用户名: 密码: 验证码:
锂离子电池正极材料磷酸铁锂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源与环境问题的日益突出以及现代科技的快速发展,对电池的性能提出了更高的要求。锂离子电池以其工作电压高、体积小、质量轻、比能量高、无记忆效应、无污染、自放电小、循环寿命长等特点而受到人们的重视和青睐。目前,商业化的锂离子电池正极材料主要是钴酸锂。由于钴资源有限且对环境有害,钴酸锂价格较高,热稳定性和安全性能较差。因而研究开发成本低、环境友好、电化学性能好、安全性能佳的新型锂离子电池正极材料成为研究热点。
     磷酸铁锂具有原料来源广泛、价格低廉、热稳定性好、比能量高、循环性能好、安全性能突出及对环境无污染的特点。其理论容量为170 mAh/g,工作电压为3.45 V左右,是最具潜力的正极材料之一。然而,磷酸铁锂正极材料仍存在两个不足之处:一是其电导率低和离子扩散系数低。二是材料的堆积密度小。目前用来提高LiFePO4电化学性能的方法主要有三种:改进合成方法得到颗粒小且分布均匀的产物;掺杂导电剂,主要是掺杂碳或者金属粉末;掺杂金属离子,从本质上提高材料的导电性。
     本文采用了液相共沉淀法-碳热还原法合成出了体积比容量较高的球形LiFePO4材料,并采用XRD、SEM、TEM、CV等手段对材料进行表征,在不同条件下测试了材料的电化学性能。结果表明,550℃下锻烧10 h制得的样品表现出较好的电化学性能,0.1C的电流密度下首次放电比容量为141.8mAh/g。
     同时对材料的改性进行了研究,通过对碳源、掺碳量、以及掺碳方式的研究发现,使用过量5%葡萄糖作为碳源,在550℃下制得的材料综合性能较好,当采用0.1C放电时,其比容量达到154.6mAh/g。
     本文还将微波加热与液相共沉淀-碳热还原法相结合,制得的球形LiFePO4材料粒径在50~200nm。用LiFePO4作正极材料进行了电池的充放电测试和循环伏安测试,结果显示,在0.5C下首次放电比容量达到129.7mAh/g,循环100次后,仍然可以保持在125.4 mAh/g,在50℃下,其首次放电容量为143.3mAh/g。
The increasing concerns on energy, environment and the rapid development of modern science and technology have more demands on batteries. Lithium ion batteries (LIB) are favorable because of the properties of high vlltage, high energy density, long cycling life, little local action, non-memory effect and pollution-free. Currently, the cathode material that commercialized is mainly LiCoO2. However, because of its pollution, high price, poor thermal stability and security, the development of new cathode materials which are low cost, environment-friendly, and have better electrochimecal properties and better security are becoming the focus of resent research.
     LiFePO4 is one of the most potential cathode materials which has a high theoretical capacity (170mAh/g) and voltage (about 3.5V versus Li/Li). It also have good stability both at room temperature and high temperature. Besides, it is environmentally benign and inexpensive. However, LiFePO4 have some fatal problems including its low electronic conductivity, low lithium ion diffusivity, and low tap density. In order to overcome these defaults, the first way is to synthesize small fine particles of LiFePO4 through improved methods, the second way is to coat LiFePO4 with electronically conductive materials such as carbon or metal powder, the final way is to substitute Li or Fe by other metal ions to enhance the inherent electronic conductivity.
     Spherical LiFePO4 was obtained by liquid co-deposited-carbonthermal reduction. The LiFePO4 was characterized by XRD, SEM, TEM, CV analysis. We also studied the electrochemical properties of the product at different conditions. The results indicated that the sample synthesized by co-deposited-carbonthermal reduction sintered at 550℃for 10 hours showed the best electrochemical properties. The first discharge capacity was 141.8mAh/g with a current density of 20mA/g.
     And we also researched the modification by coating LiFePO4 materials with different carbon sources, such as acetylene black, glucose and sucrose. Studies on carbon sources, mixing accounts and mixing styles indicated that the sample coated with 5% excess glucose sintered at 550℃for 10 hours has the most optimized electrochemical properties with a discharge capacity of 154.6mAh/g under a current density of 20mA/g.
     The spherical material LiFePO4 was synthesized by liuqid-microwave method with 50~200nm particle diameter. The results of charge-discharge test of the products coated with sucrose showed a lithium insertion plateau around 3.5V vs. Li together with a specific capacity of 129.7mAh/g with a current density of 100mA/g. After 100 cycles, it remains a specific capacity of 125.4mAh/g. And under the temperature of 50℃, it also have a specific capacity of 143.3mAh/g.
