用户名: 密码: 验证码:
新型螺旋线慢波结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
螺旋线行波管具有宽频带、高功率、高效率以及高增益等特点,尤其可与固态放大器件和电子功率调谐器一起形成超级性能的微波功率模块(MPM),被大量应用于雷达、电子对抗、通信等领域。螺旋线慢波结构是行波管的核心部件之一,其作用是降低电磁波的相速以使其相速与电子注速度同步,从而实现能量交换,但是由于其散热能力的限制,螺旋线行波管一般工作在中小功率的水平。随着军事电子技术的发展,需要螺旋线行波管具有更宽的频带,更高的功率,更高的频率,更长的寿命以及更小的尺寸等特点,因此深入而详细地对螺旋线慢波结构进行研究具有重要的理论价值和现实意义。本论文主要采用模拟仿真和实验测试的手段对新型螺旋线慢波结构进行深入的研究。主要工作和创新点如下:
     1、为了提高螺旋线慢波结构的散热能力,从而提高毫米波螺旋线行波管的平均输出功率,提出了一种开槽螺旋线慢波结构,建立了该结构的热分析模型,并对其热形变情况进行模拟分析。热分析结果表明:在相同条件下,开槽螺旋线慢波结构比常规螺旋线慢波结构具有更高的散热能力,更小的热形变。设计了Ka波段开槽螺旋线行波管的慢波结构、耦合结构,并采用CST软件建立了具有集中衰减器和切断的三维注-波互作用模型,对非线性的注-波互作用过程进行了模拟计算。计算结果表明:在27.5GHz~32.5GHz范围内,开槽螺旋线行波管的平均输出功率大于700W,对应的增益和电子效率分别大于41.1dB和19%。该结构的提出,对研制大功率高可靠的毫米波螺旋线行波管具有积极的推动作用。另外,为提高开槽螺旋线慢波结构的耦合阻抗,在本章的最后提出了一种双夹持开槽螺旋线慢波结构,并对其注-波互作用特性进行了研究。
     2、为克服介质夹持杆易断以及宽带螺旋线行波管增益波动大等难题,提出了一种具有金属内芯的介质夹持杆。本章详细研究了这种新型夹持杆的加工方法,并把这种夹持杆应用到螺旋线慢波结构中。利用该新型夹持杆螺旋线慢波结构完成了V波段互作用电路的设计。研究结果表明:与常规夹持杆相比,该新型夹持杆具有更好的柔韧性,因此在慢波结构装配时不容易断裂;同时,夹持杆中加载的金属内芯还起到翼片加载的作用,可以改善慢波结构的色散特性。当电子注电压为13100V,电流为60mA时,在53GHz~68GHz范围内,输出功率大于80W,增益大于39dB,电子效率大于10.3%,最重要的是在15GHz范围内,增益波动只有0.7dB。该结构的提出为发展宽频带低增益波动以及高可靠毫米波行波管提供了一个新的解决方案。
     3、为解决毫米波螺旋线行波管不易加工、装配的困难,并结合平面微带曲折线慢波结构的特点,创新性地提出了一种卷绕微带曲折线慢波结构。详细研究了这种结构的加工方法,并利用该结构完成了V波段互作用电路的设计。计算结果表明:在58GHz~63GHz范围内,卷绕微带曲折线行波管的峰值输出功率大于130W,相应的增益和电子效率分别大于31.6dB和8.2%。
     4、采用T型夹持杆螺旋线慢波结构,并利用螺距跳变技术,成功地设计了低谐波倍频程螺旋线行波管的慢波电路。计算结果表明:在一个倍频程带宽内,基波输出功率大于250W,二次谐波小于-7dB。对所设计的无截获栅控电子枪进行了热分析和热应力分析,给出了电子枪的装配距离等关键参数。最后,我们提出了一种新的抑制二次谐波的方法—磁场跳变技术。计算结果表明:该技术可把低频端的二次谐波抑制到-11.32dB以内,对应的基波功率大于300W。
     5、低谐波倍频程螺旋线行波管的实验测试。根据本文设计的方案,分别加工和装配了电子光学样管和整管。首先,对电子光学样管的流通率进行了实验测试。结果表明:样管的流通率达到了98.2%,尤其是无截获栅控电子枪发射性能良好,控制栅电流为2μA。其次,对整管的传输特性进行了测试。最后,对整管进行了热测试。实验测试结果表明:在工作带宽内,基波输出功率大于250W,二次谐波小于-7dB,电子效率大于13%。
Helix traveling-wave tubes (TWT) with wide-bandwidth, high power, highefficiency and high gain, which especially can be chained with solid state poweramplifier (SSPA) and electronic power conditioner (EPC) to form superior MicrowavePower Module (MPM), are attractive for many applications, such as radar, electroniccountermeasures and communication. Helix slow-wave structure (SWS) which canreduce the phase velocity of electromagnetic wave to be equal to the velocity of theelectron beam is the key component of the TWT. Because its heat dissipation capabilityis limited, the average-power of the TWT is low. As the development of the militaryelectronic technology, the helix TWTs with wider bandwidth, higher power, higherfrequency, longer life and smaller size are urgent. In this paper, analog simulation andexperimental measurement are used to study the novel helix SWS. The important worksand innovation points are listed below:
     1. To improve the heat dissipation capability of the helix SWS, and then enhance theaverage power of millimeter-wave TWT, the slotted helix SWS has been proposed by us.The thermal analysis model is constructed and the thermal deformation analysis is alsostudied. Our preliminary thermal analysis of this structure shows that it has better heatdissipation capability and smaller thermal deformation than those of the conventionalhelix SWS in the same conditions. The slotted helix SWS operating in the Ka band isdesigned. The model with concentrated attenuators and sever is constructed by usingCST software and