用户名: 密码: 验证码:
公用工程和工艺过程综合优化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了实现节能减排可持续发展的目标,需要对化工过程进行从物质到能量多方面的综合优化。本文以过程系统工程理论为指导,对以水、热、电生产为代表的公用工程系统优化设计问题,以及对包括公用工程在内考虑工艺改进的全过程用能系统的综合优化问题进行了研究。
     目前,公用工程中的水、热、电供应基本上是分开进行的,或者只是进行热电联产,或水电联产,并没有把三者综合起来考虑。随着水资源的短缺,在沿海缺水地区或者内陆盐水、苦咸水地区进行化工园区建设时,用多级闪蒸或者反渗透海水淡化技术生产淡水,来解决供水问题是一条可行的路径。在此基础上,本文提出了热电厂和多级闪蒸、反渗透海水淡化相结合的水热电联产系统。
     为了获得优化的联产结构,本文给出了一个通用的优化设计方法。该方法给出了一个包括不同类型热电厂、多级闪蒸和反渗透模块的联产超结构。三者通过能流和物流相互耦合在一起。该超结构包括了水、热、电联产所有可能的生产结构。通过建立完整的过程单元模型和经济模型,以年费用最小为目标函数,满足过程热力学、设备选型、设计要求的约束,把联产系统的设计问题表达为了一个非线性规划问题。通过用GAMS软件求解这个以年费用最小为目标的非线性规划模型,可以得到优化的联产生产结构。
     根据本文给出的联产系统的设计方法,对考虑原水盐度变化、煤价格变化和满足不同需求的水热电联产系统进行了优化设计,得到如下结论:
     (1)原水浓度对海水淡化系统影响较大,在低盐度(不大于25kg/m~3)下采用抽汽冷凝式发电和一级反渗透产水的联产方式,可使年费用最低.当海水盐度大于27.5kg/m~3时,采取抽汽冷凝式发电与热膜联合制水的联产结构可获得更好的经济性。随着盐度的增加,多级闪蒸产水量逐渐增加。当海水盐度超过35kg/m~3时,发电模式变为背压发电,背压蒸汽全部用来给MSF加热。在本工作所定的生产规模下,优化联产方案的年费用可降低23%36%.适宜的多级闪蒸产水规模受电厂发电规模限制。
     (2)煤价格对整个系统的年费用有很大的影响,但不会影响联产系统的结构。煤价格变化时,热电厂,MSF和RO的参数都不会发生变化。
     (3)不同的水热电需求,其对应的最优的生产结构也不相同。在本文算例中给定的条件下(海水盐度42kg/m~3,成品水浓度低于0.5kg/m~3),用电厂低品位蒸汽作为MSF热源的联产结构具有经济上的优势。当需水量较大,电厂蒸汽不能满足单独MSF产水时,采用MSF/RO混合结构产水,可以获得比较好的经济性。优化的联产结构和分产系统相比,可以减少16.1%~21.7%的年费用。
     当电、水需求不变,供热量发生变化时,不会影响最优的联产结构,只会对MSF和RO的产水量产生影响。供热量增加时,MSF产水减少,RO产水增加;反之,MSF产水增加,RO产水减少。
     能量综合是过程系统工程研究的另一重要内容。随着研究的深入,提出了包括火用分析,夹点分析,数学规划法,三环节能量利用模型,以及用能一致性原则等方法。这些方法有些只能对局部用能进行综合优化,有的过程过于复杂,难以进行实际工程应用。本文针对上述情况,提出了基于T-H图的逐步优化的能量利用综合策略。
     该策略通过分析冷热物流组合曲线,确定系统中能量利用不合理的地方,然后对生产工艺进行微调,或引入热机、热泵,实现能量合理利用,同时增加或减少冷热物流,从而使冷物流组合曲线和热物流曲线相对位置趋于平行,实现能量利用系统热能的最佳匹配。给出了调整的原则:对高温热物流,先产生二次蒸汽,二次蒸汽发电,降级为低品位的蒸汽再换热;升级低温热物流(蒸汽)的品位,使该部分热物流在组合曲线上上移,以去除换热的瓶颈;低温冷物流作为冰机的过冷剂,制冷工质节流膨胀后得到更多高品位的冷剂;调节分离工艺操作条件,使部分分离塔塔顶热物流和塔底冷物流升级或者降级,使冷、热物流具有更好的匹配性。系统中低品位的冷、热物流,除了进行物流之间匹配外,多余的热物流需要用循环水进行冷却,多余的冷物流可以由锅炉蒸汽发电后抽取相应温度的低品位蒸汽来加热。节能并不一定经济,在利用逐步优化的能量综合策略改进的同时,需对改进过程进行了经济性评价,舍弃不经济的改进过程,以实现能耗和经济双目标的优化。
     基于逐步优化的能量利用综合策略,编制了能量分析软件。该软件能够绘制冷热物流的组合曲线,确定夹点的位置,计算出最小的冷、热公用工程用量,并可以在曲线上对需要改进的或已经加以改进的物流加以标记,可以方便的对系统的用能情况进行分析。
     利用逐步改进的能量综合优化策略及其软件,对甲醇制烯烃的用能系统系统进行了能量综合优化。通过逐步引入热泵精馏、发电机组和调节塔的分离条件,增加了能量集成的量,对高温热物流先用功,后用能,减少了传热温差和传热不可逆的损失,减少了低温冷剂的用量。构造出了两条近似平行的冷热物流组合曲线,实现了包括公用工程在内的全过程的能量综合优化。经过多次的改进,最终可以节省22%的循环水,90%的11.2℃的丙烯冷剂,29%的-43.7℃的丙烯冷剂。用电量减少了63%。对改进过程同时进行了经济评价。结果表明可以在很短的时间内收回改进的费用,在经济上也是可行的,实现了能量和经济的双目标优化。因此,本工作提出的能量综合优化策略是有效且方便可行的。
In order to achieve energy conservation, sustainable development, the synthesisoptimization, from materials to energy, is needed. Based on the process systemengineering theory, the heat, power and water production system is optimal designed.And considering process improvement, the whole process energy use system,including utility system, is synthesis optimized.
