用户名: 密码: 验证码:
航空相机光机热分析与热控技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空相机作为高效获取地面信息的一种重要设备,在军用和民用领域得到广泛应用。随着应用的深入,各领域对航空摄影图片的分辨力要求越来越高,如何提高航空相机的成像质量成为研究人员所面临的重要课题之一。在航空相机所处的复杂多变的环境中,温度扰动是影响其成像质量的关键因素。因此研究不同温度场分布对光学系统的影响、设计合理可靠的热控系统对于航空相机获取高分辨力的地面图像和提高使用效率具有重要意义。
     结合航空相机的结构和环境特点,运用光机热集成分析方法和热光学灵敏度分析方法,分析了温度水平变化和温差对航空相机成像质量造成的影响,从而确定了航空相机能高分辨力成像的温度指标。根据航空相机的实际温度分布进行了初步热控设计,并以此为基础设计了试验航空相机,为了改善被动热控效果,着重设计了框架隔热结构。
     为了研究航空相机的热学特性,以试验航空相机为物理原型建立了其热网络数学模型。利用模型分析了光学系统的漏热路径和漏热率,并根据分析结果对光学系统的加热回路和加热功率进行了优化设计。分析了光学系统温度对模型中的不确定性热网络参数的灵敏度,确定了关键热网络参数及其最佳取值范围,并以此为依据对被动热控设计进行了优化。
     对试验航空相机进行了瞬态热试验,利用试验数据修正了热网络模型的结构。运用误差分析技术对试验数据的可靠程度进行了评估。探讨了最小二乘法、蒙特卡洛法和遗传算法在热网络模型参数修正中的应用,肯定了遗传算法的优势。
     通过对航空相机光学系统热惯性的分析,提出了飞行工况和低温工况下光学系统的热控策略,对热控系统进行了优化设计,并利用热网络模型进行热控仿真。设计了航空相机热控试验系统,利用试验航空相机进行热控试验。试验结果表明所设计的热控系统在飞行工况下将光学系统温度控制在20℃±2℃范围内,低温工况下将光学系统温度在一个小时内从-55℃提升到-20℃,并将温差控制在温度指标范围内。由此证明了热网络分析的有效性和热控设计的合理性。
As an important equipment to efficiently acquire ground information,the aerialcamera is widely used in military and civil field. With the in-depth application, theresolution of aerial photograph is required to be higher, which is why that how toimprove the imaging quality of the aerial camera becomes one of the importantsubjects for engineers. In most of the environment factors, temperature disturbance isthe major one to influence the imaging quality. Therefore, studying the effects ofdifferent kinds of temperature distributions on the optical system and designing areasonable and reliable thermal control system are significant to acquire highresolution ground images and raise efficiency of the camera.
     Combining with the structural and environmental characteristics of the aerialcamera, the effects of the different temperature levels and gradients on the imagequality are analyzed using the integrated thermal/structural/optical (TSO) techniqueand the thermal-optical sensitivity analysis method. Accordingly, the temperatureindex for high resolution images is determined. In response to the actual temperaturedistribution of the aerial camera, the preliminary thermal control system is designed,based on which, the experimental aerial camera is framed and the insulation structureis especially designed for improving the impact of passive thermal control.
     For researching on the thermal characteristics of the aerial camera, the thermalnetwork mathematical model of the experimental aerial camera is set up. The heatdissipation of optical system is analyzed through the model, according to which, theheating loops and heating power are optimized. The sensitivities of optical systemtemperature to the uncertain thermal network parameters are studied, and the keyparameters with the optimal ranges are settled down, based on which, the passivethermal control is optimized.
     The transient thermal experiments are carried out, and the construction of thethermal network model is corrected using the experiment data. The reliability ofexperiment results are evaluated by error analysis technique. The applications ofleast-squares procedure, Monte Carlo method and genetic algorithms in thecorrection of thermal network parameters are discussed, and the advantage of geneticalgorithms is affirmed.
     The thermal control strategies of flying condition and low-temperature condition are presented through the analysis of the optical system thermal inertia.The thermal control system is optimized, and the simulation is processed with thethermal network model. The thermal control experiment system is designed and theexperiment is carried out using the experiment aerial camera. The experiment resultsshow that the temperature of optical system is controlled at18.5℃~20.5℃underflying condition, and the temperature rises from-55℃to-20℃within one hourunder low-temperature condition, and the temperature gradient holds within theindex. The experiment results indicate the availability of the thermal networkanalysis and the rationality of the thermal control design.
