用户名: 密码: 验证码:
裂隙岩体水流—传热模型试验与计算理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于高放射核废物,建造地下处置库,利用深部岩石洞室进行永久储存是目前唯一可能实现的处置方案。为评估处置库的安全性,需要研究处置库近场裂隙岩体内的水流-传热过程。本文的研究内容和主要成果如下:
     (1)选用甘肃北山地区(中国高放射核废物处置库重要预选场区)的花岗岩,制作高度×宽度×厚度为1502.5mm×904mm×300mm的规则裂隙岩体模型,试验模拟了裂隙水流动-传热和岩石热传导之间的相互作用。结果表明,裂隙水流动-传热能够显著改变模型温度场分布,热源对裂隙以外岩体温度的影响和模型温度场达到稳态所需的时间随热源温度升高、裂隙水流速降低和裂隙填砂而增大;邻近热源的裂隙水流动是影响模型温度分布的主要因素,远离热源的裂隙水流动主要影响边界温度和模型温度场达到稳态所需的时间;试验过程中裂隙水无相变产生,温度变化对裂隙水压强的影响很小。
     (2)分析了裂隙水与填充颗粒之间瞬时热平衡假定及影响因素,分析了裂隙水与岩石壁面之间瞬时热平衡假定对水流-传热的影响。填充裂隙内的换热平衡时间受水-填充颗粒对流换热系数与颗粒直径的比值控制,比值越大,时间越短;考虑裂隙水与岩石壁面对流换热(非瞬时热平衡)时计算得到的裂隙水温度低于瞬时热平衡假定的计算结果;裂隙水流动距离与流速的比值越大,水与岩石壁面间的对流换热越充分,岩石的体积比热和热传导系数的乘积与对流换热系数的比值越小、与裂隙开度的比值越大,水与岩石壁面间的对流换热速度越快,因为瞬时热平衡假定而产生的差别越小。
     (3)建立了规则裂隙岩体水流-传热的有限差分格式控制方程,编写了计算机程序并运用TOUGH2对模型试验进行了模拟和参数敏感性分析。模型试验、有限差分计算和TOUGH2计算结果基本一致;热源温度、裂隙开度、裂隙水流速和岩石体积比热是影响裂隙水温度的敏感参数,邻近热源侧垂直裂隙的稳态出水温度受其它裂隙的影响很小。
     (4)考虑核废物罐放热功率是时间的函数、岩石和水的热物理参数是温度的函数、回填材料的体积比热是饱和度的函数,利用有限差分计算程序,分析了处置库近场裂隙岩体水流-传热特征。裂隙水的流动促进了热量沿水流方向的传递,改变了岩石的温度分布,增大了处置库的影响范围;核废物罐温度最大值随垂直裂隙水流速、裂隙开度的增大和裂隙与处置库水平距离的减小而下降;流入处置库的水平裂隙水能够减缓核废物罐的升温速度,但是对其温度最大值的影响很小。
For safe disposal of high level radioactive nuclear waste, the only currently suitable approach is underground disposal facilities. Better understandly of water flow and heat transfer in fractured rocks is needed for evaluating the safety of the nuclear waste repositories. The main contents and results of this thesis are follows:
     (1) Physical modelling experiments were conducted to study water flow and heat transfer in fractured rocks. Granite rocks were taken from the Beishan area in Gansu province, which is being investigated as a potential site for the high-nuclear waste repository in China, to construct a fractured rock model of height-1502.5mm*width-904mm*thickness-300mm, consists of nine rock blocks with two vertical and two horizontal fractures. The experimental results revealed, water flow and heat transfer in fractures can significantly change the temperature field of the model, for higher heat source temperatures, lower water velocities and sands filled in the fractures the range of influence of the heat source to rocks matris beyond fractures is larger, and the time for asymptotically approaching steady-state is longer; the vertical fracture adjacent to the heat source controled the temperature distribution in the model while the other fractures mainly influenced the boundary temperature and the time for approaching steady-state; there was no phase change of the water in the fractures, and the temperature variations had little effect on the water pressure.