     This thesis reviewed the research progress on PSE, process energy synthesis,desalination technologies and water, heat, power cogeneration technologies. Theutility system is one of the most energy consumption subsystems. The optimization ofutility has a great significance to save energy and achieve sustainable development.The main task of the utility is water, heat, electricity supply. In the past, water, heat,electricity supply is basically carried out separately. With the shortage of waterresources, desalination technology is a viable path to solve this problem whenchemical industry parks are constructed in water shortage coastal areas or inlandsaltwater, brackish water areas. From the system point, the cogeneration consideredpower generation, heating and desalination together. The material and energy iscascade used. Compared to single production process, cogeneration system canachieve efficient use of energy, raw materials and clean production, and theinvestment cost is lower.
     In order to obtain the optimized cogeneration structure, a generic optimizationdesign method is given. The cogeneration system consists of a coal-based thermalpower plant (TPP), a multi-stage flash desalination (MSF) module and reverseosmosis desalination (RO) module. After a reasonable simplified, the process modelof each unit has been built. The economical model, including the unit investment andoperation&maintenance cost, is presented. The system design problem has beenpresented as a non-linear programming (NLP). The objective is to minimize theannual cost and is solved by GAMS program. According to different demands ofdesalination water, heat and power production, solving this model, an optimal cogeneration system can be obtained.
     Using the design method presented in this paper, the optimal cogenerationstructures respectively considering the feed water salinity changes, the coal pricechanges and meeting different demands of desalination water, heat and powerproduction system are studied. The salinity of the feed water has a great impact tothe desalination system. In the low salinity(TDS≤25000mg/l), the optimalcogeneration structure is extraction condensing power generation and one stage ROdesalination; when the TDS>25000mg/l, extraction condensing power generationand RO/MSF hybrid system is the optimal cogeneration system. With the increase insalinity, the MSF production water is gradually increased. When the salinity exceeds35000mg/l, the power generation mode is changed to backpressure style. Thebackpressure steam is entirely used as the heat sources of MSF. Under the productionscale given in this section, the annual cost of optimal cogeneration system can bereduced by23%~36%. Suitable MSF scale is limited by the scale of powergeneration.
     Coal price has a great impact on the annual cost of the entire system, but it willnot affect the structure of the cogeneration system. When the coal price is changed,the parameters of thermal power plant, MSF and RO system are not changed.
     According to different demands of water, heat and power production, solving thismodel, an optimal cogeneration system can be obtained. The result shows that, underthe premise of heat and power supply, the MSF can be used as a priority waterproduction style. The production capacity of MSF is subjected to the amount of steamextracted from the thermal power plant. When the demand of water supply is largerthan the MSF production capacity, the MSF and RO cogeneration system will be abetter choice. Compared to the other cogeneration system, the optimal system canreduce17.7~25.1%of the total annual cost. It indicated this design method waseffective.
     When only the heat supply changed, the optimal cogeneration structure will notchange, but the MSF and RO scale will change. For the heat increased, MSF waterproduction will reduce and RO will increase; conversely, the MSF scale will increase.
     Energy synthesis is another important content of PSE research. With thedeepening of the research, exergy analysis, pinch analysis, mathematicalprogramming method, three-link model and consistency principle of process energyutilization model are proposed. Some of these models are only local optimization ofenergy use, and some models are too complex, which are difficult for practicalengineering application.
     Based on the T-H diagram, the gradual optimization integration strategy forlarge-scale complex process is proposed. Through improving process, introducing theturbine and heat pump to the system, the energy utilization procedure and conversionprocedure are comprehensive considered. The composite curves of the origin processare drawn. And the bottlenecks and unreasonable heat transfer processes are analyzed.Then the parameters of production process and utility system are adjusted. The newstreams information is obtained by process simulation software and the newcomposite curves are drawn, which will guide the further adjustment of the system.Through several improvements, two approximate parallel hot and cold stream curvesare constructed. The heat is reasonable used, the hot streams and cold streams arefully matched, and the amount of utility and power consumption is significantlyreduced.