引文
[1] Yue Fan, Wenli Ma. Research on effect of Kell coefficient on the quality of aerialphotography[J]. SPIE,2010, vol.7658(1I):1-6.
    [2]樊越,马文礼,梁伟. Kell系数对CCD航测相机成像质量的影响分析[J].光电工程,2010,37(8):122-126.
    [3]李林,王煊.环境温度对光学系统影响的研究及无热化系统设计的现状与展望[J].光学技术,1997,9(3):26-29.
    [4]廖靖宇,蓝公仆,赵人杰等.航空相机物镜动态光机热分析与设计[J].光电工程,2010,37(7):36-40.
    [5] Shepard Weinswig, Robert A.Hookman. Optical analysis of thermal induced structuraldistortions [J]. SPIE,1991,1527:118-125.
    [6] William R.Powell. Analysis of thermal stabillty of fused optical structure[J]. SPIE,1991,1532:126-136.
    [7] J. W. Perry. Thermal effects upon the performance of lens systems[J]. Proceedings of PhysicsSocioty,1943,55:257-285.
    [8] D. S. Gray. Athermalisation of Optical System [J]. JOSA,1948,38(6):542-546.
    [9]赵鹏,卢锷,王家骥.空间光学仪器光、机、热一体化总体设计[J].光学精密工程,1996,4(6):17-21.
    [10]赵立新,邵英.空间望远镜的热设计和热光学分析综述[J].航天返回与遥感,2001,22(2):1-19.
    [11] James.I.gimlet, Donald H. Garbaccio.Multiple docking adapter window for S-190experiment[J]. Applied Optics,1974,11:34-37.
    [12] John D. Johnston, Joseph M. Howard, Gary E. Mosier, et al. Integrated modeling activitiesfor the James Webb Space Telescope: Structural-Thermal-Optical Analysis [J]. Proc. of SPIE, Vol.5487,2004:600-610.
    [13] Miller J, Hatch M, Green K. Predicting performance of optical system undergoing thermal/mechanical loading using integrated thermal/structural/optical numerical methods [J]. Proc. ofSPIE,1981,20(2):373-381.
    [14] Glenn T.Tsuyuki, Eri J.Cohen. Thermal design optimization of a segmented GFRP primaryreflector for a submillimeter telescope[J]. SPIE,1992,1690:262-272.
    [15] Pierre Y.Bely. Space Ten-Meter Telescope Structral and thermal feasibility study of theprimary mirror[J]. SPIE,1987,751:29-36.
    [16]胡金刚.中国航天器热控制技术进展[J].航天器工程,2001,10(1):10-26.
    [17]沈亮.空间小型CCD相机的热分析研究[D].苏州:苏州大学,2008.
    [18] Garcia R, Jones J, Stultz J. Thermal Design of the Wide Field Planetary Camera[J]. AIAA,89-1752.
    [19] Jakel E, Camus J P,Soulat G. Thermal Balance Qualification Testing of the Thermal ControlSystem of the Faint Object Camera[J]. AIAA,82-0832.
    [20]李积慧,韩双丽,王家骐等.空间相机的热分析与热控制技术[J].光学精密工程,1999,7(6):36-41.
    [21]傅丹鹰,殷纯永,乌崇德.空间遥感器的热/结构/光学分析研究[J].宇航学报,2001,22(3):105-110.
    [22]傅丹鹰,程祖璞,蔺宇辉等.空间相机光机结构导热特性分析与计算[J].光学技术,1999,5:43-46.
    [23]黎明,吴清文,江帆.三线阵立体测绘相机热控系统的设计[J].光学精密工程,2010,18(6):1368-1372.
    [24]訾克明,吴清文,李泽学等.空间光学遥感器的热设计实例及其仿真分析[J].计算机仿真,2008,25(12):77-80.
    [25]陈荣利,马臻,杨文刚.空间相机热光学分析与试验验证[J].光子学报,2010,39(11):2068-2072.
    [26] Hume L. Peabody, Richard A. Stavely, Jackie Townsend. Lessons Learned from the WideField camera3flight correlation [J]. American Institute of Aeronautics and Astronautics,2010,6028:332-339
    [27] E.K.J. Jakel, W. Erne, G. Soulat. The Thermal Control System of the Faint Object Camera(FOC)[J]. American Institute of Aeronautics and Astronautics,2010,6028:156-264.
    [28] Michel Engelhardt. Thermal control of an airborne electronicsbay [J]. American Institute ofAeronautics and Astronautics,2007,1217:28-35.