the beam-wave interaction simulations of the novel slotted helixslow-wave circuit are conducted by utilizing CST Particle Studio. The results show thatthis novel circuit can produce over700W average output power in a frequency rangefrom27.5GHz to32.5GHz, the corresponding conversion efficiency and gain over19%and41.1dB. At the end of this chapter, the double-slotted helix slow-wave structure isproposed to improve the coupled impedance of the SWS whose beam-wave interactioncharacteristic is studied also.
     2. To overcome the difficulties of ceramic dielectric rods easily brittle and decreasethe fluctuation of gain, a kind of dielectric rods with metal inner core is proposed. Theprocess method of this kind of rods is studied, and the rods are applied in the helix SWS.The beam-wave interaction circuit of the helix SWS operating in V-band is designed. The results show that the flexibility of these rods with metal core is better than that ofthe conventional rods; therefore, they are not easily fractured. Meanwhile, the metalcore in the rod can also improve the dispersion characteristics of the helix SWS. Fromour calculations, when the designed beam voltage and beam current are set to be13.1kVand0.06A, respectively, this novel TWT can produce over80-W average output powerin a frequency range from53GHz to68GHz, and the corresponding gain and conversionefficiency can reach over39dB and10.3%.
     3. To solve the problem of processing and assembling difficulties, a novel windingmicrostrip meander-line SWS is proposed. The processing method of this structure isstudied and the interaction circuit of the SWS operating in the V-band is investigated.The results show that this novel winding microstrip meander-line TWT can produceover130W peak power output in a frequency range from58GHz to63GHz, thecorresponding conversion efficiency values and gain over8.2%and31.6dB.
     4. The slow wave circuit of octave helix TWT with T-shaped dielectric rods isdesigned. The calculated results show that the output power of fundamental wave in oneoctave band values over250W, the gain of second harmonics is lower than-7dB. Thethermal analysis and thermal stress analysis of the nonintercepting gridded electron gunmodel are studied and the assembling distance of the electron gun is also calculated.The method (magnetic field taper technology) of restraining second harmonics isproposed. The gain of second harmonics is restrained to-11.32dB, the correspondingfundamental power is over300W.
     5. The experimental research of the low harmonics octave TWT is carried out. Theelectronic optical sample tube and whole tube according to the designed scheme areassembled respectively. First, the flow rate experimental test in the optical sample tubehas been done. The test results show that the flow rate of the sample tube can reach to98.2%, the emission characteristics of the nonintercepting gridded electron gun is good,and the current of the control gate is only2μA. Second, the transmission property of thewhole tube is tested. At last, the hot test of the whole tube is also tested. The resultsshow that the output power of fundamental wave in one octave band values over250W,the gain of second harmonics is lower than-7dB and the electronic efficiency is over13%.