     (2) Influence of thermal dynamic equilibrium assumptions for water and filled particles fractures as well as for rock face and fracture water was analyzied. The time to reach thermal equilibrium in the fractures is controlled by the ratio of convective heat transfer coefficient to particle diameter, longer time is needed for larger ratios; the temperature of water in the fractures calculated from using thermal equilibrium assumption is larger than that calculated by considering transient heat convection; and the discrepancy from using thermal equilibrium assumption is insignificant, for larger ratios of water travel distance to water flow velocity, for smaller ratios of the product of volume specific heat and thermal conductivity of rock matrix to convective heat transfer coefficient and to aperture of the fracture.
     (3) Finite difference equations of water flow and heat transfer in reqularly fractured rocks were developed and with the computer code written and TOUGH2code simulations of the experiments and the paramete sensitivity analyses were conducted. There was a good agreement between the experiment data, and the numerical calculations; parametric sensitivity analyses indicated that the temperature distribution was highly sensitive to the heat source temperature, fracture aperture, water flow velocity and the volume specific heat of the rock matrix, and the water temperature in the vertical fracture adjacent to the heat source was not significantly affected by the other fractures.
     (4) Considering the thermal output of the nuclear waste canisters as a function of time, thermal parameters of rock and water as functions of temperature, volume specific heat of the fill materials as a function of saturation, the characteristics of water flow and heat transfer in fractured rocks in the near-field of the repositories were analyzed by using the developed finite difference code. Water flow enhances heat transfer along the flow, changes the temperature field of the rock matrix, and thus increases the range of influence of the repositories, and the peak value of the canister temperature becomes lower if the water flow velocity and the aperture of the vertical fracture are increased and the distance between the vertical fracture and the canister is decreased; water flow into the repository from horizontal fracture slows the canister heating, but has little effect on the peak value of the temperature.
引文
[1]陈隆玉(摘译).世界核动力反应堆与铀的需求[J],铀矿冶,2011,30(1).
    [2]潘自强,钱七虎.高放废物地质处置战略研究[R],北京:原子能出版社,2009.
    [3]王驹,陈伟明,苏锐等.高放废物地质处置及其若干关键科学问题[J],岩石力学与工程学报,2006,25(4):801-812.
    [4]井兰如,冯夏庭.放射性废物地质处置中的主要岩石力学问题[J],岩石力学与工程学报,2006,25(4):833-841.
    [5]Aikas T. Disposal of spent nuclear fuel-from plans to reality[C]. World tunnel congress and 37th general assembly, Helsinki,2011,5.
    [6]Tsang C. F., Jing L., Stephansson O., et al. The DECOVALEX III project. A summary of activities and lessons learned[J]. International Journal of Rock Mechanics and Mining Sciences, 2005,42(5-6):593-610.
    [7]Lauwerier H. A. The transport of heat in an oil layer caused by the injection of hot fluid[J]. Applied scientific research[J].1955,5(2-3):145-150
    [8]Ramey J. R. Wellbore heat transmission. Journal of prtroleum technology[J].1962,14(4): 427-435
    [9]Home R. N. Wellbore heat loss in production and injection wells [J]. Journal of prtroleum technology.1979,31(1):116-118
    [10]Hagoort J. Ramey's wellbore heat transmission revisited[J]. SPE journal.2004,9(4):465-474
    [ii]Spillette A. G. Heat transfer during hot fluid injection into an oil reservoir[J]. Journal of Canadian prtroleum technology.1965,4(4):213-218
    [12]Spillette A. G. Two-dimensional method for predicting hot water flood recovery behavior[J]. Journal of prtroleum technology.1968,20(6):627-638
    [13]冯恩民,闫桂峰.注水井地层带温度场数值模拟及优化[J],石油学报,1996,17(1):96-101.
    [14]高学仕,张立新,潘迪超.热采井筒瞬态温度场的数值模拟分析[J],石油大学学报,2001,25(2):67-69.
    [15]肖占山,宋延杰,石颖等.注水井温度场模型及其数值模拟研究[J],地球物理学进展,2005,20(3):801-807.
    [16]赵阳升,万志军,康建荣.高温岩体地热开发导论[M].科学出版社.2004(6),北京.
