at1200℃for3h. The composites were mainly composed of200nm ZrB_2grains.
     The mechanical properties and ablation resistance of ZrB_2based composites werealso investigated. The composites had a flexural strength of414.3MPa, a flexuralmodulus of183.6GPa, a fracture toughness of5.5MPa·m1/2. When the compositesprepared with SiC filler, the ablation resistance increased, they had a linear ablation rateof0.0013mm·s-1and a mass ablation rate of0.0028g·s-1. The oxidation coating on thesample was useful to resistance ablation more.
     The processing and the three composites were compared with each other at last. Itwas found that B4C was the most active, the cost of frabrication of ZrB_2-ZrC basedcomposites was the lowest, and the composites had a low density, a good fracturetoughness and ablation resistance.
引文
[1]周瑞发,韩雅芳,李树索.高温结构材料.北京:国防工业出版社,2006.
    [2] Wie D M V, JR. D G D, King D E, et al. The hypersonic environment:Required operating conditions and design challenges. Journal of Materials Science,2004,39:5915-5924.
    [3] Jackson T A, Eklund D R, Fink A J. High speed propulsion:Performanceadvantage of advanced materials. Journal of Materials Science,2004,39:5905-5913.
    [4] Levine S R, Opila E J, Halbig M C. Evaluation of ultra-high temperatureceramics for aeropropulsion use. Journal of the European Ceramic Society,2002,22:2757-2768.
    [5] Kontinos D A, Gee K, Prabhu D K. Temperature constraints at the sharpleading edge of a crew transfer vehicle. AIAA2001-2886,2001.
    [6]张德雄,王照斌.动能拦截器的固体推进剂轨控和姿控系统.飞航导弹,2001,31:37-41.
    [7]王静.动能拦截弹技术发展现状与趋势.现代防御技术.2008,36:23-26.
    [8] Uhrig G, Caubet P. Recent solid DACS achievements for high performanceinterceptors. In:3rd AAAF International Conference on Missile Defense, Seville,2006.
    [9] Berdoyes M. Thrust vector control by injection of hot gas bled from thechamber hot gas valve. In:25th AIAA/ASME/SAE/ASEE Joint Propulsion Conference,Monterey, CA,1989.
    [10]张立同.纤维增韧碳化硅陶瓷复合材料-模拟、表征与设计.北京:化学工业出版社,2009.
    [11] Upadhya K, Yang J M, Hoffmann W P. Materials for ultra-high temperaturestructural applcations. American Ceramic Society Bullution,1997,76:51-56.
    [12]邱哲明.固体火箭发动机材料与工艺.北京:宇航出版社,1997.
    [13]日本炭素学会编.新炭材料入门.中国金属学会炭素材料专业委员会编译,1996.
    [14]苏君明. T704高密高强石墨砸固体火箭发动机中的实验与应用.碳-石墨材料论文汇编,1986.
    [15]廖寄乔,黄伯云,黄志峰等.热解碳微观结果的表征.理化检验-物理分册,2002,38:501-506.
    [16]苏君明,陈林泉,王书贤等.石墨渗铜喉衬材料的微观结构与抗热震性能.固体火箭技术,2003,26:58-61.
    [17]陈林泉,王书贤,张胜勇等.石墨渗铜喉衬材料的烧蚀机理分析.固体火箭技术,2004,27:57-59.
    [18] Maustafa S F, Badry S A, Sanad A M, et al. Friction and wear of coppergraphite composites made with Cu-coated and uncoated graphite powders. Wear,2002,253:699-710.
    [19] Canfield A R. Carbon/Carbon nozzle development. AIAA,1985,1096-1101.
    [20] Chi W, Shen Z, Zhang X, et al. Study of manufacture and properties of C/Ccomposites from carbon cloth. New Carbon Materials,2001,16:55-57.
    [21]张红波,尹健,熊翔. C/C复合材料烧蚀性能的研究进展.材料导报,2005,19:97-103.
    [22] Jacobson N S, Curry D M. Oxidation microstructure studies of reinforcedcarbon/carbon. Carbon,2006,44:1142-1150.
    [23] Fu Q, Li H, Wang Y, et al. Multilayer oxidation protective coating for C/Ccomposites from room temperature to1500°C. Surface&Coatings Technology,2010,204:1831-1835.
    [24] Li H, Xue H, Wang Y, et al. A MoSi2–SiC–Si oxidation protective coating forcarbon/carbon composites. Surface&Coatings Technology,2007,201:9444-9447.
    [25] Corral E L, Loehman R E. Ultra-high-temperature ceramic coatings foroxidation protection of carbon-carbon composites. Journal of the American CeramicSociety,2008,91:1495-1502.
    [26]李国栋,熊翔,黄伯云.温度对CVD-TaC涂层的组成、形貌与结构的影响.中国有色金属学报,2005,15:565-571.
    [27] Sun W, Xiong X, Huang B Y, et al. Preparation of ZrC nano-particlesreinforced amorphous carbon composite coating by atmospheric pressure chemicalvapor deposition. Applied Surface Science,2009,255:7142-7146.
    [28] Sun W, Xiong X, Huang B, et al. ZrC ablation protective coating forcarbon/carbon composites. Carbon,2009,47:3368-3371.
    [29] Wunder V, Popovska N, Wegner A, et al. Multilayer coatings on CFCcomposites for high-temperature applications. Surface and Coatings Technology,1998,100-101:329-333.
    [30]崔红,苏君明,李瑞珍等.添加难熔金属碳化物提高C/C复合材料抗烧蚀性能的研究.西北工业大学学报,2000,18:671-673.
    [31] Tong Q, Shi J, Song Y, et al. Resistance to ablation of pitch-derived ZrC/Ccomposites. Carbon,2004,42:2495-2500.