引文
[1]汪继强.新型锂离子电池发展、应用现状及前景展望.电子元器件应用, 2000, 1: 2~6
    [2]陈军,陶占良,苟兴龙.化学电源—原理、技术与应用.北京:化学工业出版社,2006, 1
    [3]吴宇平,万春荣,姜长印等.锂离子二次电池[M].北京:化学工业出版社, 2002, 12
    [4]王海明,郑绳楦,刘兴顺.锂离子电池的特点及应用.电气时代,2004, 3: 132~134
    [5] Jacek L, Philip N, Ross. The electrochemistry of novel materials[M]. New York: VCH Publisher Inc., 1994, 116~117
    [6]刘建睿,王猛,尹大川等.锂离子蓄电池正极材料锂钒氧化物研究进展[J].电源技术, 2001, 25(3): 308~311
    [7]张胜利,余仲宝,韩周群.锂离子电池的研究与进展[J].电池工业, 1999, 4(1): 26~28
    [8] Miura K, Yamada A, Tanaka M. Electric states of spinel LiNiO2 as a cathode of the rechargeable battery[J]. Electrochimica Acta, 1996, 41: 249~256
    [9]周恒辉,慈云祥,刘昌炎.锂离子电池电极材料研究进展[J].化学进展, 1998, 10(1): 85~94
    [10] Athula Wijayasinghe. LiFeO2-LiCoO2-NiO cathodes for molten carbonate fuel cells[J]. Journal of the Electrochemical Society, 2003, 150(5): A558
    [11] Kanno R, Kubo H, Kawamoto Y, et al. Phase Relationship and Lithium Dein tercalation in Lithium Nickel Oxides[J]. Journal of Solid State Chemistry, 1994, 10: 216~219
    [12] Yoshio M, Tanaka H, Tominaga K, Synthesis of LiCoO2 from cobalt-organic acid complexes and its electrode behaviors in a lithium secondary[J]. Journal of Power Sources, 1992, 40: 347~353
    [13] Arnatuucci G G, Tarascon J M, Palacin M R, et al. Synthesis of Electrochemically active LiCoO2 and LiNiO2[J]. Solid State Ionics, 1996, 84: 169~180
    [14]汤宏伟,陈宗璋,钟发平.锂离子电池的正极材料,化学通报,2002, 35, 1~7
    [15] Banov B, Boueilkov J, Mladenov M. Cobalt stabilized layered lithium nickel oxides cathodes in lithium rechargeable cells[J]. Journal of Power Sources, 1995,54: 268~270
    [16] Aral H, Okada S, Sakurai Y, et al. Electrochemical and thermal behavior of LiNi1-xMxO2(M=Co, Mn, Ti)[J]. Journal of the Electrochemical Society, 1997, 144(9): 3117~3125
    [17] Biensan, Peres J P, Perion F. Optimized LiNi1-mMmO2 materials with improved safety and fading[C]. The 1999 Joint International Meeting Vol, 1999: 131
    [18]唐致远,李建刚,薛建军等. LiNiO2的制备与改性的探讨[J].电池, 2001, 31(1): 10~13
    [19]李智敏. LiMn2O4正极材料高温电化学性能的研究[J].硅酸盐学报, 2004, 32(1): 10
    [20] Ali Eftekhari. Mixed-metals codeposition as a novel method for the preparation of LiMn2O4 electrodes with reduced capacity[J]. Journal of the Electrochemical Society, 2003, 150(7): A966
    [21]陈国昌,余丹梅,黄宗卿.锂离子电池锰系正极材料的研究进展.电池, 2000, 30(4): 178~180
    [22]刘烈炜,田炜.尖晶石型LiMn2O4的制备和性能研究[J].电池工业, 147~150
    [23]苏玉长.尖晶石LiMn2O4的结构性能与嵌脱锂动力学探讨[J].电源技术, 2003, 27(5): 431~434
    [24] Barboux P, Tarascon J M, Scokoohi F K. The use of acetates as precursors for the low temperature synthesis of LiMn2O4 and LiCoO2 intercalation compounds[J]. Journal of So1id State Chemistry, 1991, 94: 185~189
    [25] Qiu X, Sun X, Shen W, et al. Spinel Li1+xMn2O4 synthesized by co-precipitation as cathodes for lithium ion batteries[J]. Solid State Ionics, 1997, 93: 335~339
    [26] Pyun S I, Choi Y M, Jeng I D. Effect of the lithium content electrochemical lithium intercalation into amorphous and crystalline powdered Li1+xMn2O4 electrodes prepared by sol-gel method[J]. Journal of Power Sources, 1997, 68: 593~599
    [27] Sun Y K, Lee K H, Moon I, et al. Effect of crystalinity on the electrochemical behavior of spinel Li1+xMn2O4 cathode materials[J]. Solid State Ionics, 1998, 112: 137~243
    [28] Sun Y K. Synthesis and electrochemical studies of spinel LiMn2O4 cathode materials prepared by a sol-gel method for 1ithium secondary batteries[J]. Solid State Ionics, 1997, 100: 115~125