    [17]郭进京,周朝安,赵阳升.高温岩体地热资源特征与开发问题讨论[J].天津城市建设学院学报.2010,16(2):77-84.
    [18]Gringarten A. C., Witherspoon P. A., Ohnishi Y. Theory of heat extraction from fractured hot dry rock[J]. Journal of Geophysical Research.1975,80(8):1120-1124.
    [19]Gringarten A. C., Sauty J.P. A theoretical study of hear extraction from aquifers with uniform regional flow[J]. Journal of Geophysical Research.1975,80(35):4956-4962
    [20]Cermak V., Jetel J. Heat flow and ground water movement in the bohemian qretaceous basin (Czechoslovakia) [J]. Journal of Geodynamics.1985,4(1-4):285-303.
    [21]Ziagos J. P., Blackwell D. D. Amodel for the transient temperature effects of horizontal fluid flow in geothermal systems[J]. Journal of volcanology and geothermal research.1986, 27(3-4):371-397.
    [22]Shibuya Y., Sekine H., Takahashi Y. et al. Multiple Artificial Geothermal Cracks in a Hot Dry Rock Mass for Extraction of Heat[J]. Journal of Energy Resources Technology.1985,107(2): 274-279.
    [23]Schulz R. Analytical model calculations for heat exchange in a confined aquifer[J]. Journal of Geophysics.1987,61:12-20.
    [24]Heuner N., Kupper T., Windelberg D. Mathematical model of a Hot Dry Rock system[J]. Geophysical Journal International.1991,105(3):659-664
    [25]Bai M., Roegiers J. C. Fluid flow and heat flow in deformable fractured porous media[J]. International Journal of Engineering Science,1994,32(10):1615-1633.
    [26]Cheng A. H. D., Ghassemi A., Detournay E. Integral equation solution of heat extraction from a fracture in hot dry rock[J]. International Journal for Numerical and Analytical Methods in Geomechanics.2001,25(13):1327-1338.
    [27]Ghassemi A., Tarasovs S., Cheng A. H. D. An integral equation solution for three-dimensional heat extracton from planar fracture in hot dry rock[J]. International journal for numerical and analytical methods in gemechanics.2003,27(12):989-1004.
    [28]柴军瑞,韩群柱.岩体渗流场与温度场耦合的连续介质模型[J],地下水,1997,19(2):59-62.
    [29]柴军瑞,韩群柱.岩体一维渗流场与温度场耦合模型的解析演算[J],地下水,1999,21(4):180-182.
    [30]Zyvoloski G. Finite element methods for geothermal reservoir simulation[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1981,7(1):75-86.
    [31]Shibuya Y, Sekine H., Takahashi Y. Heat extraction through a geothermal reservoir on an oblique fault plane[J]. International Journal for numerical and analytical methods in geomechanics,1987,11(2):143-153.
    [32]Jupea A. J., Bruelb D., Hicks T. et al. Modelling of a European prototype HDR reservoir[J]. Geothermics.1995,24(3):403-419.
    [33]Kolditz O. Modelling flow and heat transfer in fractured rocks:dimensional effect of matrix heat diffusion[J]. Geothermics,1995,24(3):421-437.
    [34]Kolditz O., Clauser C. Numerical simulation of flow and heat transfer in fractured crystalline rocks:Application to the Hot Dry Rock site in Rosemanowes (U.K.)[J]. Geothermics.1998, 27(1):1-23.
    [35]万志军,赵阳升,康建荣.高温岩体地热资源模拟与预测方法[J],岩石力学与工程学报,2005(6):945-949.
    [36]Yang S. Y, Yeh H. D. Modeling heat extraction from hot dry rock in a multi-well system[J]. Applied thermal engineering.2009,29(8-9):1676-1681.
    [37]张树光,李志建,徐义洪等.裂隙岩体流-热耦合传热的三维数值模拟分析[J],岩土力学,2011,32(8):2507-2511.
    [38]Faust C. R., Mercer J. W. Geothermal Reservoir Simulation 2:Numerical Solution Techniques for Liquid-and Vapor-Dominated Hydrothermal Systems [J]. Water Resources Research,1979, 15(1):31-46.