    [29]郭亮,吴清文,颜昌翔.空间光谱成像仪热设计及其分析与验证[J].光学精密工程,2011,19(6):1272-1280.
    [30]巩盾,田铁印,王红.离轴三反射系统的热光学分析和温控指标的制定[J].光学精密工程,2011,19(6):1213-1219.
    [31]于善猛,刘巨,杨近松.离轴式空间光学遥感器的热设计与仿真[J].红外与激光工程,2011,40(8):1521-1525.
    [32] Richard C. Ruck, Oliver J. Smith. KS-127A Long range oblique reconnaissance camera forRF-4aircraft[J]. SPIE,1980,242:22-30.
    [33] Thomas Augustyn. The KS-146A long range oblique photography (LOROP) camerasystem[J]. SPIE,1981,309:76-84.
    [34]王光. KS-146长焦距航空照相机[M].北京:中国人民解放军空军司令部情报部,1989:143-144.
    [35] Liu Wei-yi, Ding Ya-lin, Wu Qing-Wen, et al. Thermal analysis and design of the aerialcamera’s primary optical system components[J]. Applied Thermal Engineering,2012,38:40-47.
    [36]王领华,吴清文,郭亮.高分辨率可见光航空相机的热设计及热分析[J].红外与激光工程,2012,41(5):1236-1243.
    [37]石进峰,吴清文,张建萍.高空高速航空相机光学窗口的热光学分析[J].光学学报,2012,32(4):1-9.
    [38]韩冬,吴清文,陈立恒.多姿态空间相机的热控系统设计与仿真[J].仿真技术,2009,25(8-1):143-145.
    [39]沈连婠.工程中的有限元法讲义[M].合肥:中国科学技术大学,2011:209-241.
    [40] Hrennikoff, A. Solution of Problem in Elasticity by the Frame Work Method[J]. Journal ofApplied Mechanics,1941,8(4):169-175.
    [41] Courant, R. Variational Methods for the Solution of Problems of Equilibrium andVibrations[J]. Bulletin of the American Mathematical Society,1943,49:1-23.
    [42] Argyris, J. H, Kelsey, S. Energy Theorems and Structural Analysis[J]. Aircraft Engineering,1955,23:6-13.
    [43] Turner, M. J, Clough, R. W, Martin, H. C, et al. Stiffness and Deflection Analysis ofComplex Structures[J]. Journal of Aeronautical Sciences,1956,23(9):805-824.
    [44] Clough, R. W. The Finite Element Method in Plane Stress Analysis[J]. Proceedings,American Society of Civil Engineers,2nd Conference on Electronic Computation, Pittsburgh,1960,20:345-378.
    [45] Melosh, R. J. A Stiffness Matrix for the Analysis of Thin Plates in Bending[J]. Journal ofAerospace Science,1961,28(1):34-42.
    [46] Zienkiewicz, O. C, Cheung, Y. K. Finite Elements in the Solution of Field Problems[J]. TheEngineer,1965,58:507-510.
    [47] Szab, B. A, Lee, G. C. Derivation of Stiffness Matrices for Problems in Plane Elasticity byGalerkin’s Method[J]. International Journal of Numerical Methods in Engineering,1969,1:301-310.
    [48] Zienkiewicz, O. C, Watson, M, King, I. P. A Numerical Method of Visco-Elastic StressAnalysis[J]. International Journal of Mechanical Sciences,1968,10:807-827.
    [49] Lee H P. Application of Finite-Element Method in the Computation of Temperature withEmphacis on Radiative Exchanges[J]. AIAA,:72-274.
    [50] Lee H P, Jackson C E. Finite-Element Solution for a Combined Radiative ConductiveAnalysis with Mixed Diffuse-Specular Surface Characteristics[J]. AIAA:75-682.
    [51] Lee H P. NASTRAN Thermal Analyzer Theory and Application Including, A Guide toModeling Engineering Problem[J]. NASA TMX,1977,3503,3504(1)(2):98-110.
    [52]康芹,李世武,郭建利.热网络法概论[J].工业加热,2006,35(5):15-17.
    [53]李万林,潘增富.航天器热分析的结点网络法[J].中国空间科学技术,1985,5:34-40.
    [54]潘增富.整星稳态温度的热网络分析方法[J].中国空间科学技术,1987,6:37-44.
    [55]屈金祥.航天器系统热分析综述[J].红外,2004,10:20-27.
    [56] Toussamt M. Verification of the thermal mathematical model artificial satellite: a new testphilosophy [J]. AIAA:67-304.