    [32]王俊山,李仲平,许正辉等.难熔金属及其化合物与C/C复合材料相互作用研究.2006,2:50-55.
    [33] Tang S, Deng J, Wang S, et al. Ablation behaviors of ultra-high temperatureceramic composites. Materials Science and Engineering A,2007,465:1-7.
    [34]王其坤.先驱体浸渍裂解工艺制备Cf/UHTCp/SiC复合材料及其性能研究,国防科技大学博士学位论文,2008.
    [35] Sherman A J, Tuffias R H, Fortini A J, et al. Impact of the mechanicalproperties of rhenium on structural design. In: TMS Annual Meeting, Rhenium andRhenium Alloys,1997.
    [36] Rosennbergq S D, Schoenman L. New generation of high performanceengines for spacecraft propulsion. Journal of Propulsion and Power,1994,10:40-46.
    [37]赵幕岳.高比重合金在国防工业和民用工业中的应用.粉末冶金,1982,14:34-38.
    [38]王伏生,周载明,梁容海.提高W-Ni-Cu合金膨胀系数等性能的实例分析.中国有色金属学报,1997,7:103-106.
    [39]白淑珍,张宝生.合金元素钴和锰对W-Ni-Fe合金性能的影响.稀有金属,1995,19:357-361.
    [40]难熔金属文集编写组.难熔金属文集第三册.上海:上海科学技术情报研究所,1976:23-26.
    [41]王零森.钨基复合材料自发汗冷却机理研究.中南矿冶学院学报.1983,1:8-15.
    [42] Maloof S R. Development of ultra-high temperature tungsten-basedcomposites for rocket nozzle application. In: The ARS15th, Washington D.C.,1960.
    [43]周武平.钨铜材料应用和生产的发展现状.粉末冶金材料科学与工程,2005,10:21-26.
    [44] Zhou Z, Du J, Song S. Microstructural characterization of W/Cu functionallygraded materials produced by a one-step resistance sintering method. Journal of Alloysand Compounds,2007,428:146-150.
    [45]陈伟,邝用庚,周武平.中国高温用钨铜复合材料的研究现状.稀有金属材料与工程,2004,33:11-14.
    [46]王玉金. ZrCp/W复合材料组织结构与抗热性能研究.哈尔滨工业大学工学博士论文,2003.
    [47]李荣久.陶瓷-金属复合材料.北京:冶金工业出版社,1995.
    [48]宋桂明. TiCp/W及ZrCp/W复合材料的组织性能与热震行为.哈尔滨工业大学工学博士论文.1999.
    [49] Добровольский A Г, Шликерное литье компоэиции ZrC-W.Порошковаяметаллургия.1969,2:94-99.
    [50] Комоэьынский П А, Островский Е К, Калимина Н Г, et al.Концентрационная зависимость змиссионных свойств сплавов ZrC-W.Журналтехническойфизики.1976,46:552-557.
    [51] Нешпор В С, Комоэьынский П А, Островский Е К, et al. Исслецованиефизических сплавов ZrC-W. Порошковая металлургия.1990,6:93-100.
    [52] Shimada S. Microstructural observation of ZrO2scales formed by oxidation ofZrC single crystals with formation of carbon. Solid State Ionics,1997,101-103:749-754.
    [53] Das B P, Panneerselvam M, Rao K J. A novel microwave route for thepreparation of ZrC–SiC composites. Journal of Solid State Chemistry,2003,173:196-202.
    [54] Min-Haga E, Scott W D. Sintering and mechanical properties of ZrC-ZrO2composites, Journal of Materials Science,1998,23:2865-2870.
    [55] Lidman W G, Hamjian H J. Reactions during sintering of a zirconiumcarbide–niobium cermet, Journal of the American Ceramics Society,1952,35:236-240.
    [56] Suzuki T, Matsumoto H, Nomura N, et al. Microstructures and fracturetoughness of directionally solidifed Mo–ZrC eutectic composites, Science andTechnology of advanced materials.2002,3:137-143.
    [57] Landwehr S E, Hilmas G E, Fahrenholt W G, et al. Processing of ZrC-Mocermets for high temperature applications, part II: pressureless sintering and mechanicalproperties, Journal of the American Ceramics Society,2008,91:873-878.
    [58]童庆丰,史景利,宋永忠等. ZrC/C复合材料性能及微观结构的研究,宇航材料工艺,2004,2:45-48.
    [59] Song G M, Zhou Y, Wang Y J, et al. Elevated temperature strength of a20vol%ZrCp/Wcomposite, Journal of Materials Science,1998,17:1739-1741.
    [60] Song G M, Wang Y J, Zhou Y. Elevated temperature ablation resistance andthermophysical properties of tungsten matrix composites reinforced with ZrC particles,Journal of Material Science,2001,36:4625-4631.
    [61]王玉金,周玉,宋桂明等.20Wf/30ZrCp/W复合材料的组织结构与力学性能,中国有色金属学报,2006,11:472-476.
    [62] Lipke D W, Zhang Y, Liu Y. et al. Near net-shape/net-dimensionZrC/W-based composites with complex geometries via rapid prototyping andDisplacive Compensation of Porosity. Journal of the European Ceramic Society,2010,30:2265-2278.
    [63] Dickerson M B, Snyder R, Sandhage K H. Dense, near net-shaped,carbide/refractory metal composites at modest temperatures by the DisplaciveCompensation of Porosity (DCP) Method. Journal of the American Ceramic Society,2002,85:730-732.
    [64] Zou L, Wali N, Yang J-M, et al. Microstructural development of a Cf/ZrCcomposite manufactured by reactive melt infltration. Journal of the European CeramicSociety,2010,30:1527-1535.
