用户名: 密码: 验证码:
基于定子绕组三维温度场模型的异步电动机保护技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于作为主要动力源的异步电动机在经济建设中发挥着重要作用,因此高水平的异步电动机保护技术研究始终是电器领域主要的研究方向之一。
     异步电动机保护技术研究的关键是建立准确的电动机保护模型。本文针对现有异步电动机保护技术研究与应用存在的问题,以实际测量异步电动机易测部位的温度分布为基础,应用求解传热反问题的方法建立了比较准确的定子全域三维温度场仿真模型。以该温度场仿真模型为基础建立了异步电动机定子温度分布虚拟测试平台。基于定子最高温度检测与保护的思路,提出异步电动机定子绕组最高温度的软测量保护模型、定子绕组最高温度预测保护模型与定子绕组最高温度在线检测保护模型。最后提出了基于异步电动机保护模型的保护方案及其实现方法。本文的研究思路也可适用于各种类型电机的温度保护。
     论文的主要研究内容包括:
     一、本文对电动机保护器的发展历程与现状、电动机保护模型与相关技术的研究概况做了较详细的综述,指出了电动机保护技术存在的问题及发展的方向。
     二、构建了异步电动机定子温度分布实际测试系统,对典型运行状态下的异步电动机定子三维温度分布进行了测试。本文对定子三维温度分布的状况进行分析并提出改善最高温度区域散热条件,降低定子绕组最高温度的思路。
     三、在电动机发热理论的基础上,建立了定子全域三维温度场仿真基本模型。根据传热反问题的思路采用正交试验法进行基本模型相关热参数和边界条件的反计算,建立了较为准确的定子全域三维温度场仿真模型。
     四、建立基于定子全域三维温度场仿真模型的异步电动机定子温度分布虚拟测试平台。应用该平台对各种运行状态下的电动机稳态温度分布及瞬态温度变化进行虚拟测试和研究。在此基础上提出优化电动机散热结构、提高电动机长期过载运行能力的措施。
     五、以定子最高温度检测与保护为原则,基于定子绕组集中参数热模型建立了异步电动机定子绕组最高温度软测量保护模型和定子绕组最高温度预测保护模型。在建立以上保护模型的过程中应用虚拟测试平台研究并确定模型的关键参数,通过实验验证以上模型及其参数的准确性。此外,提出了基于电流与定子绕组最高温度在线直接检测的保护模型。
     六、研究异步电动机定子绕组最高温度保护技术方案,提出基于定子绕组最高温度软测量的保护方案、基于定子绕组最高温度预测的保护方案和基于定子绕组最高温度在线检测的保护方案,对三种保护方案的特点与应用进行了比较。
     显然,本文根据电动机发热理论,建立基于传热反问题的定子全域三维温度场仿真模型的虚拟测试平台。在此基础上,针对运行最高温度保护原则提出了新的保护模型与保护方案以及提高其额定负载与过载性能的措施。本文提出的异步电动机保护技术的总体研究思路与成果将推动异步电动机保护技术的研究与应用,对于其他类型的电机保护技术研究也有借鉴作用。
As the main power source of industrial enterprises, motor play an important rolein the economy construction. High level asynchronous motor protection technologyis always one of the main research directions of electrical apparatus.
     Establishing an accurate protection model is the key of induction motorprotection technology research. According to the problems of existing inductionmotor protection technology research and application, a more accurate3Dtemperature field simulation model of whole stator was established by solving theinverse problem of heat conduction based on the temperature distribution datameasured in easily measure area. The induction motor stator temperature virtual testplatform is developed based on the model. According to the ideas about themaximum temperature detection and protection of stator, the soft measuringprotection model,the forecast protection model and on-line detection protectionmodel for the maximum temperature of stator winding are proposed. Finally, theprotection program and its implementation based on the model are presented. Theresearch ideas about temperature protection also apply to a variety of motors.
     The main research contents include:
     1、This paper made a more detailed overview of the development and currentsituation of motor protection device and the researching situation of motor protectionmodel and related technologies, and point out the problems and developmentdirection of motor protection technology.