    [57] Shimoji S. A comparison of thermal network correction methods[J]. AIAA:81-1139.
    [58]翁建华,潘增富.航天器热网络模型及其系数修正方法[J].中国空间科学技术1995,4:10-15.
    [59] J.P.Holman. Heat Transfer[M]. Beijing: China Machine Press,2008:26-55.
    [60] F.P.Incropera, D.P.DeWitt, T.L.Bergman, et al. Fundamentals of Heat and Mass Transfer[M].Beijing: Chemistry Industry Press,2009:1-65.
    [61]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006:11-50.
    [62]侯增祺,胡金刚.航天器热控制技术[M].北京:中国科学技术出版社,2006:13-99.
    [63] Theodore D. Swanson, Gajanana C. Birur. NASA thermal control technologies for roboticspacecraft[J]. Applied Thermal Engineering,2003,23:1055–1065.
    [64]闵桂荣.卫星热控制技术[M].北京:中国宇航出版社,2009:89-122.
    [65] Chamdrupatla, T. R, Belegundu, A.D. Finite Elements in Engineering[M]. Beijing: ChinaMachine Press,2005:1-18.
    [66] Daryl L. Logan. A First Course in the Finite Element Method[M]. Beijing: PublishingHouse of Electronics Industry,2002:359-434.
    [67] FRANCISCO ALHAMA, ANTONIO CAMPO,Network Simulation of the RapidTemperature Changes in the Composite Nozzle Wall of an Experimental Rocket Engine During aGround Firing Test[J]. Applied Thermal Engineering,2003,(23):37-47.
    [68] C. F. González Fernández a, F. Alhama a, J. F. López Sánchez, et al. Application of thenetwork method to heat conduction processes with polynomial and potential-exponentiallyvarying thermal properties[J]. Numerical Heat Transfer,1998,33:549-559.
    [69] Yee Leong Low, B. L. Ibrahim See. Thermal network model for temperature prediction inhard disk drive[J]. Microsyst Technol,2009,15:1653–1656.
    [70]张信荣,任建勋,梁新刚等.载人航天器并联热网络系统的优化分析[J].清华大学学报,2002,42(4):462-465.
    [71]黄飞.基于热网络法的行星减速器热分析[D].南京:南京航空航天大学,2011.
    [72]翁建华,潘增富,闵桂荣.航天器实验模型的热网络分析[J].中国空间科学技术1998,5:56-60.
    [73]李祥立,刘学,李国辉.一种热网络方程计算方法的改进[J].大连理工大学学报,2012,52(2):239-245.
    [74]岑兆丰,李晓彤.光学系统温度效应分析和无热化设计[J].光学制造,2009,2:63-67.
    [75]王红,韩昌元.温度对航天相机光学系统影响的研究[J].光学技术,2003,29(4):452-457.
    [76] ZEMAX Development Corporation. ZEMAX Optical Design Program User’s Guid.2008.
    [77] Jamieson T H. Thermal effects in optical systems[J]. Opt Engi-neering,1981,20:156-160.
    [78]邓诗涛.变折射率介质中的光传输及像质评价[J].杭州.浙江大学,2008.
    [79]李晓彤.几何光学和光学设计[M].杭州:浙江大学出版社,2001:16-48.
    [80]谭威.星敏感器光学系统的温度分布及其对像面位移的影响研究[D].长沙:国防科学技术大学,2008.
    [81]王红,韩昌元.温度变化导致航天相机光学系统像面位移的研究[J].光学技术,2003,29(6):738-740.
    [82]伍凡.温度对大型光学镜子质量的影响[J].光学工程,1986,4:24-30.
    [83]蓝公仆.数字航空相机高性能物镜研究[D].成都:中国科学院光电技术研究所,2011.
    [84] Wang J, Silva D. Wavefront interpretation with Zernike polynomials[J]. Appl Opt,1980,(19):1510-1518.
    [85] Coronato P, Juergens R. Transferring FEA results to optics codes with Zernikes: a review oftechniques[J]. SPIE,2003,5176:128-136.
    [86]鄢静舟等.用Zernike多项式进行波面拟合的几种算法[J].光学精密工程,1999,7(5):119-128.
    [87]李贤辉.光机集成有限元分析光学面行后处理研究与实现[D].长春:中国科学院长春光学精密机械与物理研究所,2004.
    [88]訾克明,吴清文,李泽学等.某空间光学遥感器的热分析和热设计[J].光学技术,2008,34suppl:89-91.
    [89]邓丽君.一种临近空间浮空器热控系统的研究[D].南京:南京理工大学,2009.