    [29] George Y K, Subramanian V, Lu C Z. Tartaric Acid-assisted Sol-gel Synthesis of LiNi0.8Co0.2O2 and its Electrochemical Properties as a Cathode Material for Lithium Batteries[J]. Solid State Ionics, 2002, 152-153: 83~90
    [30] Liu W, Farrington G C, Chaput F, et al. Synthesis and Electrochemical studies ofSpinel Phase LiMn2O4 Cathode Materials Prepared by the Pechini Process[J]. Journal of the Electrochemical Society, 1996, 143(3): 879~884
    [31] Xia Y, Yoshio M. Optimization of spinel Li1+xMn2-x04 as a 4V Li-cell cathode in terms of Li-Mn-O phase diagram[J]. Journal of the Electrochemical Society, 1997, 114: 4186~4194
    [32] Prabaharan S R S, Mchael M S, Premkumar T, et al. Soft chemistry synthesis of electrochemically-active spine] LiMn2O4 for Li ion batteries[J]. Solid State Ionics, 1998, 112: 25~34
    [33] Choy J H, Kim D H, Kwon C W, et al. Physical and electrochemical characterization of nanocrystalline LiMn2O4 prepared by a modified citrate route[J]. Journal of Power Sources, 1999, 77: 1~11
    [34]杨文胜,刘庆国,仇卫华等.柠檬酸络合反应方法制备尖晶石型LiMn2O4[J].电源技术, 1999, 23(增刊): 49~52
    [35] Hwang K T, Um W S, Lee H S, et al. Powder synthesis and electrochemical properties of LiMn2O4 prepared by an emulsion-drying method[J]. Journal of Power Sources, 1998, 74: 169~174
    [36] Song D, Ikuta H, Uchida T, et a1. The spinel phase LiAlyMn2-yO4(y=O, 1/12, 1/9, 1/6, 1/3) as the cathode for rechargeable lithium batteries[J]. Solid State Ionics, 1999, 117: 151~156
    [37] Yoo K S, Cho N W, Oh Y J. Structure and electrical characterization of Li(Mn1-xTix)2O4 electrode materials[J]. Solid State Ionics, 1998, 113-115: 43~49
    [38] Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of Electrochemical Society, 1997, 144(4): 1188~1194
    [39] Andersson A S, Kalska B, Haggstrom L, et al. Lithium extraction/insertion in LiFePO4: an X-ray diffraction and mossbauer spectroscopy study[J]. Solid State Ionics, 2000, 130: 41~52
    [40] Lemos V, Guerini S, Mendes F J, et al. A new insight into the LiFePO4 delithiation process[J]. Solid State Ionics, 2006, 177: 1021~1025
    [41] Yamada A, Chung S C, Hinokuma K. Optimized LiFePO4 for lithium battery cathodes[J]. Journal of Electrochemical Society, 2001, 148(3): A224~A229
    [42]卢俊彪,张中太,唐子龙等.一种新型的锂离子电池正极材料—LiFePO4[J].稀有金属材料与工程, 2004, 33(7): 679~683
    [43]王要武,谢晓峰,蔡砚.锂离子电池正极材料评估[C].第十二次全国电化学会议论文集, 2003, A38
    [44] Prosini P P, Lisi M, Zane D. Determination of the chemical diffusion coefficient of lithium in LiFePO4[J]. Solid State Ion, 2002, 148: 45~51
    [45]黄学杰.锂离子电池正极材料磷酸铁锂研究进展[J].电池工业, 2004, 9(4): 176~180
    [46] Macneil D D, Lu Z H, Chen Z H, et al. A comparison of the electrode/ electrolyte reaction at elev-ated temperatures for various Li-ion battery cathodes[J]. J.Power Sources, 2002, 108(1-2):8~14
    [47] Ravet N, Chouinard Y, Magnan J F, et a1. Electroactivity of natural and synthetic triphylite [J]. Journal of Power Sources, 2001, 97-98: 503~507
    [48] Piana M, Arrabito M, Bodoardo S, et a1. Characterization of phospho-olivines as materials for Li-ion cell Cathodes[J]. Solid State Ionics, 2002, 8: 17~26
    [49] Okada S, Sawas S, Egashira M, et a1. Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries[J]. Journal of Power Sources, 2001, 97-98: 430~432
    [50] Shi Z C, Li Chen, Yang Yong. The electrochemical performance studies on novel LiFePO4 cathode materials for Li-ion batteries[J]. Electrochem, 2003, 9(1): 9~14
