用户名: 密码: 验证码:
生物质与聚乳酸塑料共热解特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着化石能源的日益枯竭和环境污染的日益严重,生物质能作为一种低硫、低氮以及二氧化碳“零排放”的清洁和可再生能源,逐渐受到了研究者的重视。生物质热化学转化技术是生物质能源利用研究的一个重点,其中生物质热解是一种转化生物质到热解油、固体炭和可燃气的高效转化技术。热解油具有能量密度高、存储和运输与燃料油相似等特点,并可以精制成燃料油或者化学产品;固体炭可以制取活性炭用于吸附分离过程;而具有中低热值热量的可燃气可以用来补充热解反应所需要的部分热量。
     生物质热解所得热解油常常含有较高的水分含量,这是热解油的主要缺点之一。提高生物油的适用性以及竞争力,减少生物油的水分含量和氧含量,提高热值是生物油主要精制目的;通过共热解技术可以部分实现此目的。生物质与石油基塑料共热解已经被广泛研究,而可生物降解聚乳酸塑料作为特殊的塑料品种,应用前景广泛。即使此类塑料具有可降解性,但是绝大多数此类塑料废弃之后仍被认为是一种固体废弃物。通过生物质与聚乳酸塑料共热解可以提高生物质热解油产率,降低含水率和提高热值。该技术可作为废弃聚乳酸塑料处理的替代方法或作为生物质热解处理的升级处理技术。本论文研究将着眼于探索生物质与聚乳酸塑料的共热解研究,具体研究内容与结果如下:
     (1)利用热重分析,研究了三种木质纤维素类生物质玉米芯(CC)、核桃壳(WS)、白松(PS)与聚乳酸塑料共热解特性。研究发现,生物质样品主要降解温度区间在220~400℃,而聚乳酸塑料(PLA)和生物质具有明显不同的热解特性,主要在300~372℃范围内发生剧烈热解,相比生物质热解温度范围较窄。在300~400℃温度区域内,三种生物质样品与聚乳酸塑料的混合物,在热解过程产生了不同程度的耦合作用。其中WS/PLA、CC/PLA较PS/PLA的耦合作用更为明显。另外,对共热解进行了动力学分析表明:采用一级动力学反应模型结合Arrhenius定律能很好地拟合生物质样品和聚乳酸塑料热解实验数据;而生物质/聚乳酸塑料混合热解则应采用1至2个连续一级反应模型来描述。
     (2)采用TGA/FTIR、Py-GC/MS联用技术研究了玉米芯的气体释放过程及其热解产物分布。研究表明,玉米芯在220~400℃区间发生剧烈热解反应,DTG曲线在339℃时出现最大值。热解气体的逸出情况由FTIR进行实时检测,并且定性分析了CH_4,CO_2,CO和有机物的析出情况。Py-GC/MS联用技术用来分析玉米芯热解产物分布,结果表明酚、呋喃、酮及其衍生物是主要降解产物。
     (3)采用TGA/FTIR、Py-GC/MS联用技术研究了聚乳酸塑料的气体释放过程及其热解产物分布。研究表明,聚乳酸塑料在300~372℃区间发生剧烈热解反应,DTG曲线在359℃时出现最大值。热解气体的逸出情况由FTIR进行实时检测,并且定性分析了CH_4,CO_2,CO和有机物等产物的析出情况。Py-GC/MS联用技术用来分析聚乳酸塑料热解产物分布,分析表明醛、酮、酯及低聚物是主要降解产物。
     (4)通过TGA/FTIR联用实时考察了玉米芯,聚乳酸塑料及其二者混合条件下的热解气体析出特性,FTIR分析发现玉米芯与聚乳酸塑料在共热解条件下存在明显的耦合作用。通过自制快速固定床热解反应器研究了玉米芯与聚乳酸塑料的共热解。结果表明,玉米芯与聚乳酸塑料的共热解使热解油产率和热值增加,而水分含量在降低。并且对共热解生物油进行了FTIR,~1H NMR,GC分析与表征。
     (5)热解生物质后的固体残渣活化实验以及吸附实验表明,以水蒸气为活化剂,可以制得吸附重金属效果良好的吸附剂。系统研究了吸附接触时间、溶液初始浓度、溶液pH值、吸附剂质量以及温度对Ni~(2+)吸附性能。试验表明,吸附剂最大吸附量为15.33mg/g;Ni~(2+)吸附速率服从Langmuir吸附等温式;吸附动力学符合准二级吸附速率方程。
Great consumption of fossil fuels and increasing concern over the environmental pollution have been promoting an urgent search for new and cleaner energy.Biomass has received much attention in recent years,due to the lower contents of sulfur and nitrogen in the biomass.Thermochemical processes are thought to have great promise as a means for convening biomass into higher value fuels.Pyrolysis lies at the heart of all the themochemical fuel conversion processes and is assumed to become a thermocbemical conversion technology for the production of chars,liquids or gases.Pyrolytic oil has strategic value because,as a liquid with high calorific value,its handling,storage,transportation,and utilization are similar to that of oil.It can be upgraded to obtain light hydrocarbons for transport fuel.Bio-oil can be used in fuel applications or upgraded to refined fuels and chemical products.The solid char can be used as a fuel or it can be upgraded to activated carbon and used in purification processes.The gases generated have a low to medium heating value,but may contain sufficient energy to supply the energy requirements of a pyrolysis plant.