    [65] Wang Y G, Zhu X J, Zhang L T, et al. Reaction kinetics and ablationproperties of C/C–ZrC composites fabricated by reactive melt infltration. CeramicsInternational,2011,37:1277-1283.
    [66] Fahrenholtz W G, Hilmas G E, Talmy I G, et al. Refractory diborides ofzirconium and hafnium. Journal of the American Ceramic Society.2007,90:1347-1364.
    [67] Guo S. Densifcation of ZrB2-based composites and their mechanical andphysical properties: A review. Journal of the European Ceramic Society.2009,29:995-1011.
    [68]闫永杰,张辉,黄政仁等.硼化锆基超高温陶瓷材料的研究进展.材料科学与工程学报,2009,27:793-797.
    [69]田庭燕,张玉军,孙峰等. ZrB2-SiC复合材料抗氧化性能研究.陶瓷,2006,5:19-21.
    [70] Parthasarathy T A, Rapp R A, Opeka M, et al. A model for the oxidation ofZrB2, HfB2and TiB2. Acta Materialia,2007,55:5999-6010.
    [71]韩杰才,胡平,张幸红等.超高温材料的研究进展.固体火箭技术,2005,28:289-294.
    [72] Ni D-W, Zhang G-J, Kan Y-M, et al. Highly textured ZrB2-based ultrahightemperature ceramics via strong magnetic feld alignment. Scripta Materialia,2009,60:615-618.
    [73] Liu H-T, Zou J, Ni D-W, et al. Textured and platelet-reinforced ZrB2-basedultra-high-temperature ceramics. Scripta Materialia,2011,65:37-40.
    [74] Monteverde F, Bellosi A. Development and characterization ofmetal-diboride-based composites toughened with ultra-fine SiC particulates. Solid StateScience,2005,7:622-630.
    [75] Zhang X, Hu P, Han J, et al. Ablation behavior of ZrB2-SiC ultra hightemperature ceramics under simulated atmospheric re-entry conditions. CompositesScience and Technology,2008,68:1718-1726.
    [76] Li W, Zhang X, Hong C, et al. Preparation, microstructure and mechanicalproperties of ZrB2-ZrO2ceramics. Journal of the European Ceramic Society,2009,29:779-786.
    [77] Wang Z, Hong C, Zhang X, et al. Microstructure and thermal shock behaviorof ZrB2-SiC-graphite composite. Materials Chemistry and Physics,2009,113:338-341.
    [78] Zhou S, Wang Z, Zhang W, Effect of graphite fake orientation onmicrostructure and mechanical properties of ZrB2-SiC-graphite composite. Journal ofAlloys and Compounds,2009,485:181-185.
    [79] Zhang P, Hu P, Zhang X, et al. Processing and characterization of ZrB2-SiCWultra-high temperature ceramics. Journal of Alloys and Compounds,2009,472:358-362.
    [80] Silvestroni L, Sciti D, Melandri C, et al. Toughened ZrB2-based ceramicsthrough SiC whisker or SiC chopped fber additions. Journal of the European CeramicSociety,2010,30:2155-2164.
    [81] Yang F, Zhang X, Han J, et al. Characterization of hot-pressed short carbonfber reinforced ZrB2-SiC ultra-high temperature ceramic composites. Journal of Alloysand Compounds,2009,472:395-399.
    [82] Sun X, Han W, Liu Q, et al. ZrB2-ceramic toughened by refractory metal Nbprepared by hot-pressing. Materials and Design,2010,31:4427-4431.
    [83] Sun X, Han W, Hu P, et al. Microstructure and mechanical properties ofZrB2-Nb composite. International Journal of Refractory Metals&Hard Materials,2010,28:472-474.
    [84] Meeson G A, Gorbunow A F. Activated sintering of zirconiumboride.Inorganic Materials,1968,4:267-270.
    [85] Kalish D, Clougherty E V. Densifcationmechanisms in high-pressurehot-pressing of HfB2. Journal of the American Ceramic Society,1969,52:26-30.
    [86] Kinoshita M, Kose S, Hamano Y. Hot-pressing of zirconiumdiboride-molybdenum disilicide mixtures. Yogyo-Kyokai-Shi,1970,78:32-41.
    [87] Guo S Q, Yang J M, Tanaka H, et al. Effect of thermal exposure on strengthof ZrB2-based composites with nano-sized SiC particles. Composites Science andTechnology,2008,68:3033-3040.
    [88] Chamberlain A L, Fahrenholtz W G, Hilmas G E, et al. High-strengthzirconium diboride-based ceramics. Journal of the American Ceramic Society,2004,87:1170-1172.
    [89] Baik S, Becher P F. Effect of oxygen contamination on densifcation of TiB2.Journal of the American Ceramic Society,1987,70:527-530.
    [90]田庭燕,张玉军,张娜等,二硼化锆系复合材料研究进展,现代技术陶瓷,2005,106:21-23.
    [91] Guo S Q, Kagawa Y, Nishimura T, et al. Mechanical and physical behavior ofspark plasma sintered ZrC-ZrB2-SiC multiphase composites. Journal of the EuropeanCeramic Society,2008,28:1279-1285.
    [92] Guo S Q, Kagawa Y, Nishimura T, et al. Elastic properties of spark plasmasintered (SPSed) ZrB2-ZrC-SiC composites. Ceramic International,2008,34:1811-1817.
    [93] Cech B, Oliverius P, Sejbal J. Sintering of zirconium boride with activatingadditions. Powder Metallurgy,1965,8:142-150.
    [94] Einarsrud M-A, Hagen E, Pettersen G, et al. Pressureless sintering of titaniumdiboride with nickel, nickel boride, and iron additives. Journal of the American CeramicSociety,1997,80:3013-3020.