     2、Constructed the induction motor stator temperature distribution measurementsystem, and the actual3D temperature distribution of induction motor stator weretested at typical operating conditions. The causes of the stator3D temperaturedistribution were analyzed in this paper, and ideas were proposed to improving coolconditions and reducing the maximum temperature of stator windings.
     3、The basic whole stator3D temperature field simulation model was establishedbase on the heat theory of electric motor. Parameters and boundary conditions of thebasic model was anti-calculated by orthogonal test method. Then a more accuratewhole stator3D temperature field simulation model was established.
     4、A induction motor stator temperature virtual test platform is developed basedon the3D temperature field simulation model. Steady-state temperature distributionand transient temperature change of the motor under all kinds of operation conditionsare measured by the platform. The temperature distribution and the law oftemperature variation can be studied. This paper also proposes the scheme aboutoptimizing the heat dissipation structure and improving the capability of long-termoverload operation of the motor.
     5、Following the maximum temperature detection and protection of stator asguiding principle, the soft sensing protection model and forecast protection model forthe maximum temperature of stator winding are proposed based on the lumpedparameter thermal model of stator winding. The key parameters of the models aboveare analyzed and determined by the test platform and experimental results validatethe accuracy of the above model and parameters. Furthermore, the protection modelbased on the on-line detection of the current and the maximum temperature of thestator is established.
     6、The maximum temperature protection technology of stator winding ofinduction motor is studied. The three protection programs based on soft sensing,forecasting and on-line detecting for maximum temperature of stator winding,respectively are given and the features of the above programs are compared.
     Obviously, according to the heat theory of the motor, the virtual test platform of3D temperature field simulation model of whole stator is developed in this paperbased on inverse problem of heat conduction. On this basis and according to theprotection principle of maximum operation temperature, a new protection model andprogram are proposed, as well as the measures of improving the rated load capabilityand overload performance. The overall research ideas and results of protectiontechnology for induction motor, which are proposed in this paper, will promote theresearch and application of motor protection technology. It also has a reference forprotection technology researching of other types of motor.
引文
[1]邵富春.异步电动机保护[J].天津大学学报,1980,(3):112-124.
    [2] Pinjia Zhang, Bin Lu, Thomas G. Habetler. Active Stator Winding ThermalProtection for AC Motors. IEEE Conference Record of Annual Pulp and PaperIndustry Technical Conference, p11-19,2009.
    [3]祖伟,刘友翔,张莉.电动机热过载保护及其微机实现[J].合肥工业大学学报(自然科学版),1997,20(2):94-99.
    [4]肖纪立,徐志斌,黄圣国.智能型多功能电机保护装置的研制[J].电子技术应用,1998,(3):35-36,41.
    [5]胡景泰,朱文灏.多功能的可通讯智能电动机保护器[J].中小型电机,2004,31(3):33-38.
    [6]欧阳名三,梁赟,金林.采用MSP430单片机的电机保护器的研究[J].仪器仪表学报,2005,26(S1):347-348.
    [7]余红粒,习俊梅,廖高华.电机保护智能监测系统的设计[J].仪表技术与传感器,2006,(10):42-44.
    [8]马伟顺,魏燕.多参数智能型异步电动机保护系统[J].电气应用,2005,24(3):15-17.
    [9]苏明,李永丽.基于数字信号处理器和单片机的微机型电动机保护装置[J].电机与控制应用,2007,34(4):52-56.
    [10] Sudha, M., Anbalagan, P., A novel protecting method for Induction motoragainst faults due to voltage unbalance and single phasing.IECON Proceedings(Industrial Electronics Conference),p1144-1148,2007,Proceedings of the33rdAnnual Conference of the IEEE Industrial Electronics Society, IECON.
    [11] Shukla,Srivats,Vishwakarma,D.N.,Development of a novel single chipsolution for a motor protection relay, POWERENG2009-2nd InternationalConference on Power Engineering, Energy and Electrical Drives Proceedings,p697-702.
    [12] Bayindir,Ramazan,Sefa,Ibrahim; Colak,Ilhami; Bektas,Askin,Fault detectionand protection of induction motors using sensors, IEEE Transactions onEnergy Conversion, v23, n3, p734-741,2008.