     The fast pyrolysis of biomass inherently results in the production of pyrolyic water, which is one of the major drawbacks of the hie-oil produced.The reduction of the water content and the augment of the heating value are essential upgrading steps in order to increase the applicability of bio-oil and to make the production of bio-oil competitive.The use of copyrolytic techniques on biomass/plastic ratios has already been investigated on based-petroleum plastics.Biopolymers(such as PLA),which are a special kind of platic,will be widely applied in the future.Despite their biodegradability,however,most biopolymers still have to be considered as waste,since it would be ecologically unacceptable to dispose of them in the environment.The copyrolysis and polylatic acid plastic is aimed to increase the production of bio-oil,reduce the content of pyrolytic water and increase the heating value of bio-oil.The technique offers an alternative waste treatment option and may act as an upgrading step during the pyrolysis of biomass.The following works are carried main experimental results and conclusions are as follows in this dissertation:
     (1) Thermal decomposition of polylactic acid(PLA) was studied in the presence of pine wood sawdust(PS),walnut shell(WS),corncob(CC) in order to understand the pyrolytic behavior of these components occurring in waste.A thermogravimetric analyzer(TGA) was applied for monitoring the weight loss profiles under heating rate of 10℃/min.Results obtained from this comprehensive investigation indicated that PLA was decomposed in the temperature range 300~372℃,whereas the thermal degradation temperature of hiomass was 220~400℃.The difference of weight loss(ΔW) between experimental and theoretical ones, calculated as algebraic sums of those from each separated component,was about 17~46%at 300~400℃.These experimental results indicated a significant synergistic effect during PLA and biomass copyrolysis.Moreover,a kinetic analysis was performed to fit thermogravimetric data,the global processes being considered as one to two consecutive reactions.A reasonable fit to the experimental data was obtained for all materials and their blends.
     (2) Gas release and products distribution in corncob pyrolysis was investigated by simultaneous TGA/FTIR(Thermogravimetry-Fourier Transform Infrared) and Py-GC/MS (Pyrolysis-Gas chromatography/Mass spectrometry) techniques.The results showed that the mainly prolytic reaction occurs in the range of 220~400℃,and DTG(Differential Thermogravimetry) curves reached the maximum at 339℃.The real-time gas evolution was detected by FTIR and the evolutions of CH_4,CO_2,CO and organics were qualitatively analyzed.FTIR data was compared with TGA/DTG curves and an agreement between DTG and FTIR results was observed.Py-GC/MS was used for studying products distribution of corncob pyrolysis.Results indicated that the oxygenated organic compounds such as phenol, furan,ketone etc.were the main components.
     (3) Gas release and products distribution in PLA pyrolysis was investigated by simultaneous TGA/FTIR and Py-GC/MS techniques.The results showed that the mainly prolytic reaction occurs in the range of 320~372℃,and DTG curves reached the maximum at 359℃.The real-time gas evolution was detected by FTIR and the evolutions of CH_4,CO_2, CO and organics were qualitatively analyzed.FTIR data was compared with TGA/DTG curves and an agreement between DTG and FTIR results was observed.Py-GC/MS was used for studying products distribution of PLA pyrolysis.Results indicated the organic compounds such as acetaldehyde,ketone,esters,oligomers etc.were the main components.
     (4) Pyrolytic process has a promising potential for the environmentally friendly upgrading of biomass and other materials such as plastic,coal.The thermal degradation of corncob,PLA and their blends under nitrogen were studied using TGA/FTIA as a function of temperature.The gases evolved during degradation were inspected by in situ FTIR.The results showed that obvious synergies between corncob/PLA during copyrolysis were observed.Furthermore,the influence of a polylactic acid(PLA) plastic on the pyrolysis of corncob was investigated using a fast pyrolysis fixed-bed reactor.The results indicated that the coprocessing of PLA with corncob increased liquefaction yields and a lower water content as a function of the corncob/PLA ratios were obtained.
     (5) Studies on a batch sorption process using activated carbon derived from biomass were investigated to remove Ni~(2+) ions from aqueous solutions.The influence of operational conditions such as contact time,solution initial pH,Ni~(2+) initial concentration,sorbent mass and temperature on the sorption were studied.The kinetic data was fitted to pseudo-first order model and pseudo-second order model for different initial concentration to evaluate the model parameters.Pseudo-second order model was better to represent the adsorption process.
引文
[1]http://www.newenery.org.cn/energy/biomass/jianiie.htm.
    [2]Word energy council 1994,in new renewable energy resources.1994,Kogan Page:London.
    [3]MeKendry,P.Energy production from biomass(part 1):overview of biomass.Bioresource Technology,2002,83(1):37-46.
    [4]朱锡锋.生物质热解有原理与技术.中国科技大学出版社,2006:9-11.
    [5]R.A.Newby,T.E.Lippert,M.A.Alvin,et al.Status of Westinghouse hot gas filters for coal and biomass power systems.Journal of Engineering for Gas Turbines and Power,1999,121(401-408).
    [6]A.V.Bridgwater,D.Meier,D.Radlein,An overview of fast pyrolysis of biomass.Organic Geochemisty,1999,30:1479-1493.
    [7]袁权.能源化学进展.化学工业出版社,2005.
    [8]M.J.Kawse,F.A.Nash.Oil palm shell as a source of phenol.Journal of Oil Palm Research,2000,12:86-94.
    [9]J.Orfao,F.Antunes,J.Figueiredo.Pyrolysis kinetics of lignocellulosie materials-three independent reaction model.Fuel,1999,78:349-358.
    [10]M.J.Antal,D.Vadlein,E.Jakab.Cellulous pyrolysis kinetics:The current state of knowledge.Industrial & Engineering Chemistry Research,1995,34(3):703-717.
    [11]G(?)tbor V(?)rhegyi,Piroska Szab(?),William Shu-Lai Mok,et al.Kinetics of the thermal decomposition of cellulose in sealed vessels at elevated pressures:effects of the presence of water on the reaction mechanism.Journal of Analytical and Applied Pyrolysis,1993,26(3):159-174.