    [39]Lewis R. W., Roberts P. J., Schrefler B. A. Finite element modelling of two-phase heat and fluid flow in deforming porous media[J]. Transport in Porous Media,1989,4(4):319-334.
    [40]Kissling W., McGuinness M., McNabb A. et al. Analysis of one-dimensional horizontal two-phase flow in geothermal reservoirs[J]. Transport in Porous Media,1992,7(3):223-253.
    [41]Pruess K. TOUGH2:A general-purpose numerical simulator for multiphase fluid and heat flow[R]. Technical Report, United States,1991.
    [42]Pruess K. The TOUGH Codes—A Family of Simulation Tools for Multiphase Flow and Transport Processes in Permeable Media[J]. Vadose Zone Journal,2004,3:738-746.
    [43]Hayashi K., Richards J. W., Hopkirk R. J., et al. Numerical models of HDR geothermal reservoirs—a review of current thinking and progress[J]. Geothermics.1999,28(4-5):507-518.
    [44]Kohl T., Hopkirkb R. J. "FRACTURE "-A simulation code for forced fluid flow and transport in fractured, porous rock[J]. Geothermics.1995,24(3):333-343.
    [45]Jing Z. Z, Watanabe K., Richards J. W., et al. A 3-D water/rock chemical interaction model for prediction of HDR/HWR geothermal reservoir performance[J]. Geothermics.2002,31(1):1-28.
    [46]Kumar G. S., Ghassemi A. Numerical modeling of noe-isothermal quartz dissolution /precipitation in a coupled fracture-matrix system[J]. Geothermics.2005,34(4):411-439.
    [47]赵阳升,杨栋,冯增朝等.多孔介质多场耦合作用理论及其在资源与能源工程中的应用[J].岩石力学与工程学报,2008,27(7):1321-1328.
    [48]吉小明.饱和多孔岩体中温度场渗流场应力场耦合分析[J],广东工业大学学报,2006,23(3):46-53.
    [49]王如宾.单裂隙岩体稳定温度场与渗流场耦合数学模型研究[J].灾害与防治工程,2006,1:65-70.
    [50]Dash Z. V., Murphy H. D., Aamodt R. L., et al. Hot dry rock geothermal reservoir testing:1978 to 1980[J]. Journal of volcanology and geothermal research,1983,15(1-3):59-99.
    [51]Laughlin A. W., Eddy A. C., Laney R. Geology of Fenton hill, New Mexico, hot dry rock site[J]. Journal of volcanology and geothermal research.1983,15(1-3):21-41.
    [52]Brown D. W. Three principal results from recent Fenton hill flow testing. Twenty-first workshop on geothermal reservoir engineering[C]. Stanford university, Stanford, California,1997
    [53]Brown D. W. Hot dry rock geothermal energy:important lessons from Fenton hill. Thirty-fourth workshop on geothermal reservoir engineering[C]. Stanford university, Stanford, California, 2009.
    [54]Home R., Roland N, Stanford U. Geothermal Reinjection Experience in Japan[J]. Journal of Petroleum Technology.1982,34(3):459-503.
    [55]Sasaki S. Characterristics of microseismic events induced during hydraulic fracturing experiments at Hijiori hot dry rock geothermal energy site, Yamagata, Japan[J]. Tectonophysics. 1998,289(1-3):171-188.
    [56]Richards H. G, Parker R. H., Green A. S. P., et al. The performance and characteristics of the experimental hot dry rock geothermal reservoir at Rosemanowes, Cornwall(1985-1988)[J]. Geothermics.1994,23(2):73-109
    [57]Stefansson V. Geothermal reinjection experience[J]. Geothermics,1997,26(1):99-139
    [58]Weidler R., Gerard A., Baria R., et al. Hydraulic and micro-seismic results of a massive stimulation test at 5 km depth at the European hot-dry-rock test site soultz, france[C]. Twenty-Seventh Workshop on Geothermal Reservoir Engineering, California. Stanford University,2002,1.
    [59]赵坚.岩石裂隙中的水流-岩石热传导.岩石力学与工程学报,1999,18(2):119-123.