    [95] Sciti D, Guicciardi S, Bellosi A, et al. Properties of a pressureless-sinteredZrB2-MoSi2ceramic composite. Journal of the American Ceramic Society,2006,89:2320-2322.
    [96] Guo S Q, Kagawa Y, Nishimura T, et al. Pressureless-sintering and physicalproperties of ZrB2-based composites with ZrSi2additive. Scripta Materialia,2008,58:579-582.
    [97] Zhang S C, Hilmas G E, Fahrenholtz W G. Pressureless densifcation ofzirconium diboride with boron carbide additives. Journal of the American CeramicSociety,2006,89:1544-1550.
    [98] Zhu S, Fahrenholtz W G, Hilmas G E, et al. Pressureless sintering ofzirconium diboride using boron carbide and carbon additions. Journal of the AmericanCeramic Society,2007,90:3660-3663.
    [99]赵丹.耐超高温陶瓷先驱体及其复合材料的制备和性能研究,国防科技大学博士学位论文,2011.
    [100] Forsthoefel K, Sneddon L G. Precursor routes to Group4metal borides, andmetal boride/carbide and metal boride/nitride composites. Journal of Materials Science,2004,39:6043-6049.
    [101] Schwab S, Stewat C A, Dudeck K W, et al. Polymeric precursors torefractory metal borides.2004,39:6051-6055.
    [102] Sacks M D, Wang C, Yang Z, et al. Carbothermal reduction synthesis ofnanocrystalline zirconium carbide and hafnium carbide powders using solution-derivedprecursors. Journal of Materials Science,2004,39:6057-6066.
    [103] Zhao D, Hu H, Zhang C, et al. A simple way to prepare precursors forzirconium carbide. Journal of Materials Science,2010,45:6401-6405.
    [104] Zhao D, Zhang C, Hu H, et al. Preparation and characterization ofthree-dimensional carbon fber reinforced zirconium carbide composite by precursorinfltration and pyrolysis process. Ceramics International,2011,37:1277-1283.
    [105] Hillig W B. Making ceramic composites by melt infiltration. AmericanCeramic Society Bulletin, l994,73:56-62.
    [106] Mortensen A, Michaud V. Infiltration of fiber preforms by a binary alloy:part I. theory. Metallurgical and Materials Transactions A,1990,21:2059-2072.
    [107] Michaud V J, Moctensen A, Infiltration of fiber preforms by a binary alloy:part II, further theroy and experiments. Metallurgical and Materials Transactions A,1992,23:2263-2279.
    [108] Bower T F, Brody H D, Flemings M C. Measurements of SoluteRedistribution in Dendritic Solidification. Transaction of the Metallurgical Society ofAIME.1966,236:624-634.
    [109] Kajikawa Y, Nukami T, Flemings M C. Pressureless infiltration of aluminummetal-matrix composites. Metallurgical and Materials Transactions A,1995,26:2155-2159.
    [110] Poirier D R, Geiger G H. Transport phenomena in materials processing.Warrendale, PA: TMS.1994.
    [111] Mortensen A. Infiltration of fibrous preforms by a pure metal: part I. theory.Metallurgical and Materials Transactions A,1989,20:2535-2547.
    [112] Yamauchi T, Nishida Y. Infiltration kinetics of fibrous preforms byaluminum with solidification. Acta Materialia,1995,43:1313-1321.
    [113] Semiak K A, Rhines F N. Trans rates of infiltration of metals. TMS-AIME,1958.
    [114] Calhoun R B, Mortensen A. Infiltration of fibrous preforms by a pure metal.Metallurgical and Materials Transactions A,1992,23:2291-2298.
    [115] Zhang P, Debroy T, Seetharaman S. Interdiffusion in the MgO-Al2O3spinelwith or without some dopants. Metallurgical and Materials Transactions A,1996,27:2105-2114.
    [116] Levi C G, Abbaschian G J, Mehrabian R. Interface interactions duringfabrication of aluminum alloy-alumina fiber composites. Metallurgical and MaterialsTransactions A,1978,9:697-711.
    [117] Weirauch D A. Interfacial phenomena involving liquid metals and solidoxides in the Mg-Al-O system. Journal of Materials Research,1988,3:729-739.
    [118] Defay R, Prigogine I, Bellemans A, et al. Surface tension and adsorption.New York: Wiley&Sons,1966.
    [119] Wagner C. Phenomenal and thermodynamic equations of adsorption.Nachrichten der Akademie der Wissen-schaften in Gottingen,1973,3:1-27.
    [120] Lupis C H P. Chemical thermodynamics of materials. Englewood Cliffs, NJ:PTR Prentice Hall,1983.
    [121] Pask J A, Tomsia A P. Wetting, spreading, and reactions at liquid/solidinterfaces, surfaces and interfaces in ceramic-metal systems. New York: Plenum Press,1987.
    [122] Belton G R. Langmuir adsorption, the Gibbs adsorption isotherm, andinterracial kinetics in liquid metal systems. Metallurgical and Materials Transactions B,1976,7:35-42.
    [123] Ozturk B, Simkovich G. An analysis of chemisorption in multicomponentsystems. Metallurgical and Materials Transactions A,1980,11:2032-2034.
    [124] Sahoo P, Debroy T, McNallan M. Surface tension of binary metal-surfaceactive solute systems under conditions relevant to welding metallurgy. Metallurgicaland Materials Transactions B,1988,19:483-491.
    [125] Oh S-Y, Cornie J A, Russell K C. Wetting of ceramic particulates withliquid aluminum alloys: Part II. Study of wettability. Metallurgical and MaterialsTransactions B,1989,20:533-541.
    [126] Zhong W M, Esperance G L, Suery M. Interfacial reactions in Al-Mg(5083)/SiC p composites during fabrication and remelting. Metallurgical and MaterialsTransactions A,1995,26:2625-2635.