    [13] Tang, Ying, The design of new low-voltage motor protection controller basedon ARM technology, International Conference on Applied Superconductivityand Electromagnetic Devices, ASEMD2009, p183-185,2009.
    [14] Mouton,A.J.J.,Smith,C., Smith,G.E.Wireless control and communicationto motor protection relays by usingan embedded microprocessor, CanadianConference on Electrical and Computer Engineering, p1104-1107,2007.
    [15]姚向华,施仁,陈浩群.交流电机定子绕组温升在线带电自动测试[J].计算机自动测量与控制,1998,3:45-48.
    [16]姚向华,施仁.电机绕组在线温升智能测试仪的研制[J].微电子学与计算机,2001,6:55-56.
    [17]姚向华,施仁.恒流源法测量电机绕组温升的误差分析及消除[J].计量学报,2002,23(1):62-64.
    [18]许昌,金荣泰.带电绕组温升测试仪的设计[J].自动化仪表,2002,23(7):24-27.
    [19] Lee S B, Habetler T G. An on-line stator winding resistance estimationtechnique for temperature monitoring of line-connected inductionmachines. Conference Record of the2001IEEE Industry ApplicationsConference,2001,3,:1564–1571.
    [20] Lee S B,Habetler T G.A remote and sensorless thermal protection scheme forsmall line-connected ac machines.IEEE Transactions on Industry Applications,2003,39(5):1323-1332.
    [21]魏学飞,黄进.交流绕组温升的等效直流灌注法计算机在线监测[J].中小型电机,2005,32(5):52-55.
    [22]谢诤,李浚源.基于模型参考自适应系统的异步电动机转子电阻辨识[J].华中理工大学学报,1994,22(8):121-124.
    [23] Wade S, Matthew Dunnigan W, Williams B W. Modeling and simulation ofinduction machine vector control with rotor resistance identification [J]. IEEETransactions on Power Electronics,1997,12(3):495-506.
    [24]凌强,徐文立,陈峰.关于感应电机转速观测和转子电阻辨识的研究[J].中国电机工程学报,2001,21(9):58-62.
    [25]陈硕,辻峰男,山田英二.感应电机无速度传感器矢量控制系统的定子电阻在线辨识[J].中国电机工程学报,2003,23(2):88-92.
    [26]杜斌.基于参数在线辨识技术的交流异步电动机热保护系统[J],中国电机工程学报,1996,16(5):328-331.
    [27]许伯强,李和明,孙丽玲等.基于参数辨识的异步电动机温度在线监测方法[J],华北电力大学学报,2002,29(2):13-18.
    [28]许伯强,李和明,朱凌等.发电机定转子绕组温度在线监测新方法[J].电力系统自动化,2002,(1):35-38.
    [29]李俊卿,李和明.基于状态监测的汽轮发电机定子铁心温度标准值的确定[J].中国电机工程学报,2004,24(3):156-160.
    [30] Wu Y, Gao H W. Induction-Motor Stator and Rotor Winding TemperatureEstimation Using Signal Injection Method [J]. IEEE Transactions on IndustryApplications,2006,42(4):1038-1044.
    [31]陆书文,林飞,郝瑞祥.定子电阻辨识用于异步电机温度监测的研究[J].测控技术2006,25(11):71-73.
    [32] Sang-Bin Lee, Habetler, T. G., Harley, R. G., etal. An evaluation ofmodel-based stator resistance estimation for induction motor stator windingtemperature monitoring. IEEE Transactions on Energy Conversion,2002,17(1):7-15.
    [33] Sang-Bin Lee,Habetler,T.G.,Harley,R.G.,etal.A stator and rotorresistance estimation technique for conductor temperature monitoring. In:Conference Record of the2000IEEE,2000,(1):381-387.
    [34]张惠浩,王绍纯.三相异步电动机定子绕组温度在线监测[J].北京科技大学学报,1999,21(3):294-297.
    [35]王振浩.高压电动机故障特征分析及综合保护的研究[J].高压电器,2000,(2):29-30,45.