    [60]Tsang C.F., Stephansson O., Jing L., et al. DECOVALEX project:from 1992 to 2007[J]. Environmental Geology,2009,57(6):1221-1237.
    [61]Jing L., Tsang C.F., Stephansson O. DECOVALEX-An international cooperation research project on mathematical models of coupled THM processes for safety analysis of radioactive waste repositories[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts.1995,32(5):389-398.
    [62]周辉,冯夏庭.岩石应力-水力-化学耦合过程研究进展[J],岩石力学与工程学报,2006,25(4):855-864.
    [63]Hara K., Kobayashi A. Analysis of the problem of BMT1 with THAMES[R]. Report of DECOVALEX, phase I, BMT1.1993.
    [64]Bougnoux A., Vouille G. International project DECOVALEX BMT1-Far Field model[R]. ENSMP/CGES, CEA/IPSN.1992.
    [65]Bliard F., Deleruyelle F., Millard A., et al. DECOVALEX bench mark I, final report[R]. Rapport DMT/92/644, CEA/DMT.
    [66]Vuillod E., Thoraval A., Baroudi H. DECOVALEX-BMT1-analysis and results:TM process of calculation[R]. ANDRA Report 694 R P CER 92008,1992.
    [67]Millard A., Durin M., Stietel A., et al. Discrete and continuum approaches to simulate the thermo-hydro-mechanical coupling in a large, fractured rock mass[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts.1995,32(5):409-434.
    [68]Millard A., Stietel A., Bougnoux A., et al. Generic study of coupled THM processes of nuclear water repositories as far-field initial boundary value problems (BMT1)[J]. Development in geotechnical engineering.1996,79:245-279.
    [69]Guvanasen V, Chan T. Three-dimensional finite element soulution for hear and fluid transport in deformable rock mass with discrete fractures. Proceeding of the international conference on computer methods and advances in geomechanics[C]. Cairns, Balkema press.1991,1547-1552.
    [70]Chan T., Khari K... Simulation and results of the multiple fracture model, DECOVALEX project-Phase I, bench mark test 2[R]. AEC1-10780, AECL research. Applied Geoscience branch Whiteshell Laboratories,1992.
    [7i]Ahola M. P., Hsiung S. M., Lorig L. J. Thermo-hydrao-mechanical coupled modeling:multiple fracture model, BMT2, coupled stress-flow model, TC1, DECOVALEX-Phase I[R]. CNWRA 92-005, Center for nuclear waste regulatory analysis. Prepared for nuclear regulatory commission, Contract NRC-02-88-005,1992.
    [72]Halonen O. Bench mark test 2with out fluid flow. Report of DECOVALEX Phase I, BMT 2[R]. Technical research center of Finland, road, traffic and geotechnical laboratory,1992.
    [73]Noorishad J. and Tsang C.-F. Coupled thermo-hydro-mechanical modeling, bench mark test 2(BMT2), test case 1 (TC1), DECOVALEX-Phase I[R]. Earth science dibision, Lawrence Berkeley laboratory, Calif,1992.
    [74]Vuillod E., Thoraval A., Baroudi H. DECOVALEX-BMT2-analysis and results:HTM modeling[R]. ANDRA report 694 Rp CER 92007, ANDRA,1992.
    [75]CHAN T., KHAIR K., JING L., et al. International Comparison of Coupled Thermo-Hydro-Mechanical Models of a Multiple-Fracture Bench Mark Problem:DECOVALEX Phase I, Bench Mark Test 2[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts.1995,32(5):435-452.
    [76]Stephansson O, Jing L, Tsang C. F. Coupled thermal-hydro-mechanical processes of fractured media-mathematical and experimental studies[M]. San Diego, Elsevier,1997.
    [77]Wilcock P. Generic study of coupled T-H-M processes in the near field(BMT3)[J]. Developments in geotechnical engineering.1996,79:311-340.
    [78]Chijimatsu M., Nguyen T.S., Jing L., et al. Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository-BMT1 of the DECOVALEX III project. Part 1: Conceptualization and characterization of the problems and summary of results [J]. International Journal of Rock Mechanics and Mining Science,2005,42(5-6):720-730.