    [12]M.J.Antal,G.Varhegyi.Cellulose pyrolysis kinetics:The current state of knowlege.Industrial & Engineering Chemistry Research,1995,34:703-717.
    [13]Coloba Di,Blasi.Kinetic and heat transfer control in the slow and flash pyrolysis of solids.Industrial & Engineering Chemistry Research,1996,35:37-46.
    [14]Chun,M.Kelbon.Modelling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle.Fuel,1985,64:1505-1513.
    [15]刘荣厚,刘卫生,张大雷.生物质热化学转换技术.化学工业出版社,2005.
    [16]P.A.Horne,P.T.Williams.Influence of temperature on the products from the flash pyrolysis of biomass.Fuel,1996,75(9):1051-1059.
    [17]李水清,李爱民,严建华,等.生物质废弃物在回转窑内热解研究.太阳能学报,2000,21(4):333-340.
    [18]闫振.落叶松树皮热解特性及热解油制胶技术研究:(博士学位论文).北京:北京林业大学.2006.
    [19]Ozlem Onay,O.Mete Kockar.Slow,fast and flash pyrolysis ofrapeseed.Renewable Energy,2003,28(15):2417-2433.
    [20]F.Berruti,A.G.Liden,D.S.Scott.Measuring and modelling residence time distribution of low density solids in a fluidized bed reactor of sand particles.Chemical Engineering Science,1988,43(4):739-748.
    [21]Demirbas,Ayhan.Effect of initial moisture content on the yields of oily products from pyrolysis of biomass.Journal of Analytical and Applied Pyrolysis,2004,71(2):803-815.
    [22]W.C.R.Chan,M.Kelbon,B.Krieger.Single-particle biomass pyrolysis:correlations of reaction products with process conditions.Industrial & Engineering Chemistry Research,1988,27(12):2261-2275.
    [23]J.M.Encinar,F.J.Beltr(?)n,A.Bernalte,et al.Pyrolysis of two agricultural residues:Olive and grape bagasse.Influence of particle size and temperature.Biomass and Bioenergy,1996,11(5):397-409.
    [24]B.V.Babu,A.S.Chaurasia.Pyrolysis of biomass:improved models for simultaneous kinetics and transport of heat,mass and momentum.Energy Conversion and Management,2004,45(9-10):1297-1327.
    [25]A.V.Bridgwater.Principles and practice of biomass fast pyrolysis processes for liquids.Journal of Analytical and Applied Pyrolysis,1999,51:3-22.
    [26]吴创之,马隆龙.生物质现代利用技术.北京:化学工业出版社,2003:1-18.
    [27]B.M.Wagenaar.The rotating cone reactor for rapid solids processing:[Ph.d thesis],the Netherlands:University of Twente.1994.
    [28]徐保江,李美玲,曾忠.旋转锥式闪速热解生物质试验研究.环境工程,1999,17(5):71-74.
    [29]C.Roy,R.Lemieux,A.Caumia,et al.Processing of wood chips in a semi-continuous multiple hearth vacuum pyrolysis reactor.American Chemical Society,1988:16-33.
    [30]S.Czernik,A.V.Bridgwater.Overview of applications ofbiomass fast pyrolysis oil.Energy & Fuels,2004,18:590-598.
    [31]王树荣,骆仲泱,董良杰,等.生物质闪速热裂解制取生物油的试验研究.太阳能学报,2002,23(1):4-13.
    [32]M.J.Womat,B.G.Porter,Y.C.Yang.Single droplet combustion of biomass pyrolysis oils.Energy & Fuels,1994,8:1131-1139.
    [33]K.Sipila,E.Kboppala,L.Fagernas.Characterization of biomass based flash pyrolysis oils.Biomass and Bioenergy,1998,14(2):103-113.
    [34]Mohan D,Pitiman.Pyrolysis of wood/biomass for bio-oil:A critical review.Energy & Fuels,2006,20(3):848-889.
    [35]M.Radovanovic,R.H.Venderbosch,W.Prints.Some remarks on the viscosiy mesurement of pyrolysis liquid.Biomass and Bioenergy,2000,18:209-222.
    [36]J.Piskorz,P.Majerski,D.Radilein.Conversion of lignin to hydrocarbon fuels.Energy &Fuels,1989,3:723-726.
    [37]E.Churin,P.Grange,B.Delnm.Catalysis oils biomass for energy and industy.London:Elsevier Appl.Sci.Pub,1990:120-125.
    [38]J.Dileio Rocha,C.A.Luengo,C.E.Sanpe.The scope for generating bio-oils with relatively low oxygen contents via hydropyrolysis.Organic Geochemisty,1999,30:1527-1534.
    [39]ZHANG Su-ping,YAN Yong-jie,Ll Ting-chen,et al.Upgrading of liquid fuel from the pyrolysis of biomass.Bioresource Technology,2005,96(5):545-550.
    [40]R.V.Pindoria,A.Megaritis,A.A.Herod,et al.A two-stage fixed-bed reactor for direct hydrotreatment of volatiles from the hydropyrolysis of biomass:Effect of catalyst temperature,pressure and catalyst aging time on product characteristics.Fuel,1998,77(15):1715-1726.
    [41]P.T.Williams,P.A.Horme.The influence of catalyst type on the composition of upgraded biomass pyrolysis oils.Journal of Analytical and Applied Pyrolysis,1995,31:39-61.
    [42]郭晓亚,颜涌捷,李庭堔,等.生物质裂解油催化裂解精制.过程工程学报,2003,3(1):91-95.