     While process is improved, economic evaluation of the improvement processalso has been made. Uneconomic improvement process is abandoned in order toachieve the dual goals of energy consumption and economic optimization.
     The energy analysis software has been programmed based on the gradualoptimization integration strategy. The software is able to draw the T-H diagram of thehot and cold stream, determine the location of the pinch point, calculate the minimumof hot and cold utilities, and mark on the need to improve or improved streams on thecomposite curves.
     Applying this strategy, the energy integration of the methanol to olefins plant hasbeen optimized. By gradually introducing heat pump distillation, power generationmodular and adjusting the towers separation conditions, the amount of integrationenergy is increased, the high temperature streams’ heat transfer temperature difference and irreversible loss is reduced, and the amount of low-temperature refrigerant is alsoreduced. Two approximate parallel hot and cold stream curves are constructed. Thewhole process energy use systems, including utility system, are optimized. Afterseveral times improvement, the circulating water,11.2℃and-43.7℃propylenerefrigerant can save22%,90%and29%, and power consumption is reduced63%.
     The economic evaluation has been done between the improvement processes. Theresults show that the improved cost can be recovered within a very short time, whichdemonstrates the improvement is also economically feasible. The results show thatthis strategy is effective and user-friendly.
引文
[1]赵亮,公用工程系统能量综合与优化设计方法研究.[硕士学位论文].大连理工大学.2004
    [2]成思危,杨友麒.过程系统工程的昨天、今天和明天.天津大学学报.2007,40(3):321-328
    [3]成思危,杨友麒.中国过程系统工程20年——回顾与展望,2011年中国过程系统年会,2011
    [4]钱宇,过程系统工程研究进展.化工进展,1997,1:20-25
    [5]杨友麒.过程流程模拟.计算机与应用化学.1995,12(1):1-6
    [6] R.A. Trevino-Lozano, L.B. Evans, H.I. Britt and J.F. Boston. Simultaneous modularprocess simulation and optimization. PSE’85,1985
    [7]胡仰栋,周传光,郑世清,项曙光,谭心舜,韩方煜. ECSS工程化学模拟系统及其在化工过程中的应用.化工进展,1996,3:64-65
    [8]高晓丹.乙烯裂解炉的模拟和优化方法研究:[博士学位论文].清华大学,2008
    [9]李文兵,毕英杰,纪扬,席政.基于生产流程的炼钢-连铸-热轧仿真系统.冶金自动化,2005,3:37-41
    [10]张瑞生,王弘轼,宋宏宇.过程工程概论.北京:科学出版社,2001
    [11]方寿海,李振夏.大型过程优化问题SQP算法的研究进展.南京化工大学学报,1996,18S:,111-116
    [12]托马斯F.埃德加.化工过程优化,北京:化学工业出版社,2006
    [13]何小荣.化工过程优化.北京:清华大学出版社,2003
    [14]李萍,华贲.过程系统综合集成优化法的研究进展.广东化工,2005,1:80-83
    [15]董宏光,秦立民,王涛,姚平经.基于自适应并行禁忌搜索的精馏分离序列优化综合.化工学报,2004,55(10):1669-1673
    [16]鄢烈祥,麻德贤.用队列竞争算法求解分离序列综合问题.高校化学工程学报,1999,13(5):470-475
    [17] Floquet P, Pibouleau L, Domenech S. Separation sequences synthesis: How to usesimulated annealing procedure. Comput. Chem. Eng.,1994,18:1141-1150
    [18] Marcooulaki E, Kokossis A. Design of separation trains and reaction-separationnetworks using stochastic optimization methods. Chem. Eng. Res. De s.,2001,79:25-32
    [19] Chen Zhongz hou (陈中洲), Yuan Xigang (袁希钢), Zhong Zhijun (钟志军).Synthesis of heat integrated nonsharp distillation networks. Computer and AppliedChemistry (China)(计算机与应用化学),1997,14:247-252
    [20]安维中,袁希钢.用于热集成精馏序列综合的改进模拟退火算法.化工学报,2005,56(3):506-510
    [21] Hohmann E.C. Optimum Networks for heat exchangers. Ph.D. Thesis,University ofSouthern California,1971
    [22] Linnhoff B, Flower J R. Synthesis of heat exchange net-works. AIChE.,1987,24(4):633-642
    [23]秦强,沈静珠,李有润,胡山鹰.复杂换热网络双层法通用软件的研制.高校化学工程学报,1999,13(6):558-563
    [24]方海鹏,王其冬,冯恩民,俞红梅,姚平经.基于模拟退火算法的带约束换热网络综合问题.大连理工大学学报,2000,40(1):24-26
    [25]李志红,华贲,尹清华.基于专家系统与遗传算法的有分流换热网络的最优综合.石油学报,1999,15(2):85-89
    [26]聂秀荣,李有润.工艺过程与换热网络的联合优化.化工学报,1992,43(5):669-674
    [27]杨友麒.可持续发展时代的过程系统集成.化工进展,1999,3:15-19
    [28]杨友麒,石磊.环境影响最小化的化工过程综合.化工学报,2001,52(2):95-102
    [29]赵月红,王韶锋,温浩,许志宏.过程集成研究进展.过程工程学报,2005,5(1):107-112
    [30] Tekes. Competitiveness with New Planning and Optimisation Methods.http://akseli.tekes.fi/Resource.Phx/bike/pi/en/publications.htx.Doc.doc.0.ppt,2003-10-24.