    [36]李璇华,黄益庄,唐晓泉,等.电动机故障分析和综合保护配置[J].继电器,2001,29(12):30-33.
    [37]王伟平,黎明,王桂生,等.高压异步电动机实现综合保护的研究[J].电机与控制应用,2006,33(5):52-55.
    [38]王涛,唐保国,乔和.基于暂态波形鉴别的异步电机综合保护[J].辽宁工程技术大学学报,2005,25(2):238-240.
    [39]黄开胜,湛智华,李红.三相异步电动机断相运行分析[J].中小型电机,1998,25(1):47-50.
    [40]张连斌,蔡泽祥,谭敦生.异步电动机微机型综合保护研究[J].继电器,1996,(4):42-46.
    [41]张清枝,李新雷.基于电动机热模型的微机反时限保护方法研究[J].电力系统保护与控制,2009,37(14):86-89.
    [42]邹东霞,梁海宁,苏毅.通用反时限特性在微机保护中的实现方法[J].电力自动化,2007,31(5):80-83.
    [43]严支斌,尹项根,邵德军,等.新型微机反时限过流保护曲线特性及算法研究[J].继电器,2005,33(8):44-46,63.
    [44]刘建政,黄益庄.微机多功能反时限保护[J].清华大学学报(自然科学版),1994,34(1):23-30.
    [45]徐忠林,叶一麟,熊小伏..一种微机反时限过流保护的新算法[J].电力自动化设备,1996,25(8):3-6.
    [46]徐厚东,黄益庄,付铭.微机反时限过流保护算法[J].清华大学学报(自然科学版),2006,46(1):1-4.
    [47] Mo-Yuen Chow. Yodyium Tipsuwan, Neural Plug-In Motor Coil ThermalModeling, IECON Proceedings (Industrial Electronics Conference), v3, p1586-1591,2000.
    [48]许志红,颜毅鹏,张培铭.基于神经网络的电动机绕组温升预测研究[J].电机与控制学报,2005,9(6):558-561.
    [49]黄彦全,肖建,蔡勇,李晋.新型微机反时限电流保护时间-电流特性的工程应用[J].电力系统自动化,2003,27(23):71-73.
    [50]牟龙华,邢锦磊.反时限过载保护精确算法[J].电力自动化设备,2008,28(6):36-38,43.
    [51]伍叶凯,邹东霞.适用于输电线路的单片机反时限过流保护[J].继电器,1996,24(4):21-25.
    [52]宋斌.具有不同特性的微机反时限过流继电器的实现[J].电力系统自动化,2001,(17):57-59.
    [53]吴红斌,丁明,李生虎.曲线拟合法在反时限过流继电器中的应用[J].继电器,2003,31(6):35-37.
    [54]石兆元,郭凤仪.基于模糊控制的单片机式热保护器[J].工矿自动化,2006,(6):22-25.
    [55]沈智健,王利平.累加定子电流的异步电动机反时限特性热保护[J].华北电力技术,2000,(4):15-17.
    [56]李晓华,尹项根,陈德树.中小型电动机智能化综合保护[J].继电器,2000,28(8):32-35.
    [57]迟长春,李奎,岳大为.基于热积累的过载保护算法[J].电力系统及其自动化学报.2008,20(1):52-56.
    [58]李和明,李俊卿,电机中温度计算方法及其应用综述[J].华北电力大学学报,2005,32(1):1-5.
    [59]黄琳敏,陈德桂,张敬菽.应用瞬态热路法计算直流电磁铁的温升[J].低压电器,2003,(2):12-15.
    [60]黄琳敏,陈德桂,张敬菽.计及物理参数随温度变化时螺管电磁铁温度场和瞬态热路的仿真分析[J].电工技术学报,2003,(10):27~31.
    [61]陈德桂,辜晓川,蒋容兴,等.瞬态热路法计算小型断路器热脱扣器的动作特性[J].低压电器,1995(1):17-21.
    [62] A.Shenkman,M.Chertkov.Heat conditions of a three-phase induction motorby a one-phase supply. IEE Proceedings Electrical Power Appllication,1999,146(4):361-367.