    [43]P.T.Williams,N.Nugranad.Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks.Energy,2000,25:493-513.
    [44]J.D.Adjaye,N.N.Bakhshi.Catalytic conversion of a biomass-derived oil to fuels and chemicals:Chemical kinetics,parameter estimation and model predictions.Biomass and Bioenergy,1995,8(4):265-277.
    [45]S.Vitolo,B.Bresei,M.Seggiani,et al.Catalytic upgrading of pyrolytic oils over HZSM-5zeolite:Behaviour of the catalyst when used in repeated upgrading regenerating cycles.Fuel,2001,80(17-26).
    [46]S.T.Srinivas,A.K.Dalai,N.N.Bakhshi.Thermal and catalytic upgrading of a biomass-derived oil in a dual reaction system.The Canadian Journal of Chemical Engineering,2000,78:343-354.
    [47]A.M.Mastral,R.Murillo,J.M.Palacias,et al.Iron-catalyzed coal-tire coprocessing:influence on conversion products distribution.Energy and Fuels,1997,11:813-818.
    [48]A.M.Mastral,R.Murillo,M.Callen,et al.Assessment of the tire role in coal-tire hydrocoprocessing,Energy & Fuels,1997,11:678-680.
    [49]Fatma Karaca,Esen Bolat.Coprocessing of a Turkish lignite with a cellulosic waste material.1.The effect of coprocessing on liquefaction yields at different reaction temperatures.Fuel Processing Technology,2000,64(1-3):47-55.
    [50]A.G.Collot,Y.Zhuo,D.R.Dugwell,et al.Co-pyrolysis and co-gasification of coal and biomass in bench-scale fixed bed and fluidized bed reactors.Fuel,1999,78(6):667-679.
    [51]T.Cordero,J.Rodr(?)guez-Mirasol,J.Pastrana,et al.Improved solid fuels from co-pyrolysis of a high-sulphur content coal and different lignocellulosic wastes.Fuel,2004,83(11-12):1585-1590.
    [52]Chatphol Meesri,Behdad Moghtaderi.Lack of synergetic effects in the pyrolytic characteristics of woody biomass/coal blends low and high heating rate regimes.Biomass and Bioenergy,2002,23(1):55-66.
    [53]H.B.Vuthaluru.Investigations into the pyrolytic behaviour of coal/biomass blends using thermogravimetric analysis.Bioresource Technology,2004,92(2):187-195.
    [54]E.Jakab,M.Blazs(?),O.Faix.Thermal decomposition of mixtures of vinyl polymers and lignocellulosic materials.Journal of Analytical and Applied Pyrolysis,2001,58-59(49-62).
    [55]V.I.Sharypov,N.Marin,N.G.Beregovtsova,et al.Co-pyrolysis of wood biomass and synthetic polymer mixtures.Part Ⅰ:influence of experimental conditions on the evolution of solids,liquids and gases.Journal of Analytical and Applied Pyrolysis,2002,64(1):15-28.
    [56]N.Marin,S.Collura,V.I.Sharypov,et al.Copyrolysis of wood biomass and synthetic polymers mixtures.Part Ⅱ:characterisation of the liquid phases.Journal of Analytical and Applied Pyrolysis,2002,65(1):41-55.
    [57]Y.Matsuzawa,M.Ayabe,J.Nishino.Acceleration of cellulose co-pyrolysis with polymer.Polymer Degradation and Stability,2001,71(3).
    [58]K.Van de Velde,P.Kiekens.Biopolymers:overview of several properties and consequences on their applications.Polymer Testing,2002,21:433-442.
    [59]R.Auras,B.Harte,S.Selke.An overview of polylactides as packaging materials.Mactomol Biosci,2004,4(9):835-864.
    [60]Edwin Bodros,Isabelle Pillin,Nicolas Montrelay,et al.Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Composites Science and Technology,2007,67(3-4):462-470.
    [61]J.L.Willett,R.L.Shogren.Processing and properties of extruded starch/polymer foams.Polymer,2002,43(22):5935-5947.
    [62]Seung-Hwan Lee,Siqun Wang.Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent.Composites Part A:Applied Science and Manufacturing,2006,37(1):80-91.
    [63]P.Gatenholm,A.Mathiasson.Biodegradable natural composites.Ⅱ.Synergistic effects of processing cellulose with PHB.Journal of Applied Polymer Science,1999,51(7):1231-1237.
    [64]V.E.Reinsch,S.S.Kelley.Crystallization of poly(hydroxybutyrate-co-hydroxyvalerate) in wood fiber-reinforced composites.Journal of Applied Polymer Science,1997,64(9):31.
    [65]M.AveUa,E.Martuscelli,B.Pascucci,et al.New class of biodegradable materials:Poly-3-hydroxybutyrate/stearn exploded straw fiber composites.Ⅰ.Thermal and impact behaviour.Journal of Applied Polymer Science,1993,49(2):2091-2103.
    [66]Alicia Fraga,Roxana A.Ruseckaite,Alfonso Jim(?)nez.Thermal degradation and pyrolysis of mixtures based on poly(3-hydroxybutyrate-8%-3-hydroxyvalerate) and cellulose derivatives.Polymer Testing,2005,24(4):526-534.
    [67]H.Pranamuda,Y.Tokiwa,H.Tanaka.Polylactide degradation by an amycolatopsis sp.Applied Environmental Microbiology,1997,63(4):1637-1640.
    [68]N.Matin,S.CoUura,V.I.Sharypov,et al Copyrolysis of wood biomass and synthetic polymers mixtures.Part Ⅱ:characterisation of the liquid phases.Journal of Analytical and Applied Pyrolysis,2002,65(1):41-55.