    [31]高维平,杨莹,刘学线,张吉波,刘艳杰.化工精馏高效节能技术开发及应用.计算机与应用化学,2008,25(12):1531-1536
    [32]边习棉,朱银惠,李辉.精馏过程的节能途径.广东化工,2007,34(11):88-91
    [33] EI-Halwagi M M, ManousiouthakisV. Synthesis of Mass-exchange Networks. AIChEJ.,1989,35(8):1233-1244
    [34] Linnhoff March Corp. Linnhoff March Corp. http://www.linnhoffmarch.com/,2003-10-24
    [35] Hallale N. Burning Bright Trends in Process Integration Chem. Eng. Progr.,2001,(7):30-41
    [36] Victor K D. Vision21-A Program for Clean Energy in the New Millennium.http://www.netl.doe.Gov/publications/proceedings/99/99korea/der.pdf,2003-10-25
    [37] Seager T P, Theis T L. A Uniform Definition and Quantitative Basis for IndustrialEcology. J. Clean. Prod.,2002,10:225-235
    [38] Chen Wenwei(陈文威), Li Huping(李沪萍). Thermodynamic analysis and energysaving. Beijing: Science Press,1999:185-190
    [39] Jaber J O, Al-Ghandoor A, Sawalha S A. Exergy flows analysis in chemical reactors.Chemical Engineering Research and Design,1998,76(3):389-395
    [40] Morosuk T, Tsatsaronis G. A new approach to the exergy analysis of absorptionrefrigeration machines. Energy,2008,33(6):890-907
    [41] Liu Yongzhong, Zhao Yanfei, Feng Xiao. Exergy analysis for a freeze-drying process.Applied Thermal Engineering,2008,28(7):675-690
    [42] Wang Jiaxuan(王家璇). Status quo and development of exergy analysis. Journal ofNorth China Institute of Electric Power,1991,17(1):45-50
    [43]李有润,陈丙珍.化工能量系统集成.化工进展,1996,3:8-11
    [44] K.K. Trivedi, B.K. O'Neill, J.R. Roach, R.M. Systematic energy relaxation in MERheat exchanger networks. Wood Computers&chemical enginnering,1990,14(6):601-611
    [45] Frank Z. Lecture on cogeneration and site utility systems. Manchester: PrintingCompany of UMIST,1996
    [46] Dhole V R, Linnhoff B. Total site targets for fuel, co-generation, emissions, andcooling. Comput. Chem. Eng.,1993,17(supp.): S1101-S1109
    [47] Anita K K, Peter G, Zdravko K. Heat integration between processes: Integratedstructure and MINLP model. Comput. Chem. Eng.,2005,29(2005):1699-1711
    [48] Helen B, Francois M. Energy integration of industrial sites with heat exchangerestrictions. Comput. Chem. Eng.,2012,37(2012):104-118
    [49] Papoulias S A,Grossmann I E. A Structural Optimization Approach in ProcessSynthesis Total Processing Systems. Computers and Chemical Engineering,1983,7(6):723-734
    [50] Rodera H,Bagajewicz M J. Targeting Procedures for Energy Savings by HeatIntegration Across Plants. AIChE.,1999,45(8):1721-1742
    [51] Bagajewicz M J, Rodera H. Energy Savings in t he Total Site Heat Integration AcrossMany Plants. Computers and Chemical Engineering,2000,24:1237-1242
    [52] Anita K K, Peter G, Zdravko K. Waste Heat Integration between Processes [. AppliedThermal Engineering,2002,22:1259-1269
    [53] Anita K K, Peter G, Zdravko K. Heat Integration between Processes: Integratedstructure and MINLP model. Computers&Chemical Engineering,2005,29:1699-1711
    [54] G. Athier, et al. A Mixed Method for Retrofiting Heat Exchanger Networks.Computers Chem Eng,1998,22(suppl): S505-S511
    [55] Hongmei Yu, Haipeng Fang. A Combined Genetic Algorithm/Simulated AnnealingAlgor ithm for Large Scale System Energy Integration. Computers Chem Eng,2000,24:2023-2035
    [56] Hua Ben(华贲). Process energy analysis and synthesis [M]. Beijing: HydrocarbonProcessing Press.1989:71-94
    [57] Hua Ben(华贲). Energy integration and optimization of process systems [J]. ChemicalIndustry and Engineering Progress,1994(3):6-15
    [58]华贲,房广信.运用能量综合技术制订装置优化改造方案.石油炼制,1993,24(10):37-42
    [59]华贲.过程能量综合的研究进展与展望.石油化工,1996,25(1):62-76
    [60]陈步宁,华贲,邓颂九.能量综合和工艺同时优化的火用经济学法.华南理工大学学报,1996,24(2):19-25
    [61] Hua Ben(华贲), Wu Guodong(吴国东), Chen Zhongyan(陈仲言), Liu Qi(刘琦), YuanYi(袁一). Exergy-economic optimization for energy systems in chemical process.Chemical Engineering (China),1991,19(2):64-15
    [62] Yu Hongmei(俞红梅), Yao Pingjing(姚平经), Yuan Yi(袁一). Methodology in largescale complex energy integration. Journal of Chemical Engineering of ChineseUniversities(高校化学工程学报),1998,12(4):368-374
    [63] Yao Pingjing(姚平经), Shi Lei(石磊). Process energy integration and cleanerproduction. Journal of Dalian University of Technology(大连理工大学学报),1999,39(2):243-246
    [64]杨尙宝.关于我国海水淡化产业发展规划的研究.水处理技术.2012,,38(12):1-5.
