用户名: 密码: 验证码:
红外材料低温折射率测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代红外探测中,特别是在红外微弱信号探测中,低温光学系统得到广泛运用。在过去,由于缺少红外材料低温折射率数据,低温光学系统常常采用的是全反射式低温光学系统,随着红外探测任务的发展,全反射式低温光学系统在某些场合已经不能满足任务需要,这就提出研制低温折射式/折返混合式低温光学系统的需求,而低温折射式/折返混合式低温光学系统的研制的一个重要基础就是需要知道红外透射材料在低温下的折射率和折射率温度系数。国外已经在低温折射率测量方面做了较多工作,也获得了许多常见的红外材料低温折射率数据,但是对外公开很少,只是公开了部分可见光下的折射率数据,所以开展对低温折射率测量技术的研究是成功的研制低温折射式/折返混合式低温光学系统的重要基础。
     与常温折射率测量相比,低温折射率的测量面临诸多挑战。首先,低温是针对120K以下的温度,也就是-153℃以下的温度,对于如此低的温度,需要在真空环境中获得;其次,待测材料样品从常温到低温,经历近200K的温度变化,样品可能产生的刚体运动和变形会给折射率测量引入误差甚至错误;第三,在与外界隔绝的真空环境中对样品棱镜进行致冷和温控;第四需要在低温真空环境中实现对样品棱镜的控制等。
     为了成功研制低温折射率测量系统,并获得红外材料低温下的折射率,课题针对低温折射率测量上述问题进行了研究。首先设计了样品温控和运动控制的载体——样品仓,并根据传热学相关理论,推导出了样品仓温控数学模型。同时利用有限元分法对样品和样品仓的温度场进行分析,获得了样品和样品仓在低温下的温度场特性及样品仓的绝热性能。根据有限元热分析结果,对样品和样品仓进行了热应力耦合分析,获得了样品在低温下的应力和变形。利用光机热集成分析的方法,对低温下折射率测量的误差和精度进行了研究,同时对测量装置的静刚度和动力学特性进行分析,得出了装置中主要部件的静刚度和模态特性与测量误差的关系。最后,根据前面的测量方案,搭建了低温折射率测量相关实验,实验结果与仿真分析结果比较吻合,而且对融石英样品棱镜的低温折射率测量数据与美国NASA测量结果相差只有1.6x10-5,说明该测量方案完全满足低温折射率测量的要求。
Nowadays, the cryogenic optical systems are widely used for IR detection,especially for weak IR signal. In the past, most of the cryogenic optical systemsare reflective. It is very difficult to design refractive cryogenic optical systemsbecause there is lack of cryogenic, infrared and refractive index data. Thereflective cryogenic optical systems have played a significant role in infrareddetection tasks for a long time. As the rapid development of IR detection, thereflective cryogenic optical systems cannot meet the need of tasks. It is the verytime for developing the refractive cryogenic optical systems. One of the keypoints is the cryogenic refractive index of IR materials. Many efforts have beendone to study the cryogenic refractive index of IR materials, but none is open topublic, so, to research on the cryogenic refractive index measuring technologyresearch is a very important foundation for the development of cryogenicrefractive optical system.
     Compared with the common refractive index measurement, the cryogenicindex measurement is more challenging. First, the cryogenic temperature isequal to120K, which needs a vacuum environment to maintain such a lowtemperature. Second, the sample material would endure a big change oftemperature, which may cause the deformation or movement of the sample.Third, it is a problem to keep the temperature of sample materials at the settled point. Fourth, it is a problem to rotate the sample prism at the vacuumenvironment.
     A sample chamber is designed to solve the problem of temperature detectingand setting of sample prism. The mathematical model of sample chamber isalso acquired. A FEM analysis model is used to get the temperature field andstress of sample chamber and sample prism at the cryogenic temperature. Theerror sources are to be analyzed. The final experiments’ results coincide withthe previous analysis. The cryogenic refractive index of fused Silica is veryclose to the NASA’s result, and the error is about1.6x10-5. It is clear that themethod meet the demand of cryogenic measurement.