    [69]T.Cornelissen,J.Yperman,Reggers,et al.Flash co-pyrolysis of biomass with polyhydroxybutyrate:Part 1.Influence on bio-oil yield,water content,heating value and the production of chemicals.Fuel,2008,87(12):2523-2532.
    [70]A.Jimenez,A.Roxana,Ruseckalte.Binary mixtures based on polycaprolactone and cellulose derivatives.Journal of Thermal Analysis and Calorimetry,2007,88(3):851-856.
    [71]E.Jakab,G.V(?)hegyi,O.Faix.Thermal decomposition of polypropylene in the presence of wood-derived materials.Journal of Analytical and Applied Pyrolysis,2000,56(2):273-285.
    [72]杨海平.油棕废弃物热解的实验及机理研究:(博士学位论文).武汉:华中科技大学.2005.
    [73]Sens(a|¨)z,Sevgi,Ilknur Demiral,and Hasan Ferdi Gercel.Olive bagasse(Olea europea L.)pyrolysis.Bioresource Technology,2006,97(3):429-436.
    [74]曹青,鲍卫仁,吕永康,等.玉米芯热解及过程分析.燃料化学学报,2004,32(5):557-562.
    [75]P,Mckendry.Energy production from biomass.Part 2 Conversion technologies.Bioresource Technology,2002,83(I):47-54.
    [76]A.Arenillas,F.Rubiera,J.J.Pis.Simultaneous thermogravimetric-mass spectrometric study on the pyrolysis behaviour of different rank coals.Journal of Analytical and Applied Pyrolysis,1999,50(1):31-46.
    [77]S.Materazzi,A.Gentili,R.Curini.Applications of evolved gas analysis:Part 1:EGA by infrared spectroscopy.Talanta,2006,68(3):489-496.
    [78]S.Materazzi,A.Gentili,R.Curini.Applications of evolved gas analysis:Part 2:EGA by mass spectrometry.Talanta,2006,69(4):781-794.
    [79]Sevgi Sens(o|¨)z,Ilknur Demiral,Hasan Ferdi Gercel.Olive bagasse(Olea europea L.)pyrolysis.Bioresource Technology,2006,97(3):429-436.
    [80]W.T.Tsai,M.K.Lee,Y.M.Chang.Fast pyrolysis of rice straw,sugarcane bagasse and coconut shell in an induction-heating reactor.Journal of Analytical and Applied Pyrolysis,2006,76:230-237.
    [81]C.Acikgoz,O.Onay,O.M.Kochar.Fast pyrolysis of linseed:product yields and compositions.Journal of Analytical and Applied Pyrolysis,2004,71:417-429.
    [82]E.Biagini,F.Barontini,L.Tognotti.Devolatilization of biomass fuels and biomass components studied by TG/FTIR technique,Industrial & Engineering Chemistry Research,2006,45(13):4486-4493.
    [83]C.Z.Li,P.E.Nelson.Fate of aromatic ring systems during thermal cracking of tars in a fluidized-bed reactor.Energy & Fuels,1996,10(5):1083-1090.
    [84]M.Gronli,M.J.Antal,G.Varhegyi.A round-robin study of cellose pyrolysis kinetics by thermogravimetry.Industrial & Engineering Chemistry Research,1999,36(6):2238-2244.
    [85]R.Bassilakis,R.M.Carangelo,M.A.W(?)jtowicz.TG-FTIR analysis of biomass pyrolysis.Fuel,80(12):1765-1786.
    [86]A.F.Drummond,I.W.Drummond.Pyrolysis of sugar cane bagasse in a wire-mesh reactor.Industrial & Engineering Chemistry Research,1996,35:1263-1268.
    [87]Greenwood,F.Paul,D.H.Jasper,et al.Laser micropyrolysis GC-MS of lignirt J.Ana.Appl.Pyrolysis,2002,62(2):365-373.
    [88]Liu,Qian,Shurong Wang,Yun Zheng,et al.Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis.J.Aria.Appl.Pyrolysis,2008,82(1):170-177.
    [89]Yang Halping,Rong Yan,Terence Chin,et al.Thermogravimetric Analysis-Fourier Transform Infrared Analysis of Palm Oil Waste Pyrolysis.Energy & Fuels,2004,18(6):1814-1821.
    [90]A.A.Boateng,K.B.Hicks,K.P.Vogel.Pyrolysis of switchgrass(Panicum virgatum)harvested at several stages of maturity.Journal of Analytical and Applied Pyrolysis,2006,75:55-64.
    [91]Carmen Branca,Paola Giudicianni.GC/MS characterization of liquids generated from low-temperature pyrolysis of wood.Industrial & Engineering Chemistry Research,2003,42:3190-3202.
    [92]J.Francisco,Gonza lez-Vila.Pyrolysis-GC-MS analysis of the formation and degradation stages of charred residues from lignocellulosic biomass.Agriculture and Food Chemistry,2001,46:1128-1131.
    [93]王丽丽,王聪,潘再法,等.铁皮石斛的裂解气相色谱指纹图谱及其系统聚类分析.色谱,2008,26(5):613-617.
    [94]杜振霞.热裂解气相色谱-质谱研究阻燃纤维的结构与烟雾毒性分析.测试学报,2004,23:287-288.
    [95]M.E.Arias,O.Polvillo,J.Rodriguez,et al.Thermal transformations of pine wood components under pyrolysis/gas chromatography/mass spectrometry conditions.Journal of Analytical and Applied Pyrolysis,2006,77(1):63-67.
    [96]Gil Garrote,Elena Falqu(?),Herminia Dominguez,Juan Carlos Paraj(?).Autohydrolysis of agricultural residues:Study of reaction byproducts.Bioresource Technololgy,2007,98(10):1951-1957.