    [65]国务院办公厅.国务院办公厅关于加快发展海水淡化产业的意见.2012.
    [66] M.A. Soliman. A mathematical model for multi-stage, flash desalination plants. J. Eng.Sci. University of Riyadh,1981,7:2–10.
    [67] M.A. Darwish. Thermal analyis of multi stage flash desalination systems. Desalination.1991,85:59–79.
    [68] H.T. El-Dessouky, I. Alatiqi and H.M. Ettouney. Process synthesis: The multi-stageflash desalination system. Desalination,1998,115:155–179.
    [69] A.M. Omar. Simulation of M.S.F. desalination plants. Desalination,1983,45:65–76.
    [70] A.M. Helal, M.S. Medani, M.A. Soliman and J.R.Flower. Tridiagonal matrix model formulti-stageflash desalination plants. Comp. Chem. Engin.,1986,10:327–342.
    [71] H.M. Ettouney, H.T. El-Dessouky and F. Al-Juwayhel. Performance of the oncethrough multi-stage flash desalination. Proc. Inst. Mech. Eng. Part A, Power andEnergy,2002,216:229–242.
    [72] F.I. Jambi and J.M. Wie. The Royal Commission Gas Turbine/HRSG/DesalinationCogeneration Plant.1989ASME COGEN-TURBO,3rd Inter-national Symposium onTurbomachinery, Com-bined-Cycle and Cogeneration, American Society ofMechanical Engineers, New York,1989:275–280.
    [73] A.M. Al Mudaiheem and H. Miyamura. Construction and Commissioning of Al JobailPhase II Desalination Plant. in: Proceedings of the Second IDA World Congress onDesalination and Water Re-use, Bermuda. Vol. II, November17–22,1985:1–11.
    [74] M.F. Al Ghamdi, C.H. Hughes and S. Kotake. The Makkah-Taif MSF desalinationplant, Desalination,1987,66:3–10.
    [75] A.D. Khawaji, J.M. Wie and T. Khan. Operating Experience of the Royal CommissionAcid-Dosed MSF Seawater Desalination Plant. in: Proceedings of IDA WorldCongress on Desalination and Water Reuse. Vol. II, Madrid, Spain, October6–9,1997:3–19.
    [76] A. Harris. Seawater Chemistry and Scale Control, Desalination TechnologyDevelopment and Practice. in: A. Porteous (Ed.), Applied Science Publishers,London, UK,1983:31–56.
    [77]王克涛.水处理系统反渗透膜的污染及清洗方法.中国电力.1999,12(32):34-36.
    [78]曹旭辉.反渗透膜的清洗.设备及自动化.2001,5:69-72.
    [79]杨昆,王宇彤.反渗透系统的结垢污染与清洗维护.膜科学与技术.2001,21(4):61-64.
    [80]常宇清,鞠茂伟,周一卉.反渗透海水淡化系统中的能量回收技术及装置研究进展.能源工程.2006,3:47-51.
    [81] J.I.Marriott. Detailed mathematical modeling of membrane modules, Comp Chem Eng.2001(25):693-700.
    [82] Shoji Kimura. Analysis of reverse osmosis membrane behaviors in along-termverification test. Desalination.1995,100:77-84.
    [83] D. Van Gauwbergen, J. Baeyens. Modelling and scale-up of reverse osmosis separation.Desalination.2001,139:275-279.
    [84] Jenny WeilJbrodt, Michael Manthey. Separation of aqueous organic multi-componentsolutions by reverse osmosis-development of a mass transfer model. Desalination.2001,133:65-74.