引文
[1]王文祥.真空电子器件[M].北京:国防工业出版社,2012,1-75
    [2]杜祥琬,丁武,董志伟.对自由电子激光(FEL)发展的评论[J].强激光与粒子束,2010,7(1):1-9
    [3]陈代兵,王冬,范植开,等.多频磁绝缘线振荡器的粒子模拟[J].强激光与粒子束,2007,19(10):1702-1707
    [4]廖复疆,孙振鹏,闫铁昌.真空电子技术—信息化武器装备的心脏[M].北京:国防工业出版社,2008,1-26
    [5]冯进军,唐烨,李含雁,等.340GHz太赫兹返波振荡器[J].太赫兹科学与电子信息学报,2013,11(1):32-37
    [6] Y. B Gong, Z. G Lu, G. J Wang, et al.. Study on mm-wave rectanglar grating traveling-wave tubewith sheet-beam[J]. J. Infrared Millim.Waves,2006,25(3):173-178
    [7]冯进军,胡银富,蔡军,等. W波段行波管发展评述[J].真空电子技术,2010,2:27-32
    [8]丁耀根,刘濮鲲,张兆传,等.大功率速调管的技术现状和研究进展[J].真空电子技术,2010,1-9
    [9]吴振华,张开春,刘盛纲.扩展互作用谐振腔的模拟分析[J].强激光与粒子束,2007,19(3):483-486
    [10] T. P. Fleming, M. R. Lambrecht, and K. L. Cartwright. Numerical simulations of a relativisticinverted magnetron[J]. IEEE Transactions on Plasma Science,2010,38(7):1563-1573
    [11] B. W. Hoff, M. Franzi, R. M. Gilgenbanch, et al.. Three-dimensional simulations of magneticpriming of a relativistic magnetron[J]. IEEE Transactions on Plasma Science,2010,38(6):1292-1301
    [12] R. Advani, J. P. Hogge, K. E. Kreischer, et al.. Experimental investigation of a140-GHz coaxialgyrotron oscillator[J]. IEEE Transactions on Plasma Science,2001,29(6):943-950
    [13] Y. Hirata, M. Komuro, Y. Mitsunaka, et al.. Experimental coupling efficiency of shaping mirrorsmatching a168-GHz gyrotron output wave to the HE11mode[J]. IEEE Transactions on MTT,1999,47(8):1522-1527
    [14]邵浩,刘国治.向外发射同轴型虚阴极振荡器研究[J].物理学报,2001,50(12):2387-2392
    [15]王弘刚,张亚洲.新型虚阴极振荡器的研究[J].强激光与粒子束,2004,16(2):209-214
    [16]郭宝增.真空微电子器件及其研究进展[J].微电子学,1993,23(6):10-16
    [17]赵宏卫,王保平,童林夙.真空微电子器件发射稳定性和可靠性概述[J].电子器件,1995,18(4):218-226
    [18] C. R. Smith. Power module technology for the21st century. IEEE National Aerospace andElectronics Conference[C], Dayton, USA,1995,106-113
    [19] L. Nebuloni, G. Orsenigo. Microwave power module for space applications[J]. IEEETransactions on Electron Devices,2001,48(1):88-94
    [20] J. Kennedy, C. Colombo. Development of a low voltage power booster TWT for a Q-bandMMPM[J]. IEEE Transactions on Electron Devices,2001,48(1):180-182
    [21]廖复疆.微型真空电子器件和太赫兹辐射源技术进展[J].电子学报,2003,9:1361-1364
    [22]宫玉彬,路志刚,王冠军,等.带状束矩形删毫米波行波管的研究[J].红外与毫米波学报,2006,25(3):173-178
    [23]刘洋,徐进,魏彦玉,等. V波段大功率带状注曲折波导行波管[J].强激光与粒子束,2012,24(11):2698-2702
    [24]刘文星.螺旋双梳齿加载圆波导慢波结构的注-波互作用研究[D].成都:电子科技大学,2010,20-40
    [25]王文祥.微波工程技术[M].北京:国防科技出版社,2009,325-326
    [26]朱小芳.螺旋线慢波系统高频特性理论分析与数值模拟[D].成都:电子科技大学,2007,20-21
    [27] S. Bhattacharjee, J. H. Booske, C. L. Kory, et al.. Folded waveguide traveling-wave tubesources for terahertz radiation[J]. IEEE Transactions on Plasma Science,2004,32(3):1002-1014
    [28]何俊,魏彦玉,宫玉彬,等. Ka波段曲折双脊波导行波管的研究[J].物理学报,2010,59(4):2843-2849
    [29]何俊,魏彦玉,宫玉彬,等.脊加载曲折波导行波管注波互作用的线性理论研究[J].物理学报,2010,59(9):6659-6665
    [30] M. L Liao, Y. Y Wei, Y. B Gong, et al.. A rectangular groove-loaded folded waveguide formillimeter-wave traveling-wave tubes[J]. IEEE Transactions on Plasma Science,2010,38(7):1574-1578
    [31] Y. Liu, L. N Yue, Y. Y Tian, et al.. V-shape folded rectangular groove waveguide formillimeter-wave traveling-wave tube[J]. IEEE Trans. on Plasma Science,2012,40(4):1027-1031