    [97]P.A.Home,P.T.Williams.Influence of temperature on the products from the flash pyrolysis ofbiomass.Fuel,1996,75(9):1051-1059.
    [98]Li S.,Xu S.,Liu S.,et al.Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas.Fuel Processing Technology,2004,85(8-10):1201-1211.
    [99]Li A.M.,Li X.D.,Li,S.Q.,et al.Pyrolysis of solid waste in a rotary kiln:influence of final pyrolysis temperature on the pyrolysis products.Journal of Analytical and Applied Pyrolysis,1999,50:149-162.
    [100]A.E.P(u|¨)t(u|¨)n,(O|¨).M.Ko(?)kar,S.Yorgun,et al.Fixed-bed pyrolysis and hydropyrolysis of sunflower bagasse:Product yields and compositions.Fuel Processing Technology,1996,46(1):49-62.
    [101]Ay(?)e E.P(u|¨)t(u|¨)n,Basak Burcu Uzun,Esin Apaydin,et al.Bio-oil from olive oil industry wastes:Pyrolysis of olive residue under different conditions.Fuel Processing Technology,2005,87(1):25-32.
    [102]O.Onay,A.F.Gaines,O.M.Kockar,et al.Comparison of the generation of oil by the extraction and the hydropyrolysis of biomass.Fuel,2006,85(3):382-392.
    [103]Amass,Alan.UK project develops biodegradable plasticizer for PLA.Additives for Polymers,2007,2007(1):4.
    [104]T.Sumingl,G.Mathieu,Henti,et al.Enzymatic degradation of stereocopolymers derived from L-,DL-and meso-lactide.Polymer Degradation and Stability,2000,67(2):85-90.
    [105]刘莹,阮建明,张海波,等.聚L-乳酸(PLLA)的热稳定性.粉末冶金材料科学与工程,2006,11(6):367-372.
    [106]Erwin T.H.Vink,Karl R.R(?)bago,David A.Glassner.Applications of life cycle assessment to NatureWorks~(TM) polylactide(PLA) production.Polymer Degradation and Stability,2003,80(3):403-419.
    [107]钱刚,王海娟,周兴贵,等.聚乳酸热降解动力学.华东理工大学学报,2006,31(3):249-354.
    [108]I.C.McNeill,H.A.Leiper.Degradation studies of some polyesters and polycarbonates 1.Polylactide:General features of the degradation under programmed heating conditions.Polymer Degradation and Stability,1985,11(3):267-285.
    [109]I.C.McNeill,H.A.Leiper.Degradation studies of some polyesters and polycarbonates 2.Polylactide:Degradation under isothermal conditions,thermal degradation mechanism and photolysis of the polymer.Polymer Degradation and Stability,1985,11(4):309-326.
    [110]F.D.Kopinke,M.Remmler,K.Mackenzie.Thermal decomposition of biodegradable polyesters Ⅱ.Poly(lactic acid).Polymer Degradation and Stability,1996,53(3):329-342.
    [111]P.S.Bhandare.Study of pyrolysis and incineration of disposable plastics using combined TG/FTIR technique.Journal of Thermal Analysis,1997,49:361-366.
    [112]陈克权,周燕,张飙.PTT树脂热分解稳定性研究.聚酯工业,2004,17(3):13-17.
    [113]B.J.Holland,J.N.Hay.The thermal degradation of PET and analogous polyesters measured by thermal analysis-Fourier transform infrared spectroscopy.Polymer,2002,43:1835-1847.
    [114]Corinna Westphal,Cl(?)mence Perrot,Sigbritt Karlsson.Py-GC/MS as a means to predict degree of degradation by giving microstructural changes modelled on LDPE and PLA.Polymer Degradation and Stability,2001,73(2):281-287.
    [115]F.D.Kopinke,M.Remmler,K.Mackenzie.Thermal decomposition of biodegradable polyesters-Ⅱ.Poly(lactic acid).Polymer Degradation and Stability,1996,53(3):329-342.
    [116]Yujiang Fan,Haruo Nishida,Shinya Hoshihara,et al.Pyrolysis kinetics of poly(-lactide)with carboxyl and calcium salt end structures.Polymer Degradation and Stability,2004,79(3):547-562.
    [117]马伟,王苏,崔季平,等.酚醛树脂的热解动力学模型.物理化学学报,2009,24(6):1090-1094.
    [118]胡荣祖,史启祯.热分析动力学M.北京:科学出版社,2001.
    [119]C.D.Doyle.Estimating isothermal life from thermogravimetric data.Journal of Aplied Polymer Science,1962,6(24):639-642.
    [120]S.Kim,J.K.Park.Characterization of thermal reaction by peak temperature and height of DTG curves.Thermochimica acta,1995,264:137-156.
    [121]Y.J.Eom,S.Kim.S.S.Kim,et al.Application of Peak Property Method for Estimating Apparent Kinetic Parameters of Cellulose Pyrolysis Reaction.Journal of Industrial Engineering and Chemistry,2006,12(6):849-852.
    [122]Zhou Shuping,Wu Yulong,Yang Mingde,et al.Characteristics and dynamics of pyrolysis process microalgae.Journal of Combustion Science and Technology,2007,13(4):330-334.
    [123]Wang Shurong,Zheng Zhen,Wen Lihua,et al.Kinetic research on pyrolysis of model compound of hemicellulose.Journal of Combustion Science and Technology,2006(12):4.
    [124]J.W.Park,S.A.Wentworth,H.T.Kim,et al.A kinetic analysis of thermal degradation of polymers using a dynamic method.Polymer Degradation and Stability,2000,67(3):535-540.