    [51] Andersson A S, Thomas J O. The source of first-cycle lose in LiFePO4[J]. Journal of Power Sources, 2001, 97-98: 498~502
    [52] G. Meligrana, C. Gerbaldi, A.Tuel, et al. Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li-ion cells. Journal of Power Sources, 2006 (160) : 516~522
    [53] Jiajun Chen, M. Stanley Whittingham. Hydrothermal synthesis of lithium iron phosphate. Electrochemistry Communications 2006(8): 855~858
    [54] Jaewon Lee, Amyn S., Teja. Characteristics of lithium iron phosphate (LiFePO4) particles synthesized in subcritical and supercritical water. J. of Supercritical Fluids 2005(35): 83~90
    [55] Mickael Doll′e, S′ebastien Patoux, Thomas J. Richardson. Lithium insertion chemistry of phosphate phases with the lipscombite structure. Journal of Power Sources. 2005(144): 208~213
    [56] Yang S, Song Y, Zavalij P Y, et al. Reactivity, stability and electrochemical behavior of lithium iron phosphates[J]. Journal of electrochemistry communications, 2002, 4: 239~244
    [57] Zhihui Xu, Liang Xu, Qiongyu Lai, et al. Microemulsion synthesis of LiFePO4/C and its electrochemical properties as cathode materials for lithium-ion cells. Mater. Chem. Phys. 2007, 4: 39~42
    [58] S. Franger, C. Benoit, C. Bourbon, et al. Chemistry and electrochemistry of composite LiFePO4 materials for secondary lithium batteries. Journal of Physics and Chemistry of Solids, 2006(67): 1338~1342
    [59] Seung-Taek Myung, Shinichi Komaba, Norimitsu Hirosaki, et al. Emulsiondrying synthesis of olivine LiFePO4/C composite and electrochemical properties as lithium intercalation material. Electrochimica Acta 2004(49): 4213~4222
    [60] Huang H, Yin S C, Nazar L F. Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates[J]. Eletrochem Solid-State Lett, 2001, 4(10): A170~A172
    [61] Park K S, Son J T, Chung H T, et al. Surface modification by silver coating for improving electrochemical properties of LiFePO4[J]. Solid State Communications, 2004, 129: 311~314
    [62] Park K S, Kang K T, Lee S B, et al. Synthesis of LiFePO4 with fine particle by co-precipitation method[J]. Materials researchbulletin, 2004, 39: 1803~1810
    [63] Prosini P P, Lisi M, Scaccia S, et al. Synthesis and Characterization of Amorphous Hydrated FePO4 and Its Electrode Performance in Lithium Batteries[J]. Journal of Electrochemical Society, 2002, 149(3): A297~A301
    [64] Prosini P P, Lisi M, Scaccia S, et al. Synthesis and Characterization of Amorphous Hydrated FePO4 and Its Electrode Performance in Lithium Batteries[J]. Journal of Electrochemical Society, 2002, 149(3): A297~A301
    [65] Park K S, Son T J, Chung H T, et al. Synthesis of LiFePO4 by coprecipitation and microwave heating[J]. Electrochemistry communications, 2003, 5: 829~842
    [66] Zhu Yuanbao, Zhang Chuanfu.电化学数据手册[M]. Changsha: Hunan Science and Technology Press, 2001, 273~274
    [67] A.K. Ivanov-Schitz, A.V. Nistuk, N.G. Chaban. Li Fe (PO ) solid electrolyte prepared by ultrasonic spray pyrolysis. Solid State Ionics 2001 (139) 153~157
    [68]雷敏,应皆荣,姜常印等.高密度球形LiFePO4的合成及性能.电源技术, 2006, 30(1): 11~13
    [69] Myung S T, Komaba S, Hirosaki N et al. Electrochim Acta[J]. 2004, 49: 4213
    [70]何雨石,廖小珍,马紫峰等. LiFePO4/C复合正极材料的制备及其电化学性能研究.稀有金属材料与工程, 2007, 36(9): 1644~1648

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700