    [32] Y. Liu, J. Xu, Y. Y Wei, et al.. Design of a V-band high-power sheet-beam coupled-cavitytraveling-wave tube[J]. Progress in Electromagnetics Research,2012,123:31-45
    [33] X. Xu, Y. Y Wei, F. Shen, et al.. Study on W-band sheet electron beam sine wave guidetraveling-wave tube[J]. Chinese Journal of Electronics,2012,21(1):169-172
    [34]赖剑强,魏彦玉,许雄,等.140GHz大功率交错双栅行波管的设计和模拟研究[J].物理学报,2012,61(17)
    [35] F. Shen, Y. Y Wei, X. Xu, et al..140GHz V-shaped microstrip meander-line traveling-wavetube[J]. Journal of Electromagnetic Waves and Applications,2012,26(1):89–98
    [36] Y. Liu, Y. Y Wei, Y. B Gong, et al.. Investigation on the slow-wave properties of adielectric-lined azimuthally periodic circular waveguide for TWT[J]. IEEE Trans. on ElectronDevices,2010,57(8):2019–2026
    [37] K E. Kreischer, J. C. Tucek, M. A. Basten, et al..220GHz power amplifier testing at NorthropGrumman[C]. IEEE International Vacuum Electronics Conference, Paris, France,2013,1-2
    [38] M. A. Frisoni. Theoretical design study of2–18GHz bandwidth helix TWT amplifier[R]. NewYork, Rome Air Develop. Center,1987.
    [39] T. K. Ghosh, A. J. Challis, A. Tokeley, et al.. Improvements in broadband performance ofmini-TWTs at e2v technologies[C]. IEEE International Vacuum Electronics Conference,Kitakyushu, Japan,2007,1-2
    [40] T. K. Ghosh, A. J. Challis, A. Tokeley, et al.. Development of Ultra wide band helixmini-TWTs[C]. IEEE International Vacuum Electronics Conference, Monterey, USA,2010,303-304
    [41] T. Beck, P. Nugues, S. Challemel, et al..200W CW4.5~18GHz micro-TWT[C].IEEE International Vacuum Electronics Conference, Kitakyushu, Japan,2007,1-2
    [42]邹文禄,冯蕾.2~8GHz宽带大功率连续波行波管的研究[C].中国电子学会真空电子学分会第十三届学术年会论文集(下),贵阳,2001,193-196
    [43]唐伯俊.6~18GHz200W小型化宽带大功率连续波行波管的研制[C].第九届真空技术应用学术年会论文集,绵阳,2006,140-147
    [44]赵示录,沈柏松.6.5~18GHz连续波宽带大功率行波管研究[C].中国电子学会真空电子学分会第十一届学术年会论文集,青岛,1997,155-158
    [45]唐伯俊,刘胜英.4.5~18GHz100瓦超宽带慢波系统的研究[C].中国电子学会真空电子学分会第十七届学术年会论文集,宜昌,2009,104-107
    [46]林为干,时振栋,薛良金.毫米波技术的回顾、现状与展望展[J].电子科技大学学报,1986,15(4):94-101
    [47]梁德文.世纪之交的军民两用毫米波技术[J],电讯技术,1999,(6):93-97
    [48]邬显平.毫米波技术应用及其进展[J].电子科技导报,1999,(12):7-15
    [49] E. Bosch, R. Christ, M. Lefevre, et al.. New500W ka band TWT’s[C].IEEE International Vacuum Electronics Conference, Rome, Italy,2009,70-71
    [50] C. K. Chong, J. W. Forster, M. L. Ramay, et al..500W Ka-band helix-TWT: transition fromdevelopment to production[J]. IEEE International Vacuum Electronics Conference, Rome, Italy,2009,76-77
    [51] T. Machida, W. Suzuki, M. Yoshida, et al.. Development of Ka-band500W CW helix TWT[C].IEEE International Vacuum Electronics Conference, Bangalore, India,2011,17-18
    [52]郝保良,黄明光,王刚,等.中科院电子所Ka波段行波管及放大器[C].中国电子学会真空电子学分会第十九届学术年会论文集(上册),黄山,2013,46-47
    [53]冯晨,杨明华,黄拓朴. Ka波段250W连续波行波管的研制[J].真空电子技术,2011,4:90-92
    [54]魏晨曦.美军用卫星MILSTAR系统简介[J].邮电设计技术,1998,(12):17-20
    [55] G. Kornfeld, E. Bosch, W. Gerum, et al..60GHz space TWT to adress future market[C].IEEE International Vacuum Electronics Conference, Monterey, USA,2000,1-2