    [85] Ani Idris, M.Y. Noordin. Study of shear rate influence on the performance of celluloseacetate reverse osmosis hollow fiber membranes. Journal of Membrane Science.2002,202:205-215.
    [86] S.De, P.K.Bhattacharya. Prediction of mass-transfer coefficient with suction in theapplications of reverse osmosis and ultrafiltration. Journal of Membrane Science.1997,128:119-131.
    [87] Armin Kargo. Effect of boundary layers on reverse osmosis through a horizontalmembrane. Journal of Membrane Science.1999,159:177-184.
    [88] I.S.Al-Mutaz, M.A.Soliman. Modeling and simulation of hollow fine fiber moduleswith radial dispersion–a parametric sensitivity study. Desalination,1997,110:239-250.
    [89] Simcha Srebnik. Theoretical model of the porosity of copolymer membranes. Journalof Membrane Science.2001,184:97-106.
    [90] O. Kedem, A. Katchalsky. Thermodynamic analysis of the permeability of biologicalmembranes to Non-electrolytes. Biochemical et Biophysica Acta.1958,27:229-246.
    [91] Kimura. S, Sourirajan. S. Analysis of data in reverse osmosis with porous celluloseacetate membranes used. AICHE J.1967,13(3):497-503.
    [92] Kimura. S, Sourirajan. S. Stagewise reverse osmosis process design. Ind. Eng.Chem.Proc. Des. Dev.1969,8(1):79-89.
    [93] H. K. Lonsdale, U. Merten, R. L. Riley. Transport properties of cellulose acetateosmotic membranes. Journal of applied polymer science.1965,9:1341-1362.
    [94] Williams Michael E, Dibakar Bhattacharyya, Roderick. J. Ray, Scott. B. McCray.Reverse osmosis: Selected applications. in membrane handbook. Van NostrandReinhold, NY,1992.
    [95] McCutchan. J. W, Goel. V. System analysis of a multistage tubular module reverseosmosis plant for seawater desalination. Desalination.1974,14:57-76.
    [96] Evangelista. F. Improved graphical-analytical method for the design of reverse osmosisplants. Ind. Eng. Chem. Proc. Des. Dev.1986,25:366-375.
    [97] M.M. El-Halwagi. Synthesis of reverse osmosis networks for waste reduction. AICHEJ.1992,38:1185-1198.
    [98] M. Zhu, M.M. El-Halwagi. Optimal design and scheduling of flexible reverse osmosisnetworks. Journal of membrane science.1997,129:161-174.
    [99] N.G. Voros, Z.B. Maroulis. Optimization of reverse osmosis networks for seawaterdesalination. Comp.Chem.Eng.1996,20:345-350.
    [100] N.G. Voros, Z.B. Maroulis. Short-cut structural design of reverse osmosisdesalination plants. Journal of membrane science.1997,127:47-68.
    [101] J.E. Nemeth. Innovative system designs to optimize performance of ultra-lowpressure reverse osmosis membranes. Desalination.1998,118:63-71.
    [102] M.M. Nederlof, J.C. Kruithof. Comparison of NF/RO membrane performance inintegrated membrane systems. Desalination.2000,131:257-269.
    [103] M. Wilf, C. Bartels. Optimization of seawater RO systems design.Desalination.2005,173:1-12.
    [104] Peter Geisler. Optimization of the energy demand of reverse osmosis with apressure-exchange system. Desalination.1999(125):167-172.
    [105]钟史明,陈效儒,刘龙海.热电联产的节能分析.区域供热.2004,5:1-6.
    [106]国家计委、经贸委、环保总局、建设部急计交能.220号文《关于发展热电联产的若干规定》,1998.
    [107]国家计委、经贸委、环保总局、建设部急计基础.1268号文《关于发展热电联产的技术规定》.2000.
    [108]中华人民共和国住房和城乡建设部. GB50049-2011.小型火力发电厂设计规范.北京:中国标准出版社,2010-12-04
    [109]华贲.低碳能源时代中国热电联产的发展趋势.沈阳工程学院学报.2010,6(2):97-101;
    [110]王振铭.我国热电联产分布式能源的新发展.北京:中国机电工程学会热电专委会,2009.
    [111] Wang, S.C. The thermodynamic efficiency of MSF process and the conditons ofdesalination by waste heat. CIESC Journal.1983,34(1):47-57.
    [112] Du, X.Z., Wu, S.R. Performance of seawater desalination system coupled withnuclear heating reactor under unsteady state operation conditions. CIESC Journal.2003,54(3):362-367.
    [113] Li, Q.F., Liu Z.L., Han, B., Pang H.Z., Zhang, J., Zhu, W. Process simulation andanalysis of thermal vapor compression based oilfield waster desalination systems.CIESC Journal.2012,63(6):1859-1864.
    [114] Hammond R. P. Modernising the desalination industry. Desalination,1996,107:101-109.