    [127] Wang G, Lannutti J J. Chemical thermodynamics as a predictive tool in thereactive metal brazing of ceramics. Metallurgical and Materials Transactions A,1995,26:1499-1505.
    [128] Johnson W B, Claar T D, Schiroky G H. Preparation and processing ofplatelet reinforced ceramics by the directed reaction of zirconium with boron carbide.Ceramic Engneering and Science Processing,1998,10:588-598.
    [129] Breslin M C. Alumina/aluminum Co-Continuous Ceramic Composite (C4)materials produced by solid/liquid displacement reactions: processing kinetics andmicrostructures. Ceramic Engineering and Science Proceedings,1994,15:15-22.
    [130] Loehman R E, Ewsuk K G, Tomsia A P. Synthesis of Al2O3-Al Compositesby Reactive Metal Penetration. Journal of the American Ceramic Society,1996,79:27-32.
    [131] Fahrenholtz W G. Synthesis and processing of AlO3/Al composites by in situreaction of aluminum and mullite, in situ reactions for synthesis of composites,ceramics, and intermetallics. Warrendale, PA: TMS,1995.
    [132] Fahrenholtz W G, Ewsuk K G, Loehman R E, et al. Formation of structuralintermetallics by reactive metal penetration of Ti and Ni oxides and aluminates.Metallurgical and Materials Transactions A,1996,27:2100-2104.
    [133] Rabin B H, Moore G A. Joining of SiC-based ceramics by reaction bondingmethods. Journal of Material Synthesis Processing.,1993,1:195-201.
    [134] Dunand D C, Sommer J L, Mortensen A. Synthesis of bulk and reinforced,Metallurgical and Materials Transactions A,1993,24:2161-2170.
    [135] Gaskell D R. Introduction to metallurgical thermodynamics,2nd ed. NewYork: Hemisphere Publishing Company,1981.
    [136] Rao Y K. Stoichiometry and thermodynamics of metallurgical processes.Cambridge, MA: Cambridge University Press,1985.
    [137] Muan A, Osborn E F. Phase equilibria among oxides in steehnaking. NewYork: Addison-Wesley Publishing Company,1965.
    [138] Turkdogan E T. Physical chemistry of high temperature technolog. NewYork: Academic Press,1980.
    [139] Odegard C, Bronson A. The reactive liquid processing of ceramic-metalcomposites. JOM1997,52-54.
    [140] Zador S, Alcock C B. A thermodynamic study of magneli and point defectphase in the Ti-O system. High Temperature Science,1983,16:187-207.
    [141] Serratos M, Bronson A. The effect of oxygen partial pressure on the stabilityof magneli phases in high temperature corrosive wear. Wear,1996,198:267-270.
    [142] Karunanithy S. Melt Infiltration and reaction at the fiber/matrix interfaceduring the brazing of a fiber-reinforced ceramic to metal. Journal of the AmericanCeramic Society,1990,73:178-18l.
    [143] Yeomans J A, Page T F. Studies of ceramic-liquid metal reaction interfaces.Journal of Materials Science,1990,25:2312-2320.
    [144] Breslin M C. Process for preparing ceramic-metal composite bodies. U.S.Patent5214011,1993.
    [145] Fahrenholz W G, Ellerby D T, Ewsuk K G, et al. Forming Al2O3-Alcomposites with controlled compositions by reactive metal penetration of densealuminosilicate preforms. Journal of the American Ceramic Society,2000,83:1293-1295.
    [146] Li J Q, Xiao P. Joining alumina using an alumina/metal composite. Journalof the European Ceramic Society,2002,22:1225-1233.
    [147] Yoshikawa N, Kikuchi A, Taniguchi S. Anomalous temperature dependenceof the growth rate of the reaction layer between silica andmolten aluminium. Journal ofthe American Ceramic Society,2002,85:1827-1834.
    [148] Saiz E, Tomsia A P, Loehman R E, et al. Effects of composition andatmosphere on reactive metal penetration of aluminium in mullite. Journal of theEuropean Ceramic Society,1996,16:275-280.
    [149] Paves M, Valle M, Badini C. Effect of porosity of cordierite preforms onmicrostructure and mechanical strength of co-continuous ceramic composites. Journalof the European Ceramic Society,2007,27:131-141.
    [150] Pavese M, Fino P, Valle M, et al. Preparation of C4ceramic/metalcomposites by reactive metal penetration of commercial ceramics. Composites Scienceand Technology,2006,66:350-356.
    [151] Chiang Y M, Messner R P, Terwilliger C D. Reaction-formed SiliconCarbide. Material Science and Engneering A1991,144:63-74.
    [152]武七德,焉永高,郭兵健.以淀粉为填充剂的碳坯渗硅制备反应烧结碳化硅陶瓷.无机材料学报,2004,19:302-306.
    [153] Singh M, Behrendt D R. Reactive melt infiltration of silicon-molybdenumalloys into microporous carbon preforms. Material Science and Engneering A,1995,194:193-200.
    [154] Singh M, Behrendt D R. Reactive Melt infiltration of silicon-niobium alloysin microporous carbons. Journal of Materials Research,1994,9:1701-1708.
    [155] Simmer S P, Xiao P, Derby B. Processing and microstructuralcharacterization of RBSC-TaSi2Composites. Journal of Materials Science.1998,33:5557-5568.
    [156] Messner R P, Chiang Y M. Liquid-phase reaction bonding of silicon carbideusing alloyed silicon-molybdenum Melt. Journal of the American Ceramic Society.1990,73:1193-2000.
    [157] Yang X F, Xi X M. SiC-Al-Si composites by rapid pressureless infiltration inair. Journal of Materials Research,1995,10:2415-2417.