引文
1. J. S. Accetta, D.L.S., ed. The Infrared and electro-optical systems handbook.[M]1993,SPIE Optical Engineering Press.: Bellingham,Wash. p349-373
    2.任栖锋,低温光学系统的研究[D], in中国科学院研究生院.2009,中国科学院光电技术研究所.p14-18
    3.丁学专,星载长波红外系统研究[D], in中国科学院上海技术物理研究所.2010:上海.p3
    4. Martin Harwit, D.P.M., K. Shivanandan and B. J. Zajac, A Liquid Nitrogen Cooled[J],Rocket Borne, Infrared Telescope. APPLIED OPTICS,1966.p1732-1735
    5. D. P. McNutt, K.S., and P. D. Feldman, A Rocket-Borne Liquid Helium-CooledInfrared Telescope.1: Dewar and Optics[J]. APPLIED OPTICS,1969.p2199-2205
    6. Clegg, P.E., The Infrared Astronomical Satellite-IRAS[J]. Physica Scripta,
    1979.p678-683
    7.卢海;谢晋康,低温光学研究进展[J].1991.p1-6
    8. J. A. Bamberg, N.H.Z. Desigen and performance of the cryogenic focal plane opticsassembly for the Infrared Astronomical Satellite(IRAS)[C].1984: SPIE.
    9.钱忠钰,空间红外天文观测——从IRAS到ISO[J].天文学进展,1991.p238-250
    10. Scott, R.K.W.a.C.P., NASA’s Spitzer Space Telescope’s Operational MissionExperience[C]. Observatory Operations: Strategies, Processes, and Systems,
    2006.p01.1-01.12
    11. Bradley J. Frey, D.B.L., Timothy J. Madison. Temperature-dependent refractive indexof silicon and germanium[C]. in Cryogenic Optical Systems and Instruments X.
    2006.pJ1-J10
    12. Douglas B. Leviton, B.J.F., Todd Kvamme. High accuracy, absolute, cryogenicrefractive index measurements of infrared lens materials for JWST NIRCam usingCHARMS[C]. in Cryogenic Optical Systems and Instruments XI.2005.po1-o12
    13. M. Royer, J.F., D. Lorans, a. Pelier,. The Infrared Dtector Development for The IASIInstrument[C]: SPIE.
    14. P. Laporte, J.L.S., M. Courbon, M. Bon, and L. Vincent, Vacuum-ultraviolet refractiveindex of LiF and MgF2in the temperature range80-300K[J]. Opt. Soc,1983.
    15. H. W. Icenogle, B.C.P., and William L. Wolfe, Refractive indexes andtemperature coefficients of germanium and silicon[J]. APPLIED OPTICS,1976.15:p.4.
    16.苏录,卢寿丹,红外折射率和它随温度变化的测量技术[J].1975.p38-40
    17. Douglas B. Leviton, B.J.F. Ultra-high resolution, absolute position sensors forcryostatic appliations[C]. in IR Space Telescopes and Instruments.2003.p776-788
    18. Douglas B. Leviton, B.J.F., Design of a cryogenic, high accuracy, absolute prismrefractometer for infrared through far ultraviolet optical materials[C], in Specializedoptical Developments for Astronomy, S. D'Odorico, Editor.2003. p.259-269.
    19. Douglas B. Leviton, B.J.F. Thermal design considerations for the Cryogenic HighAccuracy Refraction Measuring System (CHARMS)[C]. in Cryogenic OpticalSystems and Instruments X.2003. p25-36
    20. Leviton, D.B., cryogenic,High-Accuracy,Refraction Measuring System(CHARMS)-anew facility for cryogenic infrared though far-ultraviolet refractive indexmeasurements[C], in Optical Fabrication, Metrology, and Material Advancements forTelescopes, P.D. Eli Atad-Ettedgui, Editor.2004. p.492-504.
    21. Douglas B. Leviton, Cryogenic temperature-dependent refractive index measurementsof N-BK7,BaLKN3,SF3,SF15,and E-SF03[C], in cryogenic optical system instrumentXII.2007.p05.1-05.12
    22. Douglas B. Leviton, B.J.F., Timothy J. Madison, Temperature-dependent refractiveindex of CaF2and Infrasil301[C], in cryogenic optical system instrument XII.
    2007.p04.1-04.11
    23. Bradley J. Frey*, D.B.L. Automation, operation, and data analysis in the cryogenic,highaccuracy, refraction measuring system (CHARMS)[C]. in Cryogenic OpticalSystems and Instruments XI.2005.pop.1-op.12
    24. Bradley J. Frey, R.M.H., Douglas B. Leviton. Cryogenic high-accuracy absolute prismrefractometer for infrared through far-ultraviolet optical materials:implementation andinitial results[C]. in Cryogenic Optical Systems and Instruments X.2003.p119-130
    25. Frey, D.B.L.a.B.J. Temperature-dependent absolute refractive index measurements ofsynthetic fused silica[C] in Optomechanical Technologies for Astronomy.2006.