    [79]Millard A., Rejieb M., Chijimatsu M., et al. Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository-BMT1 of the DECOVALEX III project. Part 2:Effect of THM coupling in the continuous and homogeneous rocks [J]. International Journal of Rock Mechanics and Mining Science,2005,42(5-6):731-744.
    [80]Rutqvist J, Chijimatsu M., Jing L., et al. Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository-BMT1 of the DECOVALEX III project. Part 3: Effect of THM coupling in sparsely fractured rocks [J]. International Journal of Rock Mechanics and Mining Science,2005,42(5-6):720-730.
    [81]Jing L., Tsang C. F., Mayor J. C., et al. DECOVALEX Ⅲ-Mathematical models of coupled thermal-hydro-mechanical processes for nuclear waste repositories-executive summary[R]. Technical report 2005:19, Swedish Nuclear Power Inspecrorate.
    [82]Chijimastsu M, Fujita T., Sugita Y., et al. Field experiment, results and THM behaviour in the Kamaishi mine experiment[J]. International Journal of Rock Mechanics and Mining Science. 2001,38(1):67-68.
    [83]Alonso E. E., Alcoverro J., Coste F., et al. The FEBEX benchmark test:case definition and comparison of modeling approaches[J]. International Journal of Rock Mechanics and Mining Science.2005,42(5-6):611-638.
    [84]王驹,徐国庆,郑华铃,等.中国高放废物地质处置研究进展:1985~2004[J].世界核地质科学,2005,22(1):5-16.
    [85]王驹,张铁岭,郑华铃,等译.世界放射性废物地质处置[M].北京:原子能出版社,1999.
    [86]徐国庆.核废物地质处置研究现状[J].国外铀金地质(现名:《世界核地质科学》),1992,9(增刊):18-28.
    [87]徐国庆.核废物的模拟处置库-地下实验室[J].国外铀金地质(现名:《世界核地质科学》),1992,9(增刊):57-69.
    [88]于运祥,刘林清,莫撼.高放废物处置库甘肃北山预选区南缘疏勒河断裂带中段稳定性研究[R], 高放废物地质处置研究年会报告,1996.
    [89]陈伟明,王驹,金远新,等.甘肃北山及其邻区地壳稳定性模糊综合评价[J].铀矿地质,2000,16(3):157-163.
    [90]徐国庆,刘金红,李作前.若干放射性核素在内蒙古兴和县高庙子膨润土的吸附特性研究[R],高放废物地质处置研究年会报告,1999.
    [91]刘月妙,徐国庆,刘淑芬.内蒙古兴和县高庙子膨润土基本性能研究限],高放废物地质处置研究年会报告,1999.
    [92]宗自华,王驹,苏锐.甘肃北山预选区旧井地段断裂的分形特征-中国高放废物处置的潜在场址[J],世界核地质科学,2006,23(2):107-113.
    [93]李亚萍,许建东,于红梅.甘肃北山花岗岩裂隙几何学特征研究及岩石质量初探[J],地震地质,2006,28(1):129-138.
    [94]郭永海,王驹,王志明,等.高放废物处置库甘肃北山预选场区地下水位动态特征[J],铀矿地质,2010(1):46-50,59.
    [95]郭永海,王驹,肖丰,等.高放废物处置库甘肃北山预选区地下水的形成[J],高校地质学报,2010(1):13-18.
    [96]李国敏,赵春虎,郭永海,等.高放废物地质处置甘肃北山预选区区域地下水循环模式与意义[J],矿物岩石地球化学通报,2007(增1):610-611.
    [97]邓广哲,王广地.北山花岗岩热粘弹性流变特性分析[J],岩石力学与工程学报,2004(增1):4368-4372.
    [98]康健,赵明鹏,梁冰.随机固-热耦合模型与岩石的热破裂数值试验研究[J],岩土力学,2005,26(1):135-139.
    [99]刘月妙,王驹,谭国焕,等.高放废物处置北山预选区深部完整岩石基本物理力学性能及时温效应[J],岩石力学与工程学报,2007,26(10):2034-2042.