    [90]廖靖宇.航空相机动态像质评价与视轴稳定技术研究[D].成都:中国科学院光电技术研究所,2011.
    [91]陈荣利,李英才,樊学武. TDICCD相机像质综合评价研究[J].航天返回与遥感,2003,24(3):10-13.
    [92]樊越,梁伟,马文礼,赵人杰.一种航空相机热控系统隔热装置[P].中国,发明专利,201310030451.5,20130128.
    [93]黄涛,吴清文,梁九生.空间相机接触热阻的计算[J].中国光学与应用光学,2009,2(4):334-339.
    [94] F.P.Incropera, D.P.DeWitt, T.L.Bergman, et al. Fundamentals of Heat and Mass Transfer[M].Beijing: Chemistry Industry Press,2009:360-365.
    [95]张布卿,马建设,潘龙法,等.用有限元和灵敏度分析法改善光学头力矩器高频动态特性[J].光学精密工程,2007,15(7):1002-1008.
    [96]何俊,周智,董惠娟,等.灵敏度系数可调布拉格光栅应变传感器的设计[J].光学精密工程,2010,18(11):2339-2346.
    [97]刘金国,李杰,郝志航. APS星敏感器探测灵敏度研究[J].光学精密工程,2006,14(4):553-557.
    [98]杨沪宁,钟奇.航天器热模型蒙特卡罗法修正论述[J].航天器工程,2009,18(3):53-58.
    [99]翁建华,潘增富.航天器热网络模型及其系数修正方法[J].中国空间科学技术,1995,4:10-15.
    [100]刘伟,贾宏.资源二号卫星热模型修正.航天器工程[J].航天器工程,2003,12(4):29-35.
    [101]秦文波,程惠尔.基于节点群整合方法的航天器热网络模型修正技术[J].上海交通大学学报,2011,45(6):856-860.
    [102]陈立恒,吴清文,董吉洪等.基于中心复合设计的空间相机热计算参数修正[J].光学精密工程,2010,18(9):2009-2015.
    [103]李劲东.卫星热网络模型修正技术进展及其改进方法研究[J].中国空间科学技术,2004,24(3):29-37.
    [104] Liu Y, Li G H, Jiang L X. A new improved solution to thermal network problem inheat-transfer analysis of spacecraft[J]. Aerospace Science and Technology,2010,14(4):225-234.
    [105] Mareschi V, Perotto V, Spazio A, et al. Thermal test correlation with tochastic technique[C].35th International Conference on Environmental Systems and8th European Symposium onSpace Environmental Control Systems,2005,7.
    [106] Molina M, Finzi A E. Stochastic analysis in space engineering: a survey of existing toolsand methodologies for thermal analysis[C].35th International Conference on EnvironmentalSystems and8th European Symposium on Space Environmental Control Systems,2005,7.
    [107] Papalexandris M V, Milman M H. Active control and parameter updating techniques fornonlinear thermal network models [J]. Computational Mechanics,2001,27(1):11-22.
    [108]潘增富.航天器平衡温度误差的统计分析[J].中国空间科学技术,1983,3(3):7~24.
    [109]韩玉阁,宣益民.卫星热设计的参数灵敏度分析[J].计算物理,2004,21(5):55~460.
    [110] Tortorelli D A, Haber R B. First-order Design Sensitivities for Transient ConductionProblems by an Adjoint Method[J]. International Journal of Numerical Methods in Engineering,1989,28:733~752.
    [111]费业泰.误差理论与数据处理[M].北京:机械工业出版社,2004:9-15.
    [112]王家映.蒙特卡洛法[J].工程地球物理学报,2007,4(2):81-85.
    [113]刘娜,程文龙,钟奇等.基于蒙特卡罗法的卫星热模型参数敏感性分析研究[J].航天器工程,2009,18(4):102-107.
    [114]边霞,米良.遗传算法理论及其应用研究进展[J].计算机应用研究,2010,27(7):2425-2434.
    [115]田延硕.遗传算法的研究与应用[D].成都:电子科技大学,2004.
    [116]王银年.遗传算法的研究与应用——基于3PM交叉算子的退火遗传算法及应用研究[D].无锡:江南大学,2009.
    [117]葛继科,邱玉辉,吴春明.遗传算法研究综述[J].计算机应用研究,2008,25(10):2911-2916.
    [118]雷英杰,张善文,李续武等. MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005:62-142.
    [119]樊越,梁伟,马文礼.航空相机光学系统热控设计[J].光电工程,2013,40(1):51-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700