    [63] Henneberger,G.,Yahia,K.B.,Schmitz,M..Calculation and identificationof a thermal equivalent circuit of a water cooled induction motor for electricvehicle applications. In: Seventh International Conference on ElectricalMachines and Drives,1995:6–10.
    [64] Kral,C.,Habetler,T.G.,Harley,R.G.,etal.Rotor temperature estimationof squirrel cage induction motors by means of a combined scheme of parameterestimation and a thermal equivalent mode. In: IEEE International ElectricMachines and Drives Conference(IEMDC'03),2003,(2):931–937.
    [65] Shenkman, A. L., Chertkov, M.. Experimental method for synthesis ofgeneralized thermal circuit of polyphase induction motors. IEEE Transactionson Energy Conversion,2000,15(3):264–268.
    [66]李德基,白亚民.用热路法计算汽轮发电机定子槽部三维温度场[J].中国电机工程学报,1986,6(6):36-45.
    [67]王红宇,苏鹏声,王祥珩.采用热路方法和三维有限元方法计算三峡水轮发电机三维热网络热阻参数的研究[J].大电机技术,2007(1):8-10.
    [68]温家斌,孟大伟,鲁长滨.大型水轮发电机通风发热综合计算[J].中国电机工程学报,2000,20(11):115-119.
    [69] G.K.M.Khan,G.W.Buckley,R.B.Bennett,etal.An integrated approachfor the calculation of loss and temperatures in the end-region of large turbinegenerators. IEEE Transactions on Energy Conversion,1990,5(1):183-194.
    [70]鲁涤强,黄学良,胡敏强.汽轮发电机端部三维温度场的有限元计算[J].中国电机工程学报,2001,21(3):82-85.
    [71]李伟力,侯云鹏,周封等.汽轮发电机径切两向空冷系统转子温度场的计算方法[J].中国电机工程学报,2000,20(8):74-78.
    [72]国建鸿,傅德平,袁建华,黄德书.300MW汽轮发电机强迫循环蒸发冷却定子绕组温升计算[J].中国电机工程学报,2008,28(26):92-97.
    [73]程树康,李伟力,侯云鹏.基于耦合边界条件的发电机定子非线性温度场计算[J].电工技术学报,2002,17(4):1-6.
    [74]李伟力,丁树业,靳慧勇.基于耦合场的大型同步发电动机定子温度场的数值计算[J].中国电机工程学报,2005,25(13):129-134.
    [75] Hou Yunpeng,Li Weili,Zhou Feng,Cheng Shukang.Analysis and calculationof nonlinear flow field and stator temperature field in stator radial ventilatinggrooves for large hydro-generator in the case of insulation aging. In: China,Proceedings of the Fifth International Conference on Electrical Machines andSystems,2001,(2):1140-1144
    [76]李广德,付刚,何文秀.大型水轮发电机定子三维温度场计算[J].大电机技术,2000,(2):1-5.
    [77]鲁长彬,苗立杰.水轮发电机水内冷定子温度场的分析方法[J].大电机技术,2000,(3):1-4.
    [78]栾茹,傅德平,唐龙尧.新型全浸式蒸发冷却水轮发电机定子三维温度场的研究[J].中国电机工程学报,2004,24(8):205-209.
    [79]夏海霞,李桃,姚缨英,倪光正.灯泡贯流式水轮发电机通风系统及定子温度场[J].电工技术学报.2008,23(7):9-13.
    [80]姚若萍,饶芳权.蒸发冷却水轮发电机定子温度场研究[J].中国电机工程学报,2003,23(6):87-90,101.
    [81]黄学良,胡敏强,周鹗.电机三维温度场新的有限元计算模型[J].中国电机工程学报,1998,18(2):78-81.
    [82]丁文,周会军,鱼振民.基于ANSYS的开关磁阻电机温度场分析[J].微电机,2005,38(5):13-15,33.
    [83] M.S.Rajagopal,K.N.Seetharamu.Transient thermal analysis of inductionmotors. IEEE Transactions on Energy Conversion,1998,13(1):62-69.