    [100]郤保平,赵阳升.600℃内高温状态花岗岩遇水冷却后力学特性试验研究[J],岩石力学与工程学报,2010,29(5):892-898.
    [101]郤保平,赵阳升.高温高压下花岗岩中钻孔围岩的热物理及力学特性试验研究[J],岩石力学与工程学报,2010,29(6):1245-1253.
    [102]赵阳升,孟巧荣,康天合,等.显微CT试验技术与花岗岩热破裂特征的细观研究[J],岩石力学与工程学报,2008,27(1):28-34.
    [103]赵阳升,万志军,张渊,等.岩石热破裂与渗透性相关规律的试验研究[J],岩石力学与工程学报,2010,29(10):1970-1976.
    [104]张宁,赵阳升,万志军,等.三维应力下热破裂对花岗岩渗流规律影响的试验研究[J],岩石力学与工程学报,2010,29(1):118-123.
    [105]刘月妙,陈璋如.内蒙古高庙子膨润土作为高放废物处置库回填材料的可行性[J],矿物学报,2001,21(3):541-543.
    [106]刘月妙,蔡美峰,王驹.高放废物处置库缓冲材料导热性能研究[J],岩石力学与工程学报,2007,26(增2):3891-3896.
    [107]温志坚.中国高放废物处置库缓冲材料物理性能[J],岩石力学与工程学报,2006,25(4):794-800.
    [108]秦冰,陈正汉,刘月妙,等.高庙子膨润土的胀缩变形特性及其影响因素研究[J],岩土工程学报,2008,30(7):1005-1010.
    [109]张虎元,梁建,刘吉胜,等.混合型缓冲回填材料压实性能研究[J],岩石力学与工程学报,2009,28(12):2585-2592.
    [110]张虎元,刘吉胜,崔素丽,等.石英砂掺量对混合型缓冲回填材料抗剪强度的控制机制[J],岩石力学与工程学报,2010,28(12):2533-2542.
    [111]叶为民,钱丽鑫,陈宝,等.高压实高庙子膨润土的微观结构特征[J],同济大学学报:自然科学版,2009,37(1):31-35.
    [112]叶为民,黄伟,陈宝,等.双电层理论与高庙子膨润土的体变特征[J],岩土力学,2009,30(7):1899-1903.
    [113]叶为民,牛文杰,陈宝,等.无侧限高压室高庙子膨润土非饱和渗透特性[J],同济大学学报:自然科学版,2010,38(10):1439-1443.
    [114]唐朝生,崔玉军,Tang A.M.,等.高放废物处置库中Cox黏土岩回填材料压缩特性研究[J],岩石力学与工程学报,2009,27(12):2459-2465.
    [115]刘亚晨,蔡永庆.核废料贮库围岩介质THM耦合的定解问题及其加权积分方程[J],地质灾害与环境保护,2001,12(4)59-62,66.
    [116]刘亚晨,席道瑛.核废料贮存裂隙岩体中THM耦合过程的有限元分析[J],水文地质工程地质,2003,30(3):81-87.
    [117]刘亚晨.裂隙岩体介质THM耦合问题中的渗透特性研究[J],地质灾害与环境保护,2004,15(1):80-84.
    [118]张玉军.热-水-应力耦合弹塑性二维有限元程序的开发与应用尝试[J],岩土力学,2005,26(2):169-174.
    [119]张玉军.考虑膨胀力的非饱和介质热-水-应力耦合二维有限元分析[J],固体力学学报,2006,27(1):31-37.
    [120]张玉军.不连续面对饱和-非饱和介质热-水-应力耦合影响的二维有限元分析[J],岩石力学与工程学报,2006,25(12):2579-2583.
    [121]张玉军.气液二相非饱和岩体热-水-应力耦合模型及二维有限元分析[J],岩土工程学报,2007,29(6):901-906.
    [122]张玉军.孔隙气压对核废物地质处置热-流-固耦合影响的有限元分析[J],岩土力学,2009,30(5):1451-1457.