    26. Vannoni, M.e.a., Measuring the refractive index of vitreous materials at cryogenictemperature with a spectrometer[J]. Meas. Sci. Technol.,2008.
    27. Paolo Spanò, A.B., Giorgio Toso, Marco Canetti, Alessandro Battocchio, Design anddevelopment of a cryogenic high-accuracy refractometer[C], in Advanced Optical andMechanical Technologies in Telescopes and Instrumentation, E. Atad-Ettedgui, Editor.
    2008. p.74184K-1~7418K-8.
    28. P. Spanòa,A.B., G. Tosoa, G. Parianica, Cryogenic refractometer for high accuracymeasurements of the refractive index of materials[C], in Optical Materials andStructures Technologies IV, W.A.G. edited by Joseph L. Robichaud, Editor.2009.
    29. Yamamuro, T., Measurement of refractive indices of20optical materials at lowtemperatures[J]. OPTICAL ENGINEERING,2006.45: p.12.
    30. Simmons, J., and Potter, K. S.,, ed. Optical Materials[M].2000, Academic Press: SanDiego.
    31.段文琴,张兆兰,卫秋霞,光学玻璃折射率温度系数的测量[J].1979.p38-43
    32.赵玮,精密热成型光学玻璃透镜的折射率场偏差及矫正方法研究[D].2009,中国科学技术大学. p.141.
    33.郁道银,谈恒英, ed.工程光学[M].2006,机械工业出版社. p261-269
    34. R.P. Feynman, R.B.L., M, Sands, The Feynman lectures on physics[M].1964,Addision Wesley Publishing comany.p289-291
    35.屈金祥,陆燕,小型低温真空光学实验装置设计[J].红外与激光工程,2006.
    35.p464-467
    36.米宝永,锗的红外折射率精密测量[J].光学精密工程,1998.16: p.4.
    37.孔令文;赵国晴;王海飞,用标准不确定度评定测量的三棱镜的最小偏向角[J].大学物理实验,2006.p55-57
    38.王文生;徐斌;张军,最小偏向角法v棱镜法测量折射率的原理公式误差[J].长春光学精密机械学院学报,1995.
    39.倪磊,任栖锋,廖胜,红外材料低温折射率测定:不确定度分析[J].光电工程Opto-Electronic Engineering2010.10.37: p.6.
    40.倪磊等,基于最小偏向角法测量低温下材料折射率温度系数的装置[P].2012.8.
    41.倪磊等,一种测量低温下材料折射率和折射率温度系数的装置[P].2012.8.
    42.达道安, ed.真空设计手册[M].2004,国防工业出版社:兰州. p683.
    43.罗跃纲, ed.材料力学[M].2004,科学出版社:北京. p55
    44.王厚华, ed.传热学[M].2006,重庆大学出版社:重庆.13.p17
    45. P.Thomas Blotter, J.C.B., ed. Thermal and Mechanical Design of Cryogenic CoolingSystems[M]. IR/EO HANDBOOK.1993, SPIE: Logan, Utah.p346-377
    46.赵镇南, ed.传热学[M].2002,高等教育出版社:北京.p38
    47. Springer-Verlag, http://www.landolt-boernstein.com.2010.
    48. Florian Kerber, B.J.F., Douglas B. Leviton, Paul Bristow, Hans-Ulrich K ufl,JeanFrancois Pirard, Michael R. Rosa, Calibration of the ZnSe pre-disperser on ESO’scryogenic IR Echelle Spectrograph (CRIRES): Comparison of the first results fromCRIRES and the laboratory data from CHARMS[C], in Ground-based and AirborneInstrumentation for Astronomy,, M.I. lan S. McLean, Editor.2006. p.626942.1-626942.12.
    49.冯巧玲, ed.自动控制原理[M].2003,北京航空航天大学出版社:北京.
    50.吴旭光, ed.系统建模和参数估计—理论与算法[M].2002,机械工业出版社:北京.
    51.张辉,微纳米测量环境控制机理及系统研究[D].2009,合肥工业大学:合肥.p47-49
    52.苏卫东,任思聪,刘升才,温控箱数学模型的建立及其自适应PID控制[M].中国惯性技术学报,1995.p34-38
    53. R. Courant, Variational Methods for the Solution of problems of Equilibrium andVibrations[J], in American Mathematical Society.1943.