    [115] Buros O.K.1999, The ABCs of Desalting, International Desalination Association,Massachusetts, USA
    [116] Gustavo Kronenberg, FrediLokiec. Low temperature distillation processes in singleand dual-purpose plants. Desalination,2001,136:189-197
    [117] L.Awerbuch. Power-desalination and importance of hybrid ideas. Proc: IDA WorldCongress on Desalination and Water Reuse.Madrid, Spain,1997.
    [118] A. El-Nashar. Cogeneration for power and desalination-state of the art review.Desalination,2000,134:7-28
    [119] Osman A. Hamed. Thermoeconomic analysis of a power/water cogeneration plant.Energy,2006,31:2699-2709
    [120] N.Wade, J.Willis, J.McSorley. The Taweelsh A2independent water and powerproject. Desalination,1999,125:191-202
    [121]杜宇.基于凝汽式机组的水电联产系统热经济性分析:[硕士学位论文].辽宁:大连理工大学,热能工程,2009
    [122] Marian G,Marcovecchio M G, Sergio F. Optimization of hybrid desalinationprocesses including multi stage flash and reverse osmosis systems. Desalination,2005,182:111-122.
    [123] Turek M, Dydo P. Hybrid membrane-thermal versus simple membrane systems,.Desalination,2003,157:51–56.
    [124] Z.K.Al-Bahri, W.T.Hanbury, T.Hodgkiess. Optimum feed temperatures for seawaterreverse osmosis plant operation in an MSF/SWRO hybrid plant. Desalination,2001,138:335-339
    [125] Helal A M, El-Nashar E, Al-Katheeri and Al-Malik S. Optimal design of hybridRO/MSF desalination plants: Part Ⅰ: Modeling and algorithms. Desalination,2003,154:43–66
    [126] Helal A M, El-Nashar A M, Al-Katheeri E and Al-Malik S. Optimal design ofhybrid RO/MSF desalination plants: Part Ⅱ: results and discussion. Desalination,160(2004)13–27
    [127] Marian Marcovecchio, Sergio Mussati, Nicolas Scenna, Pio Aguirre. Hybriddesalination system:alternative designs of thermal and membrane processes. ComputerAided Chemical Engineering,2009,27:1011-1016
    [128]伍联营,肖胜楠,胡仰栋,高从堦.热膜耦合海水淡化系统的优化研究.化工学报,2012,63(11):3574-3578
    [129] Hamed O A. Overview of hybrid desalination systems-current status and futureprospects. Desalination,2005,186:207-214
    [130] Kamal I. Integration of seawater desalination with power generation. Desalination,2005,180:217-229
    [131] Bruno J.C., Fernandez F., Castells F. and Grossmann L.E. A rigorous MINLP modelfor the optimal synthesis and operation of unility plants. Tran IChemE,1998,76:246-258
    [132] Al-Khudhiri, A.I., Optimal design of hybrid MSF/RO desalination plants, Ph. D.Thesis, Saudi Arabia,2006
    [133] Taniguchi, M., Kimura, S. Estimation of transport parametres of RO menbranes forseawater desalination, AIChE Journal,2000,46(10):1967-1973
    [134] Hu, Y. D., Lu, Y.Y., Xu, D.M., Wu, L.Y., Cleaning strategy of membrane modulesin reverse osmosis seawater desalination system, CIESC Journal,2005,56(3):499-505
    [135] Wang, Y., Wang, S.C., Xu, S.C. Hydraulic energy recovery for SWRO desalinationplants, CIESC Journal,2003,54(6):878-879
    [136] El-Nashar, A.M. Cogeneration for power and desalination-state of the art review,Desalination,2001,134:7-28
    [137] Helal, A.M., El-Nashar, A.M., Optimal design of hybrid RO/MSF desalinationplants PartⅠ: Modeling and algorithms, Desalination,2003,154,43-66
    [138] Cardona, E., Piacentino, A. Marchese, F. Energy saving in two-stage reverseosmosis systems coupled with ultrafiltration processes, Desalination,2005,184:125-137
    [139]周云,徐彤,王新雷.300MW热电联产机组热经济性研究.能源技术经济,2012,24(4):57-61
    [140]叶发明.市场经济下的燃煤火电厂的发电成本分析.广东电力,2002,15(5):68-72
    [141] A.M.Helal, A.M.El-Nashar, E.S.Al-Katheeri, S.A.Al-Malek. Optimal design ofhybrid RO/MSF desalination plants, Part Ⅱ:Results and discussion. Desalination,2004,160:13-27
    [142] G. Cali, E. Fois, A. Lallai, G. Mura. Optimal design of a hybrid RO/MSFdesalination system in a non-OPEC country. Desalination,2008,228:114-127
    [143] T. Winter, D.J. Pannell, L. McCann. The economics of desalination and it’spotential application to Australia.2001, SEA working paper
    [144] M. Al-Sahali, H. Ettouney. Developments in thermal desalination processes: Design,energy, and costing aspects. Desalination,2007,214:227-240
    [145] A.D. Khawaji, I.K. Kutubkhanah, J.M. Wie. Advances in seawater desalinationtechnologies. Desalination,2008,221:47-69
    [146] B. Penate, L.G. Rodriguez. Current trends and future prospects in the design ofseawater reverse osmosis desalination technology. Desalination,2012,284:1-8
    [147] M.G. Marcovecchio. Optimization of Hybrid Desalination Processes IncludingMulti Stage Flash and Reverse Osmosis Systems. Desalination, Trends andTechnologies
    [148] Abdul Jabbar N. Khalifa. Evaluation of different hybrid power scenarios to reverseosmosis(RO) desalination units in isolated areas in Iraq, Energy for sustainabledevelopment,2011,15:49-54
    [149]王兆华,武春友,王国红.生态工业园中两种工业共生模式比较研究.软科学,2002,16(2):11-18
    [150] Raymond P. Cote, E. Cohen-Rosenthal. Designing eco-industrial parks: asynthesis of some experiences. Joumal of cleaner production,1998,6:181-188
    [151] L.M. Wang, J.T. Zhang, W.D. Ni. Emergy evaluation of Eco-Industrial Park withPower Plant. Ecological Modeling,2005,189:233-240
    [152] A.S. Drud. CONOPT-A Large-Scale GRG Code, ORSA Journal on Computing6,207-216(1992).