    [56] N. R. Robbins, D. R. Dibb, W. L. Menninger, et al.. Space qualified,75-Watt V-band helixTWTA[C]. IEEE International Vacuum Electronics Conference, Monterey, USA,2012,349-350
    [57] L. Li, J. J. Feng, B. Qu, et al.. Design and experiment of a V-band helix TWT[C].IEEE International Vacuum Electronics Conference, Paris, France,2013,1-2
    [58]刘盛纲.太赫兹科学技术的新发展[J].中国基础科学·科学前沿,2006,1:7-12
    [59]刘盛纲,钟任斌.太赫兹科学技术及其应用的新进展[J].电子科技大学学报,2009,38(5):481-486
    [60] C. L. Kory, J. A. Dayton, Jr. Design of650GHz helical BWO using CST Studio Suite[C].IEEE International Vacuum Electronics Conference, Monterey, USA,2008,392-393
    [61] J. A. Dayton, Jr., C. L. Kory. et al.. Applying microfabrication to helical vacuum electrondevices for THz application[C]. IEEE International Vacuum Electronics Conference, Rome,Italy,2009,41-44
    [62] C. L. Kory, J. A. Dayton, Jr., et al..95GHz helical TWT design[C].IEEE International Vacuum Electronics Conference, Rome, Italy,2009,125-126
    [63]李力,冯进军,瞿波,等. W波段螺旋线行波管互作用设计[C].中国电子学会真空电子学分会第十九届学术年会论文集(上册),黄山,2013,160-161
    [64] L. W. Liu, Y. Y. Wei, J. Xu, et al.. A novel slotted helix slow-wave structure for Millimeter-wavetraveling-wave tube[J]. Progress in Electromagnetics Research,2013,135:347-362
    [65] L. W. Liu, Y. Y. Wei, S. M. Wang, et al.. Research on novel slotted helix slow-wave structurefor high power Ka-band traveling-wave tube[J]. Chin. Phys. B,2013,22(10):108401(1)-(5)
    [66] L. W. Liu, Y. Y Wei, F. Shen, et al.. A novel winding microstrip meander-line slow-wavestructure for V-band TWT[J]. IEEE Electron Device Letters,2013,34(10):1325-1327
    [67] L. W. Liu, Y. Y Wei, Y. B Zhang, et al.. Design of a high power, high efficiency Ka-band helixtraveling-wave tube[J]. Progress In Electromagnetics Research Letters,2013,42:187-199
    [68] L. W. Liu, Y. Y. Wei, H. R Yin, et al.. A modified slotted helix slow-wave structure forhigh-power millimeter-wave TWT[C]. IEEE International Vacuum Electronics Conference,2013, Paris, France,1-2
    [69] L. W. Liu, Y. Y. Wei, X. Xu, et al.. A novel helical slow-wave structure for millimeter-wavetraveling-wave tube[C].5thGlobal Symposium on Millimeter Wave, Haerbing, China,2012,312-325
    [70]刘鲁伟,魏彦玉,沈飞,等.一种卷绕微带曲折线慢波结构的研究[C].2013中国电子学会真空电子学分会第十九届学术年会论文集,黄山,安徽,183-186
    [71]刘鲁伟,魏彦玉,段兆云,等. S波段宽带大功率连续波行波管的研究[C].2011中国电子学会真空电子学分会第十九届学术年会论文集,张家界,湖南,43-46
    [72]刘鲁伟,魏彦玉,宫玉彬等.栅控电子枪的热应力分析[C].四川真空电子学会议论文集,新都,成都,2010,89-92
    [73] Y. Y Wei, L. W. Liu, Y. B Gong, et al.. Helical slow-wave structure[P]. USA Patent,13/345121,2012-5-17
    [74]魏彦玉,刘鲁伟,宫玉彬,等.一种螺旋线慢波结构[P].中国发明专利,201110415124.2,2012-05-09
    [75]魏彦玉,刘鲁伟,沈飞,等.一种采用圆弧体“V”形波状微带曲线的慢波器件[P].中国发明专利,201310087385.5,2013-07-17
    [76]魏彦玉,刘鲁伟,宫玉彬,等.一种行波管夹持杆及其制备方法[P].中国发明专利,201310408224.10,2013-10-12
    [77]魏彦玉,刘鲁伟,宫玉彬,等.一种行波管夹持杆[P].实用新型专利,201320557984.40,2013-10-12
    [78] L. M. Yao, Z. H. Yang, Z. S. Huo, et al.. Simulation of thermal characteristics for helicalslow-wave circuit of TWT[C]. International Conference on Microwave and Millimeter WaveTechnology, Nanjing, China,1–3,2007.