    [125]H.Bockhorn,A.Hornung,U.Hornung.Mechanisms and kinetics of thermal decomposition of plastics from isothermal and dynamic measurements.Journal of Analytical and Applied Pyrolysis,1999,50(2):77-101.
    [126]H.B.Vuthaluru.Thermal behaviour of coal/biomass blends during co-pyrolysis.Fuel Processing Technology,2004,85(2-3):141-155.
    [127]M.Garcia-Perez,A.Chaala,Yang,et al.Co-pyrolysis of sugarcane bagasse with petroleum residue.Part Ⅰ:thermogravimetric analysis.Fuel,2001,80(9):1245-1258.
    [128]L.Ballice,R.Reimert.Temperature-programmed co-pyrolysis of Turkish lignite with polypropylene.Journal of Analytical and Applied Pyrolysis,2002,65(2):207-219.
    [129]V.I.Sharypov,N.Marin,N.G.Beregovtsova,et al.Co-pyrolysis of wood biomass and synthetic polymer mixtures.Part Ⅰ:influence of experimental conditions on the evolution of solids,liquids and gases.Journal of Analytical and Applied Pyrolysis,2002,64(1):15-28.
    [130]Y.G.Pan,E.Velo,L.Puigjaner.Pyrolysis of blends ofbiomass with poor coals.Fuel,1996,75(4):412-418.
    [131]A.J.Tsamba,W.Yang,W.Blasiak.Pyrolysis characteristics and global kinetics of coconut and cashew nut shells.Fuel Processing Technology,2006,87(6):523-530.
    [132]T.R.Rao,A.Sharma.Pyrolysis rates of biomass materials.Energy,1998,78:349-358.
    [133]K,Galwey A.Is the science of thermal analysis kinetics based on solid foundations? A literature appraisal Thermochim Acta,2004,413(1-2):139-183.
    [134]L.T.Vlaev,I.G.Markovska,L.A.Lyubchev.Non-isothermal kinetics of pyrolysis of rice husk Thermochim Acta,2003,406(1-2):1-7.
    [135]A.W.Coats,J.P.Redfern.Kinetic parameters from thermogravimetric data.Nature,1964,201:68-69.
    [136]王爽,王宁,于立军,等.海藻的热解特性分析.中国电机工程学报,2007,27(14):102-107.
    [137]G.Varhegyi,J.M.Antal,E.Jakab.Kinetic modeling of biomass pyrolysis.Journal of Analytical and Applied Pyrolysis,1997,42(1):73-87.
    [138]T.Mori,H.Nishida,Y.Shirai,et al.Effects of chain end structures on pyrolysis of poly(-lactic acid) containing tin atoms,Polym.Degrad.Stab.,2004,84(2):243-251.
    [139]Y.Aoyagi,K.Yamashita,Y.Doi.Thermal degradation of poly[(R)-3-hydroxybutyrate],poly[[var epsilon]-caprolactone],and poly[(S)-lactide].Polymer Degradation and Stability.,2002,76(1):53-59.
    [140]G.Sivalingam,G.Madras.Thermal degradation of binary physical mixtures and copolymers of poly([var epsilon]-caprolactone),poly(-lactide),poly(glycolide).Polymer Degradation and Stability,2004,84(3):393-398.
    [141]M.J.Lazaro,R.Moliner,I.Suelves.Non-isothermal versus isothermal technique to evaluate kinetic parameters of coal pyrolysis.Journal of Analytical and Applied Pyrolysis,1998,47(2):111-125.
    [142]M.J.Antal.Cellulose pyrolysis kinetics:revisited.Industrial & Engineering Chemistry Research,1998,37:1267-1275.
    [143]H.P.Yang,R.Yan,T.Chin,et al.TGA-FTIR analysis of palm oil waste pyrolysis.Energy & Fuels,2004,18(6):1814-1821.
    [144]K.Bilba,A.Ouensanga.Fourier transform infrared spectroscopic study of thermal degradation of sugar cane bagasse.Journao of Analytical and Applied Pyrolysis,1996,38:61-73.
    [145]P.R.Solomon,M.A.Serio,R.M.Carangelo.Analysis of the argonne premium coal samples by thermogravimetric fourier transform infrared spectroscopy.Energy & Fuels,1990,4(2):319-333.
    [146]R.M.Camngelo,P.R.Solomon,D.J.Gerson.Application of TG-FTIR to study hydrocarbon structure and kinetics.Fuel,1987,1987(66):960-967.
    [147]T.Cornelissen,M.Jans,J.Yperman,et al.Flash co-pyrolysis of biomass with polyhydroxybutyrate:Part 1.Influence on bio-oil yield,water contet,heating value and the production of chemicals.Fuel,2008,87(7):2523-2532.
    [148]I.Suelves,R.Moliner,M.J.L(?)zaro.Synergetic effects in the co-pyrolysis of coal and petroleum residues:influences of coal mineral matter and petroleum residue mass ratio.Journal of Analytical arid Applied Pyrolysis,20,55(1):29-41.
    [149]E.Kastanaki,D.Vamvuka,P.Crammelis,et al.Thermogravimetric studies of the behavior of lignite-biomass blends during devolatilization.Fuel Processing Technology,2002,77-78:159-166.
    [150]R.Ball,A.C.Mclntosh,J.Brindley.Feedback processes in cellulose thermal decomposition:implications for fire-retarding strategies and treatments.Combustion Theoritical Model,2004,8:281-291.
    [151]H.P.Yang,R.Yah,T.Chin T,et al.TGA-FTIR analysis of palm oil waste pyrolysis.Energy & Fuels,2004,18(6):1814-1821.