    [153] A.S. Drud. CONOPT: A System for Large Scale Nonlinear Optimization, Tutorialfor CONOPT Subroutin Library,16p, ARKI Consulting and Development A/S,Bagsvaerd, Denmark (1995).
    [154] A.S. Drud. CONOPT: A System for Large Scale Nonlinear Optimization,Reference Manual for CONOPT Subroutine Library,69p, ARKI Consulting andDevelopment A/S, Bagsvaerd, Denmark (1996).
    [155]卢彦月.反渗透膜法海水淡化过程最优设计的研究:[博士学位论文].中国海洋大学,2007
    [156] Marcovecchio M G, Mussati S F, Scenna N J, et al. Global Optimal Synthesis ofIntegrated Hybrid Desalination Plants. Comput. Aided Chem. Eng.,2009,26:573578
    [157] Gu Datian(古大田), Fang Zifeng(方子风). Waste heat recovery boiler. Beijing:Chemical Industry Press,2002:1-20
    [158] Miguel J B, Andres F B. On the use of heat pumps in total site heat integration.Comput. Chem. Eng.,2003,27(2003):1707-1719
    [159]陆敏菲,冯霄.丙烯精馏塔热泵流程的优化.石化技术与应用,2007,25(5):420-424
    [160]石幼燕.热泵流程在丙烯精制装置上的应用.石油炼制:1985,9,1-4
    [161] Yao Pingjing(姚平经). Energy optimization and integration of the whole process.Dalian: Dalian University of Technology Press,1995:127-134
    [162]华贲.工艺过程用能分析及综合.中国石化出版社,1995
    [163] J.C.Bruno, F.Fernandez, F.Castells and I.E. Grossmann. A rigorous MINLP modelfor the optimal synthesis and operation of unility plants. Trans IChemE,1998,76:246-258
    [164] David L.McCollum, Joan M.Ogden. Techno-Economic Models for Carbon DioxideCompression, Transport, and Storage,2006, University of California
    [165] Aspen plus. Aspen plus用户指南. http://www.aspentech.com/
    [166] Aspen plus. Aspen plus10.0用户手册. http://www.aspentech.com/
    [167] Matlab教程,http://www.china.pub.com/
    [168]张卫东,孙巍,刘君腾.化工过程分析与合成.北京:化学工业出版社.2011
    [169]王弘轼.化工过程系统工程.北京:清华大学出版社,2006
    [170]项曙光,贾小平,夏力.能量的有效利用——夹点分析与过程集成.北京:化学工业出版社,2010
    [171]程向荣,吴吁生.基于Matlab能量交换网络的夹点优化分析法.能源技术,2004,25(3):96-107
    [172]朱和.中国乙烯行业回顾、展望与思考.炼化广角,2012:67-72
    [173]甲醇二甲醚制烯烃项目汇总. http://wenku.baidu.com/view/8ad3691eff00bed5b9f31d09.html
    [174]神华包头MTO项目全厂工艺流程说明. http://wenku.baidu.com/view/885c99c20c22590102029d58.html
    [175]戴玉玲.神华包头煤制烯烃项目净化装置简介.内蒙古石油化工,2009,19:48-51
    [176]甲醇制烯烃工艺技术. http://wenku.baidu.com/view/674db081e53a580216fcfe54.html
    [177]席旺才.丙烯制冷系统的改造.中氮肥,2011,2:25-26
    [178]鲁红亮,陈焕新,谢军龙,刘杰,杨文化.丙烯制冷系统模拟与优化.流体机械,2007,35(2):61-64

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700