    [79] S. M. Yan, L. M. Yao, Z. H. Yang, et al.. Effect of thermal strain in helical slow-wave circuit onTWT cold–test characteristics[J]. IEEE Transactions on Electron Devices,2008,55(8):2278–2281
    [80] G. Fleury, J. C. Kuntzmann, P. Lafuma. High-power brazed-helix telecommunicationsTWT’s[C]. International Electron Devices Meeting, Washington, D.C.,1977,116–119
    [81] D. Henry, N.Santonja, S. Wartski. Brazed-helix technology for30GHz power TWTs[C].International Electron Devices Meeting, Los Angeles, USA,1986,505-507
    [82] S. Wartski, D. Henry, N. Santonjia. Development of a brazed-helix TWT for future Ka-bandearth stations delivering200W in the band27.5-30GHz[C]. International Electron DevicesMeeting, San Francisco, USA,1988,366–369
    [83] Y. B. Gong, Y. Y. Wei, W. X. Wang, et al.. Analysis of a novel brazed helix tape slow wavestructure with high power capability[C]. The30th IEEE International Conference on PlasmaScience, Jeju, Korea,2003,177
    [84] J. S. Lee, C. Everleigh. High power CW Beo block brazed copper helix TWT[C].IEEE International Vacuum Electronics Conference, Monterey, USA,2006,185–186
    [85] J. A. Dayton, G. T. Mearini, H. Chen, et al.. Diamonded-studded helical traveling wave tube[J].IEEE Transactions on Electron Devices,2005,52(5):695–701
    [86] Y. Han, Y. Liu, Y. Ding, et al.. An evaluation of heat dissipation capability of slow-wavestructures[J]. IEEE Transactions on Electron Devices,2007,54(6):1562–1565
    [87] Y. Han, Y. Liu, Y. Ding, et al.. Thermal analysis of a helix TWT slow-wave structure[J]. IEEETransactions on Electron Devices,2008,55(5):1269–1272
    [88] Y. Han, Y. Liu, Y. Ding, et al.. Reliability Analysis of thermal conduction of slow-wavestructures assembled with different methods[J]. IEEE Transactions on Electron Devices,2009,9(2):265–268
    [89] C. E. Toups, D. K.Yamadam. Thermal/Structural analysis of diamond supported helices[C].AIAA11th Communication Satellite Systems Conference, San Diego, USA,1986,605–608
    [90] A. V. Galdetskiy. Helix slow-wave structure with diamond support for power TWTs[C].2005Proceeding of the sixth International Vacuum Electronics Conference IVEC-2005, Noordwijk,The Netherlands,471-472
    [91] J. A. Lucken. Some aspects of circuits power dissipation in high power CW helixtraveling-wave tubes, Part Ⅰ: general theory[J]. IEEE Transactions on Electron Devices,1969,16(9):813–820
    [92] J. A. Lucken. Some Aspects of circuits power dissipation in high power CW helixtraveling-wave tubes, PartⅡ: scaling laws[J]. IEEE Transactions on Electron Devices,1969,16(9):821–826
    [93]韩勇,刘燕文,丁耀根,等.螺旋线慢波结构中界面热阻率的研究[J].物理学报,2009,58(3):1806-1811
    [94]赵兴群,张国兴,孙小菡,等.脉冲螺旋线行波管热状态分析及ANSYS模拟[J].电子学报,2004,32(6):1029-1032
    [95] Ansoft Corp. Analysis Guide.[EB/OL]. http://www.ansoft.com.cn/,2012
    [96]颜胜美.热形变对螺旋线行波管性能参数的影响研究[D].成都:电子科技大学,2009,7-26
    [97]邓凡平. ANSYS10.0有限元分析自学手册.北京:人民邮电出版社,2007,50-60
    [98]姚列明.微波管的热分析[D].成都:电子科技大学,2007,49-110
    [99] R. Crivello, R. W. Grow. Thermal analysis of PPM-focused rod-supported TWT helixStructures[J]. IEEE Transactions on Electron Devices,1988,35(10):1701–1720
    [100] R. Harper, M. P. Puri. Heat transfer and power capabilities of EFH helix TWT’s[C],International Electron Devices Meeting, California, USA,1986,498–500,