    [158] Hozer L, Chiang Y M. Reaction-infiltration processing of SiC-metal and SiCintermetallic composites. Journal of Materials Research,1996,11:2346-2357.
    [159]王建荣,张丽鹏,马有升.渗硅碳化硅材料的研究.山东陶瓷,2001,24:3-8.
    [160]魏明坤,张丽鹏,武七德.高温处理对渗硅碳化硅性能的影响.陶瓷工程,2001.12:9-12.
    [161]王林山,熊翔,肖鹏.反应熔渗法制备C/C-SiC及其影响因素的研究进展.粉末冶金技术,2003,2:37-41.
    [162]马运柱,熊翔,马江鸿等.熔融渗硅对二维编制碳/碳复合材料摩擦特性的影响.中国有色金属学报,2003,13:211-215.
    [163] Xu Y, Cheng L, Zhang L. Carbon/silicon carbide composites prepared bychemical vapor infiltration combined with silicon melt infiltration. Carbon,1999,37:1179-1183.
    [164] Krenkel W. Ceramic matrix composites: fiber reinforced ceramics and theirapplications. Weinheim: WILEY-VCH Verlag GmbH&Company,2008.
    [165] Treflov V I. Ceramic-and carbon-matrix composites. Ghapman and Hall1995.
    [166] Hald H. Development of a nose cap system for X38. Proceedings ofInternational Symposium Atmospheric Reentry Vehicles and Systems, Arcachon,France,1999.
    [167] Heidenreich B, Gahr M, Straburger E, et al. Biomorphic Si/SiC materials forlightweight armour. Proceedings of30th International Conference on AdvancedCeramics&Composites, Cocoa Beach, Florida, USA2006.
    [168] Steiner M, Erb T, Holscher M, et al. Innovative material usage in the porschecarrera GT. Proceedings of FISITA, Barcelona.2004.
    [169] Johnson W B, Nagelberg A S, Breval E. Kinetics of formation of aplatelet-reinforced ceramic composite prepared by the directed reaction of zirconiumwith boron carbide. Journal of the American Ceramic Society,1991,74:2093-101.
    [170] Breval E, Johnson W B. Microstructure of platelet-reinforced ceramicsprepared by the directed reaction of zirconium with boron carbide. Journal of theAmerican Ceramic Society,1992,75:2193-2145.
    [171] Woo S K, Kim C H, Kang E S. Fabrication and microstructure evaluation ofZrB2/ZrC/Zr composites by liquid infiltration. Journal of Materials Science,1994,29:5309-5315.
    [172] Sandhage K H, Unocic R, Dickerson M, et al. Method for fabricatinghigh-melting, wear-resistant ceramics and ceramics and ceramic composites at lowtemperature. U.S. Patent6598656,2003.
    [173] Grzesik Z, Dickerson M B, Sandhage K H. Incongruent reduction oftungsten carbide by a zirconium-copper melt. Journal of Materials Research,2003,18:2135-2340.
    [174] Dickerson M B, Wurm P J, Schorr J R, et al. Near net-shape, ultra-highmelting, recession-resistant ZrC/W-based rocket nozzle liners via the displacivecompensation of porosity (DCP) method. Journal of Materials Science,2004,39:6005-6015.
    [175] Adabi M, Amadeh A. Effect of infltration parameters on composition ofW–ZrC composites produced by displacive compensation of porosity (DCP) method.International Journal of Refractory Metals and Hard Materials,2011,29:31-37.
    [176] Liu Y, Lipke D W, Zhang Y, et al. The kinetics of incongruent reduction oftungsten carbide via reaction with a hafnium-copper melt. Acta Materialia,2009:3924-3931.
    [177] Zhao Y W, Wang Y J, Zhou Y. Reactive wetting and infltration ofpolycrystalline WC by molten Zr2Cu alloy. Scripta Materialia,2011,64:229-232.
    [178]赵彦伟,王玉金,张太全等. W/ZrC复合材料的反应熔渗法制备.稀有金属材料与工程,2009,38:143-146.
    [179]祝桂洪.陶瓷工艺实验.中国建筑工业出版社,1987.
    [180] GB6569-86标准《工程陶瓷弯曲强度试验方法》.
    [181] GB75-70-03标准《高温结构陶瓷平面应变断裂韧性试验方法》.
    [182] GJB323-87标准《氧乙炔烧蚀实验方法》.
    [183] GB/T16536-1996标准《工程陶瓷抗热震性试验方法》.
    [184]王英华. X光衍射技术基础(第二版).北京:原子能出版社,1993.
    [185] Appiah K A, Wang Z L, Lackey W J. Characterization of interfaces in Cfiber-reinforced laminated C-SiC matrix composites. Carbon,2000,38:831-838.
    [186] Greenwood N N, Earnshaw A. Chemistry of the Elements (2nd ed.). Oxford:Butterworth-Heinemann,1997.
    [187] Miloserdin Y V, Naboichenko K V, Laveikin L I, et al. The high-temperaturecreep of zirconium carbide. Problemy Prochnosti,1972,3:50-53.
    [188] Spivak I I, Baranov V M, Knyazev V I, et al. Physicomechanical propertiesof zirconium nitride and niobium carbide within the range of homogeneity. ProblemyProchnosti,1975,9:53-55.
    [189] Basini V, Ottaviani J P, Richaud J C, et al. Experimental assessment ofthermophysical properties of (Pu,Zr)N. Journal of Nuclear Materials.2005,344:186-190.
    [190] Pai Verneker V R, Nagle D. Effect of reduction on Vickers hardness ofstabilized zirconia. Journal of Materials Science Letters,1990,9:192-194.