    [84]李伟力,付敏,周封等.基于流体相似理论和三维有限元法计算大中型异步电动机的定子三维温度场[J].中国电机工程学报,2000,20(5):14-17.
    [85]傅丰礼.用三维有限元法计算感应电动机定子的温度分布.中小型电机,1994,21(2):53-56.
    [86]李伟力,付敏,周封等.中型高压防爆电机定子三维温度场的计算[J].中小型电机,1999,26(2):1-3.
    [87]李伟力,周封,傅敏,等.大中型异步电动机定子半个轴向段三维温度场计算[J].中小型电机,2001,28(1):13-16
    [88]龚晓峰,刘长红,饶方权,等.特种异步电机转子温度场的计算[J].大电机技术,2004,(5):13-16.
    [89] C.C.Chan,Lietong Yan,Pizhang Chen,Zezhong Wang,K.T.Chau.Analysisof electromagnetic and thermal fields for induction motors duringstarting. IEEE Transactions on Energy Conversion,1994,9(1):53–60.
    [90]刘允松,励庆孚,杨树正.异步电动机起动与堵转过程中转子笼三维温度场的计算[J].中小型电机,1998,25(5):5-9.
    [91]刘慧开,杨立,孙丰瑞.异步电动机定子绕组槽内匝间短路早期故障的表面温升[J].电工技术学报,2007,22(3):49-54.
    [92]王艳武,杨立,孙丰瑞.异步电动机定子绕组匝间短路三维温度场计算与分析[J].中国电机工程学报,2009,29(24):84-90.
    [93]谢颖,李伟力,李守法.异步电动机转子断条故障运行时定转子温度场数值计算与分析[J].电工技术学报,2008,23(10):33-39,46.
    [94]李伟力,李守法,谢颖,等.感应电动机定转子全域温度场数值计算及相关因素敏感性分析[J].中国电机工程学报,2007,27(24):85-91.
    [95]靳廷船,李伟力,李守法.感应电机定子温度场的数值计算[J].电机与控制学报,2006,10(5):492-497.
    [96]高俊如,胡延领.基于ANSYS的多相异步发电机非稳态定子温度场的研究[J].大电机技术,2009,(5):9-12.
    [97]方日杰,赖烈恩,陈季平,等.用热网络法计算大型水轮发电机定子温度场[J].大电机技术,1989,(1):25-29.
    [98]陈志刚.等效热网络法和有限元法在电机三维温度场计算中的应用与比较[J].中小型电机.1995,22(1):3-6,35.
    [99]屈文涛,高红梅,赵宁,等.双螺杆泵同步双圆弧齿轮传动热网络分析[J].机械传动,2006,30(6):14-16.
    [100]王北社,窦满锋.基于热网络法的高功率密度异步电动机定子温升计算[J].微电机.2006,(11):24-26.
    [101]李和明,李俊卿.汽轮发电机定子冷却水路堵塞时的温度场分析与计算[J].中国电机工程学报,2005,25(21):163-168.
    [102] Rioul M. A thermohydraulic modeling for the stator bars of largeturbogenerators: development, validation by laboratory and on sitetests[J]. IEEE Transactions on Energy Conversion,1997,12(1):1-9.
    [103]李俊卿,李和明.汽轮发电机负荷变化时水内冷定子线棒的温度水力模型[J].中国电机工程学报,2005,25(9):122-125.
    [104]李俊卿,李和明.汽轮发电机状态监测中定子温度标准值的确定[J].中国电机工程学报,2007,27(9):87-91.
    [105]刘双,安志华,秦光宇.150MW空冷汽轮发电机通风系统研究及性能验证[J].大电机技术,2007(1):11-18.
    [106]刘长红,姚若萍.自循环蒸发冷却电机定子铁心与绕组间的热量传递[J].中国电机工程学报,2008,28(11):107-112.
    [107]邓建国.用网络拓扑法计算同步发电机定子的温度分布[J].电工技术杂志,1999(2):12-14.
    [108]胡敏强,韩亚明.电机定子端部温度场的边界元计算[J].微特电机,1990,(5):6-10,5.