    54. Turner, M.J., Stiffness and deflection analysis of complex structure[J]. Aeronaut,
    1956.
    55. B.M.Irons, Numberical integration in stiffness methods[J]. AAIA Journal,1966.
    56. Clough, R.W. The Finite Element Method[C], in Plane Stress Analysis. in2nd ASCE
    1960. Pittsburgh.
    57.任栖锋,沈.,廖胜,谭述亮,韩维强,低温光学系统两级温区的设计与分析[J].红外与激光工程,2008.p313-316
    58. Jr., I.T.F., ed. Contact resistance. Heat Exchanger Design Handbook[M]. Vol.2.1983,Hemisphere Publishing Corporation: New York.
    59. Dr.Keith Doyle, D.V.G.P., Gregory Michels., ed. Integrated OptomechanicalAnalysis[J].2004.
    60.李贤辉,光机集成有限元分析光学面型后处理研究与实现[D], in ChineseAcademy of Science.2003,长春光机所. p.58.
    61.温敬阳,光机热集成分析方法及技术研究[D].2008,西安电子科技大学. p.59.
    62.杨怿,张伟,陈时锦,基于集成分析方法的光机热一体设计[J].光学技术,2005.p31.
    63.任栖锋,沈.,全金属反射光学系统主镜的集成分析[J].光学工程,2005.12.p55-58
    64.冯树龙,地基望远镜力学、温度场特性对光学性能影响的研究[D].博士论文,
    2005.p21-22
    65.程刚,不同支撑系统大型光学元件变形及其对系统像质的影响研究[D], in中国科学院光电技术研究所.2003,中国科学院大学:北京.
    66. Victor Genberg, G.M. Orthogonality of Zernike Polynomials[C].2002: SPIE.
    67.张伟,刘剑峰等,基于Zernike多项式进行波面拟合研究[J].光学技术,2005.5.
    68.李福,阮萍等,用Zernike多项式实现光机分析的技术方法[J].应用光学,2007.
    69.刘剑峰,龙夫年,基于泽尼克多项式进行面形误差拟合的频域分析[J].光学学报,
    2005.
    70. Chris J. Evans, R.E.P., etc, Visualization of surface figure by the use of Zernikepolynomials[J]. Applied Optics,1995: p.34.
    71.莫卫东,光学干涉波面数字化处理方法与应用[J].计算物理,2003.20: p.514-520.
    72. Ni Lei, Q.R., Liao Sheng, Tan Shuliang, Accuracy design considerations for a newcryogenic absolute prism refractometer[J]. OPTICAL ENGINEERING,2012.51: p.0815051-0815059.
    73. Born, M.W., F.. Principles of Optics[M].2006.p904-914
    74.邝井国,光波导应力双折射研究[D].2006,浙江大学:杭州.p14-15
    75.杜少军,陆启生,舒柏宏,激光窗口热效应和应力双折射的分析[J]强激光与粒子束2004.16: p.7.
    76.方林瑞,晶体弹光效应中的折射率椭球运算与实验[J].物理实验,1996.18: p.3.
    77.张记龙,基于弹光效应的静态傅里叶变换干涉具设计[D].2011,中北大学. p.57.
    78. A. Killian, J.K., B. Kuhlow, G. Przyrember and W. Wischmann., Birefringence FreePlanar Optical Waveguide Made by Flame Hydrolysis Dposition(FHD) ThroughTailoring of the Overcladding[J].. Journal of lightwave technology,2000. p18.
    79. Huang, M., Stress effects on the performance of optical waveguides[J]. InternationalJournal of Solids and Structures,2003.40: p.18.
    80. Albert Feldman, D.H., Roy M. Waxler, and Marilyn J. Dodge, ed. Optical MaterialsCharacterization[M].1979, U.S GOVERMENT PRINTING OFFICE: Washington,D.C.
    81. Wood D.L, F.J.W.J., Computerized refractive index measure for bulk materials at UV,visible and IR wavelengths[J]. Rev Sci Instrument,1982.53: p.43~47.
    82.宋克非,高精度光电自动折射仪的瞄准方法及其实现[J].光学精密工程,1999.7: p.100~104.
    83.蔡喆,邓年茂,单星星图细分定位算法的研究[J].计算机仿真,2006.23: p.34~37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700