    [101] X. F. Zhu, Z. Hai, B. Li. Modeling of T-shaped vane loaded helical slow-wave structures[J].IEEE Transactions on Electron Devices,2006,34(3):563–571
    [102]张勇,莫元龙.有限厚度翼片加载螺旋线模型[J].电子科技大学学报,2002,31(5):479-484
    [103]张勇,莫元龙,李建清,等.翼片加载螺旋线慢波结构的螺旋带模型[J].强激光与离子束,2002,14(6):887-891
    [104]段兆云,宫玉彬,王文祥.翼片加载螺旋线慢波系统的特性分析[J].电子科技大学学报,2003,32(4):403-408
    [105] J. R. Pierce. Traveling wave tubes[M]. Princeton NJ: Van Nostrand,1950,231-259
    [106] CST Corp. CST MWS&PS tutorials[EB/OL]. http://www.cstchina.cn/,2010
    [107] Ansoft Corp. Ansoft HFSS user’s reference[EB/OL]. http://www.ansoft.com.cn/,2012
    [108]胡玉禄.行波管注波互作用基础理论与CAD技术研究[D].成都:电子科技大学,2011,90-95
    [109] J. C. Simon, A. A. Mondelli, B. Levush, et al.. CTLSS-An advanced electromagneticsimulation tool for designing high-power microwave sources[J]. IEEE Transactions on PlasmaScience,2000,28(3):841-866
    [110] D. P. Chernin, T. M. Antonsen, J. B. Levush, et al.. A three-dimensional multifrequencylarge-signal model for helix traveling wave tubes[J]. IEEE Transactions on Electron Devices,2001,48(1):3–11
    [111] X. Xu, Y. Y. Wei, F. Shen, et al.. A watt-class1-THz backward-wave oscillator based on sinewaveguide[J]. Physics of Plasmas,2012,19(1):013113(1)-(5)
    [112] J. Q. Lai, Y. Y. Wei, Y. Liu, et al.. Staggered double vane circuit for W-band traveling-wavetube amplifier[J]. Chinese Physics B,2012,21(6):068403(1)-(6)
    [113]赖剑强,魏彦玉,许雄,等.140GHz大功率交错双栅行波管的设计和模拟研究[J].物理学报,2012,61(17):178501(1)-(8)
    [114] Y. B. Gong, H. R. Yin, L. N. Yue, et al.. A140-GHz two-beam overmoded folded-waveguidetraveling-wave tubes[J]. IEEE Transactions on Plasma Science,2011,39(3):847-851
    [115] C. L. Kory. Investigation of fully three-dimensional helical RF field effects on TWTbeam/circuit interaction[J]. IEEE Transactions on Electron Devices,2012,48(8):1718-1726
    [116] F. Shen, Y. Y. Wei, X. Xu, et al..140GHz V-shaped microstrip meander-line traveling wavetube[J]. Journal of Electromagnetic Waves and Applications,2012,26(1):89–98
    [117] F. Shen, Y. Y. Wei, X. Xu, et al.. Study on a W-band modified V-shaped microstripmeander-line traveling-wave tube[J]. Chinese Physics B,2012,21(6):064210(1)-(6)
    [118] F. Shen, Y. Y. Wei, X. Xu, et al.. Symmetric double V-shaped microstrip meander-lineslow-wave structure for W-band traveling-wave tube[J]. IEEE Transactions on ElectronDevices,2012,59(5):1551-1557
    [119]李力,冯进军.利用三维粒子软件计算螺旋线行波管的互作用和三阶互调[J].真空电子技术.2010,2010(2):48-50
    [120]刘洋.V波段新型慢波结构行波管的研究[D].成都:电子科技大学,2012,101-108
    [121] CST Corp., CST PS Tutorials[OL]. http://www.cstchina.cn/
    [122]刘洋,徐进,许雄,等. V形曲折矩形槽慢波结构的研究[J].物理学报,2012,61(15):154208-1-154208-7
    [123] G. K. Kornfeld, E. Bosch, W. Gerum, et al..60-GHz space TWT to address future market[J],IEEE Transactions on Electron Devices,2001,48(1):68-71
    [124]张大勇,冯进军,廖复疆,等.微带型曲折线慢波结构冷测特性的计算机仿真[J].电子器件,2006,29(4):1223-1226
    [125]阮存军,王树忠.新型带状注毫米波器件的研究进展[J].真空电子技术,2010,52(2):8-15
    [126] F. Shen, Y. Y. Wei, H. R. Yin, et al.. A novel V-shaped microstrip meander-line slow-wavestructure for W-band MMPM[J]. IEEE Transactions on Plasma Science,2012,40(2):463-469
    [127]陈大鹏,叶甜春.现代光刻技术[J].核技术,2004,27(2):81-86
    [128]任延同.离子刻蚀技术现状与未来发展[J].光学精密工程,1998,6(2):7-14
    [129]孔祥东,张玉林,宋会英. LIGA工艺的发展及应用[J]. MEMS器件与技术,2004,(5):13-27