    [109]李德寿,潘良明.用不等距有限差分法及有限元法计算电机的温度场[J].中小型电机.2001,28(5):17-20.
    [110]童长仁,邹小平,李明周.有限差分改进算法及温度场求解实例验证[J].冶金能源,2006,25(6):17-19,35.
    [111]陈德桂.低压开关电器热分析方法的进展[J].低压电器,2008,(17):1-4,48.
    [112]傅淑芳.朱仁益.地球物理反问题[M].北京:地震出版社,1998.
    [113]顾勇为,归庆明,边少锋,郭建峰.地球物理反问题中两种正则化方法的比较[J].武汉大学学报·信息科学版,2005,30(3):238-241.
    [114]李平,王椿镛,许厚泽,等.地球物理反演中奇异值分解应用的若干问题探讨[J].自然科学进展,2001,11(8):891~896.
    [115]王永升,孔玉寿,李汇军.数值天气预报中的反问题及其对策研究[J].气象科技,2001,(3):18-21.
    [116]戴会超,王玲玲.参数控制反问题的求解及其在坝工渗流中的应用[J].水力发电学报,2005,24(6):72-77.
    [117]李智录,钱炜祺.大坝渗流反问题初步研究[J].空气动力学报,2004,22(4):438-442.
    [118]戴会超,槐文信,许唯临等.水利水电工程水流的精细模拟和反问题研究
    [M].北京:科学出版社,2005.
    [119]韩龙喜.河道一维污染源控制反问题[J].水科学进展,2001,12(1):39-44.
    [120]闵涛,周孝德.河流水质纵向弥散系数反问题的迭代算法[J].水动力学研究与进展,2003,18(5):547-552.
    [121]刘晓东,姚琪,薛红琴,等.环境水力学反问题研究进展[J].水科学进展,2009,20(6):885-893.
    [122]邓祥辉,柴军瑞.岩土工程反问题研究简述[J].工程勘察,2005,(5):4-6,11
    [123]杨志法,王芝银.五强溪水电站船闸边坡的粘弹性位移反分析及变形预测[J].岩土工程学报,2000,22(1):66~71.
    [124]赵新铭,刘宁.岩土力学反分析的数值反演方法[J].水利水电科技进展,2003,23(2):55~58.
    [125]刘杰,王媛,刘宁.岩土工程渗流参数反问题[J].岩土力学,2002,23(2):152-161.
    [126] Huang C H, Ozisik M N. Inverse problem of determining unknown wall heatflux in laminar flow through a parallel plate duct[J]. Numerical HeatTransfer, Part A,1992,21(1):55-70.
    [127] Huang C H, Yan J Y. An inverse problem in simultaneously measuringtemperature dependent thermal conductivity and heat capacity[J]. International Journal of Heat and Mass Transfer,1995,38(18):3433-3441.
    [128] Huang Cheng-Hung, Chao Bor-Herng. An inverse geometry problem inidentifying irregular boundary configurations[J].International Journal of Heatand Mass Transfer,1997,40(9):2045-2053.
    [129]薛齐文,杨海天,胡国俊.共轭梯度法求解瞬态传热组合边界条件多宗量反问题[J].应用基础与工程科学学报,2004,12(2):113-119.
    [130]杨海天,胡国俊.共轭梯度法求解多宗量稳态传热反问题[J].应用基础与工程科学学报,2002,10(2):174-181.
    [131]关荣华.三维球形拐角内壁缺陷形状的红外定量计算[J].红外与激光工程,2003,32(5):456-459.
    [132]关荣华.传热反问题与设备内部故障诊断[J].河北大学学报(自然科学版),2000,20(1):93-95.
    [133]关荣华.热成像温度分布检测三维平板内壁缺陷的数理模型[J].红外技术,2003,25(5):86-88.
    [134]谢李兵,刘彤,张志刚,等.基于迭代和插值算法的二维温度场重建[J].中国电机工程学报,2004,24(10):249-252.
    [135]田丰,孙小平,邵富群,等.基于高斯函数与正则化法的复杂温度场图像重建算法研究[J].中国电机工程学报,2004,24(5):212-215.