    [191] Hayashi H, Saitoua T, Maruyama N, et al. Thermal expansion coefficient ofyttria stabilized zirconia for various yttria content. Solid State Ionics,2005,176:613-619.
    [192] AZoM.com Pty.Ltd. The "AZo Journal of Materials Online".
    [193]刘军,熊翔,王建营等.耐超高温材料研究,宇航材料工艺,2005,1:6-9.
    [194] Fahrenholtz W G, Hilmas G E, Talmy I G, et al. Refractory diborides ofzirconium and hafnium. Journal of the American Ceramic Society,2007,90:1347-1364.
    [195] Esfehanian M, Guenster J, Moztarzadeh F, et al. Development of a hightemperature Cf/XSi2-SiC (X=Mo, Ti) composite via reactive melt infiltration. Journal ofthe European Ceramics Society,2007,27:1229-1235.
    [196] Yajima S, Hayashi J, Omori M, et al. Development of tensile strength Siliconcarbide fiber using organosilicon precursor. Nature,1976,261:525-528.
    [197]马彦. PIP法Cf/SiC复合材料组成、结构及性能高温演变研究,国防科技大学博士学位论文,2011.
    [198]祝玉林.反应熔渗法制备C/ZrC复合材料及其性能研究.国防科技大学硕士学位论文,2009.
    [199] Bhanumurthy K, Schmid-Fetzer R. Interface reactions between SiC/Zr anddevelopment of zirconium base composites by in-situ solid state reactions. ScriptaMaterialia,2001,45:547-553.
    [200] Bhanumurthy K, Schmid-Fetzer R. Interface reactions between siliconcarbide and metals (Ni, Cr, Pd, Zr). Composites: Part A,2001,32:569-574.
    [201] Mchale A E. Phase equilibria diagrams, phase diagrams for ceramists. Vol.X. The American Ceramic Society,1994.
    [202] Rudy E. C-Si-Zr phase diagram. Ternary phase equibilria in transitionmetal-boron-carbon-silicon systems, Part V, compendium of phase diagram data.AFML-TR-65-2.
    [203]陈红梅.超高温陶瓷B-C-Si-Zr-O部分体系相关系的研究.中南大学博士学位论文,2009.
    [204]熊炳昆,杨新民,罗方承等.锆铪及其化合物应用.北京:冶金工业出版社,2006.
    [205] Zou L H, Wali N, Yang J M, et al. Microstructural characterization of aCf/ZrC composite manufactured by reactive melt infiltration. International Journal ofApplied Ceramic Technology,2011,8:329-341.
    [206] Guillermet A F. Phase diagram and thermochemical properties of the Zr-Tasystem. An assessment based on Gibbs energy modelling. Journal of Alloys andCompounds,1995,217:69-89.
    [207] Dickerson M B, Snyder R, Sandhage K H. Near net-shaped,carbide/refractory metal composites at modest temperatures by the displacivecompensation of porosity (DCP) method. Journal of the American Ceramic Society,2002,85:730-732.
    [208] Lipke D W, Zhang Y S, Liu Y J, et al. Near net-shape/net-dimensionZrC/W-based composites with complex geometries via rapid prototyping andDisplacive Compensation of Porosity. Journal of the European Ceramic Society,2010,30:2265-2278.
    [209] Shaw L L. Thermal residual stresses in plates and coatings composed ofmulti-layered and functionally graded materials. Composites Part B,1998,29:199-210.
    [210] Hu P, Wang Z. Flexural strength and fracture behavior of ZrB2–SiCultra-high temperature ceramic composites at1800℃. Journal of the EuropeanCeramic Society,2010,30:1021-1026.
    [211] Yih S W H, Wang C T. Tungsten-source, metallurgy, preperties andapplication. New York: Plenum Press,1979:1-83,326.
    [212] Landwehr S E, Hilmas G E, Fahrenholtz W G, et al. Microstructure andmechanical characterization of ZrC-Mo cermets produced by hot isostatic pressing,Materials Science and Engineering A,2008,497:79-86.
    [213] Zimmermann J W, Hilmas G E. Fahrenholtz W G. Thermal shock resistanceof ZrB2and ZrB2-30%SiC. Materials Chemistry and Physics,2008,112:140-145.
    [214] Ma B, Han W. Thermal shock resistance of ZrC matrix ceramics.International Journal of Refractory Metals&Hard Materials,2010,28:187-190.
    [215] Landwehr S E, Hilmas G E, Fahrenholtz W G, et al. Thermal properties andthermal shock resistance of liquid phase sintered ZrC-Mo cermets. Materials Chemistryand Physics,2009,115:690-695.
    [216] Tian C Y, Liu N, Lu M H. Thermal shock and thermal fatigue behavior ofSi3N4-TiC nano-composites. International Journal of Refractory Metals&HardMaterials,2008;26:478-484.
    [217] You X Q, Si T Z, Liu N, et al. Effect of grain size on thermal shockresistance of Al2O3-TiC ceramics. Ceramics International,2005,31:33-38.
    [218] Sbaizero O, Pezzotti G. Infuence of molybdenum particles on thermal shockresistance of alumina matrix ceramics. Materials Science and Engneering A,2003,343:273-281.
    [219] Han J, Hu P, Zhang X, et al. Oxidation-resistant ZrB2-SiC composites at2200℃. Composites Science and Technology,2008,68:799-806.
    [220] Song G-M, Zhou Y, Wang Y-J. Effect of carbide particles on the ablationproperties of tungsten composites. Materials Characterization,2003,50:293-303.
    [221] Nie J J, Xu Y D, Zhang L T, et al. Ablation properties of three dimensionalneedled C/SiC composites by the chemical vapor infltration. Journal of China CeramicSociety,2006,34:1238-1242.