    [152]B.V.Babu,A.S.Chaurasia.Pyrolysis of biomass:improved models for simultaneous kinetics and transport of heat,mass and momentum.Energy Conversion and Management,2003,45(9-10):1297-1327.
    [153]Anup Kumar Sadhukhan,Parthapratim Gupta,Ranajit Kumar Saha.Modelling and experimental studies on pyrolysis of biomass particles.Jouma of Thermal Analysis and Calorimetry,2008,81:183-192.
    [154]S.Czernik,A.V.Bridgwater.Overview of applications of biomass fast pyrolysis oil.Energy & Fuels,2004,18:590-598.
    [155]Ali Sinag,Melike Sungur,Muammer Canel.Effect of experimental conditions on the yields during the copyrolysis of Mustafa Kemal Pasa(MKP) lignite(Turkey) with low-density polyethylene.Energy & Fuels,2006,20(4):1609-1613.
    [156]H.S.Joo,James A.Guin.Continuous upgrading of a plastics pyrolysis liquid to an environmentally favorable gasoline range product Fuel Processing Technology,1998,57(1):25-40.
    [157]ASTM Standard D2887.Annual book of ASTM standards M.American society for testing and materials:PHiladelphia,PA,1983,5(2):791-799.
    [158]ASTM Standard D3710.Annual book of ASTM standards S.American society for testing and materials:PHiladelphia,PA,1983,5(3):442-455.
    [159]ASTM Standard D86.Annual book of ASTM standards S.American society for testing and materials:PHiladelphia,PA,1983,5(1):8-27.
    [160]S.G.Roussis,W.P.Fitzgerald.Gas chromatographic simulated distillation mass spectrometry for the ditermination of the boiling point distributions of crude oil.Analysis Chemistry,2000,72(7):1400-1409.
    [161]Ozlem Onay,S.H.Beis,O.M.Kochar.Fast pyrolysis of rape seed in a well-swept fixed-bed reactor.Journal of Analytical and Applied Pyrolysis,2001,58-59:955-1007.
    [162]陈键,李庭堔,颜涌捷,等.生物质裂解谈制备活性炭.华东理工大学学报,2005,31(6):821-826.
    [163]A.Garcia-Garcia,A.Gregorio,C.Franco.Unconverted chars obtained during biomass gasification on a pilot-scale gasifier as a source of activated carbon production.Biomass and Bioenergy,2003,88:27-32.
    [164]Isabel Villaescusa,N(?)ria Fiol,Mar(?)a Mart(?)nez,N(?)ria Miralles,Jordi Poch,Joan Serarols.Removal of copper and nickel ions from aqueous solutions by grape stalks wastes.Water Research,2004,38(4):992-1002.
    [165]Francesca Pagnanelli,Sara Mainelli,Francesco Vegli(?),et al.Heavy metal removal by olive pomace:biosorbent characterisation and equilibrium modelling Chemical Engineering Science,2003,58(20):4709-4717.
    [166]P.W.Atkins.Physical Chemistry,fourthed.Oxford University Press,London.1990:884-890.
    [167]近藤精一.吸附科学.北京:化学工业出版社,2006:31-40.
    [168]M.Rao,A.V.Parwate,A.G.Bhole.Removal of Cr~(6+) and Ni~(2+) from aqueous solution using bagasse and fly ash.Waste Management,2002,22:821-830.
    [169]E.Malkoc,Y.Nuhoglu.Investigations of nickel removal from aqueous solutions using tea factory waste.Journal of Hazardous Materials,2005,B 127:120-128.
    [170]F.Abu Al-Rub,M.Kandah,N.Aldabaigeh.Nicekl removal from aqueous solutions using sheep manure waste.Eng.Life.Sci,2002(2):111-116.
    [171]Hasar,Halil.Adsorption of nickel(Ⅱ) from aqueous solution onto activated carbon prepared from almond husk.Journal of Hazardous Materials,2003,97(1):49-57.
    [172]S.Erdo(?)an,Y.(O|¨)nai,C.Akmil-Ba(?)ar,et al.Optimization of nickel adsorption from aqueous solution by using activated carbon prepared from waste apricot by chemical activation Applied Surface Science,2005,252(5):1324-1331.
    [173]V.Patmavathy,P.Vasudevan,S.C.Dhingra.Adsorption of nickel ions on Baker's yeast.Process Biochem,2003,38(10):1389-1395.
    [174]E.Demirbas,M.Kobya,S.(O|¨)ncel,et al.Removal of Ni from aqueous solution by adsorption onto hazelnut shell activated carbon:equilibrium studies.Bioresource Technology,2002,84:291-293.
    [175]S.Hawash,H,El-Abd,M.S.El-Geundi,M.M.Nassae,J.Y.Farash.Useful equilibrium means of natural clay.Adv.Sci.Technol,1994,9:231-243.
    [176]M.Madhava Rao,A.Ramesh,G.Purna Chandra Rao,K.Seshaiah.Romoval of copper and cadmium from the aqueous solutions by activated carbon derived from ceiba pentandra hulls.Journal of Hazardous Materials,2006,B129:123-129.
    [177]Nadhem K.Hamadi,Xiao Dong Chen,Mohammed M.Farid,et al.Adsorption kinetics for the removal of chromium from aqueous solution by adsorbents derived from used tyres and sawdust.Chemical Engineering Journal,2001,84:2001.
    [178]N(?)ria Fiol,Isabel Villaescusa,Maria Martinez,et al.Sorption of Pb(Ⅱ),Ni(Ⅱ),Cu(Ⅱ) and Cd(Ⅱ) from aqueous solution by olive stone waste.Separation and Purification Technology,2006,50(1):132-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700