    [136]王艳武,杨立,孙丰瑞.导热反问题在电机温度场分析中的应用研究[J].激光与红外,2008,38(6):558-561.
    [137]刘慧开,杨立,孙丰瑞.基于传热反问题的异步电机参数估计方法研究[J].中国电机工程学报,2006,26(22):151-156.
    [138]刘慧开,杨立,孙丰瑞.基于红外测温的异步电机定子温升传热反计算[J],工程热物理学报,2006,27(增2):77-80.
    [139] Huang,Cheng-Hung, Lo,Hung-Chi.A three-dimensional inverse problemin estimating the internal heat flux of housing for high speed motors,AppliedThermal Engineering, v26, n14-15, p1515-1529, October2006.
    [140]王艳武,杨立,孙丰瑞.基于Levenberg-Marquardt算法的内部缺陷导热反问题研究[J].光电工程,2008,35(1):85-88,125.
    [141] Reulet, P. Nortershauser, D. Millan, P. Inverse method using infraredthermography for surface temperature and heat flux measurements[J]. Instrumentation in Aerospace Simulation Facilities,2003. ICIASF'03.20th International Congress on,2003,5.1:118-126.
    [142]李岗,刘伟涛,许云华.板坯连铸结晶器传热反算方法研究[J].特种铸造及有色合金,2007,27(4):267-270.
    [143]吴斌,夏伟.基于导热反问题的身管传热计算[J].兵工学报,2005,26(3):299-302.
    [144]曲洪权,庞丽萍,李运泽.序列蒙特卡洛滤波在卫星传热反问题中的应用[J].系统仿真学报,2008,20(13):3614-3616,3621.
    [145]李桂君,赵德海.城市大型零售商业网点布局模型与反问题求解[J].商业研究2002,(10):100-102.
    [146]杨柳,俞建宁,邓醉茶,代晓亮.一个关于零息票定价的反问题[J].四川大学学报(自然科学版),2007,44(6):1201-1204.
    [147]隋大山,铸造凝固过程热传导反问题参数辩识技术研究:[博士学位论文].上海交通大学,2008.
    [148] J V Beck, B Blackwell, A H Sheikh. Comparison of some inverse heatconduction methods using experimental data[J]. Int. Comm. Heat MassTransfer,1996, Vol.39:3649-3657.
    [149] G A Dorai, D A Tortorelli. Transient inverse heat conduction problemsolution via Newton`s method[J]. Int J. Heat and Mass Transfer,1997,40(17):4115-4127.
    [150]魏永田,孟大伟,温嘉斌.电机内热交换[M].北京,机械工业出版社,1998.
    [151]陈世坤.电机设计[M].北京:机械工业出版社,1997.
    [152]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006.
    [153] А.И.鲍里先科,В.Г.丹科.电机中的空气动力学与热传递[M].魏书慈,邱建甫译.北京:机械工业出版社,1985.
    [154]刘藻珍.仿真是一种重要的基于模型的实验[J].系统仿真学报,2009,21(23):7700-7702.
    [155]李慎龙,闰清东,姚寿文.车辆传动系统虚拟样机建模与验证[J].农业机械学报,2009,40(10):8-13.
    [156] Wayne, Martin R. A reliability growth simulation test bed. Proceedings-Annual Reliability and Maintainability Symposium, p389-394,2009,6.
    [157]李永春等.基于虚拟样机的仿真测试技术研究[J].仪表技术,2008,9:33-35.
    [158]张秀凤,金一丞,尹勇.船舶运动数学模型编辑及测试开发平台[J].系统仿真技术,2009,5(4):232-23.
    [159] Dawson,Jeffrey W,Chen,Ping,Zhu,Yanshen.Usability study of the virtualtest bed and distributed simulation. Proceedings-Winter SimulationConference, v2005, p1298-1305.
    [160] Gokdere, Levent U. Brice, Charles W.; Dougal, Roger A. Virtual TestBed for power electronic circuits and electric drive systems. IEEE Workshopon Computers in Power Electronics, p46-51,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700