    [123]张玉军.裂隙开度的压力溶解对双重孔隙介质热·水-应力耦合影响的有限元分析[J],岩土力学,2010,31(4):1269-1275.
    [124]张玉军.核废物地质处置中热-水-应力耦合对迁移影响的三维有限元模拟[J],岩土力学,2009,30(7):2126-2132.
    [125]张玉军.核废料处置概念库工程屏障中热-水-应力耦合过程数值分析[J],工程力学,2007,24(5):186-192.
    [126]张玉军.热-水-应力耦合模型及FEBEX原位试验二维有限元分析[J],岩土工程学报,2007,29(3):313-318.
    [127]张玉军.尤卡山坑道规模试验T-H-M耦合过程数值模拟[J],地下空间与工程学报,2009,5(1):13-17,34.
    [128]Liu Quansheng, Zhang Chengyuan, Liu Xiaoyan. Numerical modeling and simulation of coupled THM processes in Task-D of DECOVALEX IV[J]. Chinese Journal of Rock and Mechanics and Engineering,2006,25(4):709-720.
    [129]蒋中明,Dashnor HOXHA核废料贮存库围岩体热响应耦合场研究[J],岩土工程学报,2006,28(8):953-956.
    [130]唐春安,马天辉,李连崇,等.高放废料地质处置中多场耦合作用下的岩石破裂问题[J],岩石力学与工程学报,2007,26(增2):3932-3938.
    [131]陈益峰,周创兵,童富果,等.多相流传输THM全耦合数值模拟及程序验证[J],岩石力学与工程学报,2009,28(4):649—665.
    [132]刘文岗,王驹,周宏伟,等.高放废物处置库花岗岩热-力耦合模拟研究[J],岩石力学与工程学报,2009,28(增.1):2875-2883.
    [133]项彦勇,郭家奇.分布热源作用下裂隙岩体渗流-传热的拉氏变换-格林函数半解析计算方 法[J],岩土力学,2011,32(2):333-340.
    [134]Xiang Y. Y., Zhang Y. Two-dimensional integral equation solution of advective-conductive heat transfer in sparsely fractured water-saturated rocks with heat source[J]. International Journal of Geomechanics. (accepted, publication pending)
    [135]李亚萍,甘肃北山花岗岩裂隙几何学特征研究[M],中国地震局地质研究所硕士学位论文,2005(8).
    [136]刘月妙,王驹,蔡美峰等.热-力耦合条件下高放废物处置室间距研究[J],铀矿地质,2009,25(6):373-379
    [137]周志芳,王锦国,黄勇.裂隙介质水动力学原理[R],北京,高等教育出版社,2007.
    [138]速宝玉,詹美礼,张祝添.充填裂隙渗流特性实验研究[J],岩土力学,1994,15(4):46-52.
    [139]王保国,刘淑艳,王新泉等.传热学[R],北京,机械工业出版社,2009:288.
    [140]Holman J P. Heat Transfer[R],北京,机械工业出版社,2008:588.
    [141]项彦勇.地下水力学概论[M],北京,科学出版社,2011.
    [142]Abdallah G, Thoraval A., Sfeir A., et al. Thermal converction of fluid in fractured meida[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts.1995, 32(5):481-490.
    [143]陆金甫,关治.偏微分方程的数值解法[M],北京,清华大学出版社,2004.
    [144]马逸尘,梅立泉,王阿霞.偏微分方程现代数值方法[M],北京,科学出版社,2007.
    [145]李荣华.偏微分方程数值解法[M],北京,高等教育出版社,2010.
    [146]施小清,张可霓,吴吉春TOUGH2软件的发展及应用[J],工程勘察,2009,(10):29-34
    [147]Lenhart T., Eckhardt K., Fohrer N., et al. Comparison of two different approaches of sensitivity analysis[J]. Physics and chemistry of the earth. parts A/B/C.2002,27(9-10):645-654.
    [148]Faghri A., Zhang Y. Transport phenomera in multiphase systems[M], San Diego, Elsevier,2006.
    [149]杜守继,刘华,陈浩华,等.高温后花岗岩密度及波动特性的试验研究[J],上海交通大学学报,2003,37(12):1900-1904.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700