    [130] S. Sengele, H. R. Jiang, J. H. Booske, et al.. Microfabrication and characterization of aselectively metallized W-band meander-line TWT circuir[J]. IEEE Transactions on ElectronDevices,2009,56(5):730-736
    [131]刘漾.新型角向周期加载圆波导行波管的研究[D].成都:电子科技大学,2012,91-95
    [132] C. Zhang, G. C. Stevens. Dielectric properties of boron nitride filled epoxy composites.proceedings of IEEE CEIDP, Kansas, USA,2006,19-22
    [133] J. D. Wilson, C. L. Kory. Simulation of cold-test parameters and RF output power for acoupled-cavity traveling-wave tube[J]. IEEE Transactions on Electron Devices,1995,42(11):2015-2020
    [134]赵士录.连续波宽带大功率行波管中的色散成型及谐波抑制技术研究[J].电子学报.1999,27(3):113-115
    [135]赵士录.超宽带行波管的最新进展及其大功率合成技术[J].真空电子技术.1994,1:38-43
    [136] R. S. Raju, S. N. Joshi, B. N. Basu. Modeling of practical multi-octave-band helical slow-wavestructures of a traveling-wave tube for interaction impedance[J]. IEEE Transactions onElectron Devices,1992,39(4):996-1002
    [137] L. Kumar, R. S. Raju, B. N. Basu. Moding of a van-loaded helical slow-wave structure forbroad-band traveling-wave tubes[J]. IEEE Transactions on Electron Devices,1989,36(9):1991-1999
    [138]朱昭君. MPM用小型行波管CAD研究[D].成都:电子科技大学,2007,18-20
    [139] C. L. Kory. Three-dimensional simulation of helix traveling-wave tube cold-test characteristicsusing MAFIA. IEEE Transactions on Electron Devices,1996,43(8):1317-1319
    [140] C. L. Kory, J. A. Dayton. Accurate cold-test model of helical TWT slow-wave circuits[J].IEEE Transactions on Electron Devices,1998,45(4):966-971
    [141]刘瑞奇,段兆云,郭方,等.螺旋线行波管中功率洞问题的研究[J].真空电子技术,2011,(2)28-31
    [142] Y. B. Gong, Z. Y. Duan, Y. M. Wang, et al.. Suppression of in-band power holes in helixtraveling-wave tubes[J]. IEEE Transactions on Electron Devices,2011,58(5):1556-1561
    [143] V. Srivastava, R. G. Carter, B. Ravinder, et al.. Design of helix slow-wave structures for highefficiency TWTs[J]. IEEE Transactions on Electron Devices,2000,47(12):2439-2443
    [144] S. S. Jung, A. V. Soukhov, B. F. Jia, et al.. Positive phase-velocity tapering of broadband helixtraveling-wave tubes for efficiency enhancement[J]. Applied Physics Letters,2002,80(16):3000-3002
    [145]姚列明,肖礼,杨中海.行波管电子枪阴极组件的热计算[J].强激光与粒子束,2004,16(10):1317-1320
    [146]姚列明,杨中海,肖礼.行波管电子枪设计中的热分析[J].电子科技大学学报,2005,34(4):470-473
    [147] J. W hlbier. The multifrequency spectral Eulerian (MUSE) model of a traveling wave tube[J].IEEE Transactions Plasma science,2002,30(3):1063-1075
    [148] J. W hlbier, J. H. Booske. On the physics of harmonic injection in a traveling wave tube[J].IEEE Transactions on Plasma Science,2004,32(3):1073-1085
    [149]梁晓峰,蔡绍伦,黄明光,等.改善宽带行波管性能的谐波注入技术[J].真空电子技术,2008,(3):23-26
    [150] Z. J. Zhu, B. F. Jia, D. M. Wan, et al.. The study of dispersion shaping and harmonicsuppression in helix TWT. IEEE International Vacuum Electronics Conference, Rome, Italy,2009, pp:133-134
    [151] D. K. Abe, B. Levush, T. M. Antonsen, et al.. Design of a linear C-band helix TWT for digitalcommunications experiments using the Christine suite of large-signal codes[J]. IEEETransactions on Plasma Science,2002,30(3):1053-1062
    [152] N. J. Dionne. Harmonic generation in octave bandwidth traveling-wave tubes[J], IEEETrans.Electron.Dev.ED4,365(1970).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700