    [222]彭少方.钨冶金学.北京:冶金工业出版社,1981.
    [223] Laves F. Theory of alloy phase. American Society for Metals, Cleveland,OH,1956.
    [224] Mchale A E. Phase Diagrams for Ceramists, Vol. X. American CeramicSociety, Westerville, OH,1994.
    [225] Song G M, Zhou Y, Wang Y J, et al. Elevated temperature strength of20Vol.%ZrCp/W composites. Journal of Materials Science Letter,1998,17:1739-1741.
    [226] Zhang S C, Hilmas G E, Fahrenholt W G. Zirconium carbide-tungstencermets prepared by in situ reaction sintering. Journal of the American Ceramic Society,2007,90:1930-1933.
    [227] Zhang X H, Wang Z, Hu P, et al. Mechanical properties and thermal shockresistance of ZrB2-SiC ceramic toughened with graphite flake and SiC whiskers. ScriptaMaterialia,2009,61:809-812.
    [228] Wikimedia Foundation, Inc. Copper-Wikipedia, the free encyclopedia.htm.
    [229] Liang Y H, Wang H Y, Yang Y F, et al. Effect of Cu content on the reactionbehaviors of self-propagating high-temperature synthesis in Cu-Ti-B4C system. Journalof Alloys and Compounds,2008,462:113-118.
    [230] Frage N, Froumin N, Aizenshtein M, et al. Interface reaction in theB4C/(Cu-Si) system. Acta Materialia,2004,52:2625-2635.
    [231] Aizenshtein M, Froumin N, Frage N, et al. Interface interaction and wettingbehaviour in B4C/(Me-Ti) systems (Me=Cu, Ag, Sn and Au). Materials Science andEngneering A,2005,395:180-185.
    [232] Rado C, Drevet B, Eustathopoulos N. The role of compound formation inreactive wetting: the Cu/SiC system. Acta Materialia,2000,48:4483-4491.
    [233] Oden L L, Gokcen N A. Cu-C and Al-Cu-C phase diagrams andthermodynamic properties of C in the alloys from1550℃to2300℃. Metallurgicaland Materials Transactions B,1992;23:453-458.
    [234] Froumin N, Frage N, Aizenshtein M, et al. Ceramic-metal interaction andwetting phenomena in the B4C/Cu system. Journal of the European Ceramic Society,2003,23:2821-2828.
    [235] Rambo C R, Travitzky N, Zimmermann K, et al. Synthesis of TiC/Ti-Cucomposites by pressureless reactive infiltration of TiCu alloy into carbon preformsfabricated by3D-printing. Materials Letters,2005,59:1028-1031.
    [236] Wang Y G, Zhu X J, Zhang L T, et al. Reaction kinetics and ablationproperties of C/C–ZrC composites fabricated by reactive melt infltration. CeramicsInternational,2011,37:1277-1283.
    [237] Ness J N, Page T F. Microstructural evolution in reaction-bonded siliconcarbide. Journal of Materials Science,1986,21:1377-1397.
    [238] Liang Y H, Wang H Y, Yang Y F, et al. Reaction path of the synthesis ofTiC-TiB2in Cu-Ti-B4C system. International Journal of Refractory Metal and HardMaterials,2008,26:383-388.
    [239] She J, Zhan Y, Pang M, et al. In situ synthesized (ZrB2+ZrC) hybrid shortfbers reinforced Zr matrix composites for nuclear application. International Journal ofRefractory Metals and Hard Materials,2011,29:401-404.
    [240] Guo S-Q, Kagawa Y, Nishimura T, Chung D, Yang J-M. Mechanical andphysical behavior of spark plasma sintered ZrC-ZrB2-SiC composites. Journal of theEuropean Ceramic Society,2008,28:1279-1285.
    [241] Itatani K, Tanaka T, Davies I J. Thermal properties of silicon carbidecomposites fabricated with chopped tyranno Si-Al-C fibers. Journal of the EuropeanCeramic Society,2006,26:703-710.
    [242] Luo R, Liu T, Li J, et al. Thermalphysical propeties fo carbon/carboncomposites and physical mechanism of thermal expansion and thermal conductivity.Carbon,2004,42:2887-2895.
    [243] Stanley R L, Ahmed K N, Samuel L V. Flight-vehicle material structure anddynamics assessment and future directions. Cermaics and ceramic-matrix composites.New York: Amenrican Society of Mechanical Engineers,1992.
    [244] Song G-M, Wang Y-J, Zhou Y. The mechanical and thermophysicalproperties of ZrC/W composites at elevated temperature. Materials Science andEngineering A,2002,334:223-232.
    [245]奚同庚.无机材料热物性学.上海:上海科学技术出版社,1981.
    [246]赵建国,李克智,李贺军等.碳/碳复合材料导热性能的研究.航空学报,2005,26:501-504.
    [247] McHale A E. Data collected from phase diagrams for ceramists, Vol.X.American Ceramic Society, Westerville, OH,1994.
    [248] Muolo M L, Ferrera E, Novakovic R, et al. Wettability of zirconium diborideceramics by Ag, Cu and their alloys with Zr. Scripta Materialia,2003;48:191-196.
    [249] Zhang X, Hu P, Han J, et al. Ablation behavior of ZrB2-SiC ultra hightemperature ceramics under simulated atmospheric re-entry conditions. CompositesScience and Technology,2008,68:1718-1726.
    [250] Han J, Hu P, Zhang X, et al. Oxidation-resistant ZrB2-SiC composites at2200℃. Composites Science and Technology,2008,68:799-806.
    [251] Zhao L, Jia D, Wang Y, et al. ZrC-ZrB2matrix composites with enhancedtoughness prepared by reactive hot pressing. Scripta Materialia,2010,63:887-890.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700