用户名: 密码: 验证码:
金属镍、锡络合物催化烯烃活化及聚合反应机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚烯烃材料是聚合物中产量最大、用途最广、发展最快的品种,对人类的进步与发展起着越来越重要的作用。催化剂是聚烯烃生产的核心技术,随着人们对催化剂结构与聚合物微观结构及性能认识的不断深入,必将对催化剂的分子设计、聚烯烃材料结构性能改善以及产业化的推进起到重要的作用。本文在实验的基础上,应用理论计算的方法,从分子和电子水平深入探究反应本质,研究催化烯烃的活化过程和聚合反应机理及影响催化活性的关键因素。
     1、使用后过渡金属络合物催化剂双-(-酮胺)镍(II)催化剂,与助催化剂甲基铝氧烷组成新型催化体系,催化苯乙烯单体聚合反应。在实验的基础上,采用密度泛函的方法,研究该催化体系催化苯乙烯聚合的反应机理。研究表明,苯乙烯的活化对反应的进行起着关键作用,该反应是一个四圆环的反应机理,中心离子,C=C双键和R基团构成一个四圆环。在苯乙烯聚合反应中,随着碳链的增长,反应的立体位阻增加,其活化能垒也逐渐升高。这和实验的聚合物为中等分子量观察是一致的。
     2、用双-(-酮胺)镍(II)络合物体系催化降冰片烯聚合。基于实验研究的基础上,采用密度泛函的方法,对上述反应进行研究,结果表明相对苯基取代基而言,萘基取代的配体催化剂由于具有较强的电子离域能力,导致其中心离子的正电荷增加较大,因此具有较强的亲电能力,催化剂活性也因此较高。研究还表明,当苯基上取代基为吸电子基团时,其活化能垒较低,催化剂的活性会大大加强。
     3、对双金属镍催化剂催化烯烃聚合反应的理论研究。着重研究了反应过程中双中心金属离子之间的相互协同作用。发现反应过程中,β-氢与Ni5中心原子有比较强的相互作用,其过渡态的能量大大降低,相邻的金属中心对增加聚合的动力学速率,增加聚合反应中链的长度起着很重要的作用。两个Ni中心对该类催化聚合反应都是很重要的,其中一个是主催化中心,一个是副催化中心,两者协同作用。
     4、采用B3LYP方法,计算了双锡化合物Ar′SnSnAr′和Ar*SnSnAr*的分子结构、电子结构以及其与乙烯的反应性能。结果表明Ar S nSnAr 和Ar*SnSnAr*存在不同的稳定自旋态:对于Ar′SnSnAr′,其基态是两个中心芳环几乎与C(ipso)SnSnC(ipso)共平面的单重态;对于Ar*SnSnAr*,其基态是两个中心芳环与C(ipso)SnSnC(ipso)互相垂直的的三重态;研究表明Ar′SnSnAr′与Ar*SnSnAr*,由于都存在势能面交叉点,因此会产生系间窜越,单重态和三重态之间可以相互转化。此外,Ar′SnSnAr′和Ar*SnSnAr*的三重态分别与乙烯反应均会经过一个优势协同反应通道,然后经过势能面交叉点而得到单重态产物,同时发现该催化剂对烯烃有较强的活化作用。
Polyolefin material is a variety with largest yield and widest applications amongpolymers, which plays more and more important roles in human progress anddevelopment. Moreover catalysis is a core technology for production of polyolefin.Novel catalytic systems involving mono-anionic or neutral, bidentate or tridentate,oxygen-, nitrogen-, or phosphorus-containing chelating ligands have recently beendescribed for ethylene polymerization and are still being investigated. In fact, thereaction mechanism will play a vital role in catalyst designing, andimprovement the performance of polyolefin material. In this article, we wouldexplore reaction mechanism at molecular and electron level as well as key factors thateffect catalytic activity by combining experimental and theoretical methods..
     1. Styrene was polymerized by using bis (b-ketoamino) nickel (II) complex asthe catalyst precursor and methylaluminoxane (MAO) as the cocatalyst. At same time,styrene polymerization using (2Z,4E)-4-(methylimino)-pent-2-en-2-ol Ni (MPNi)catalyst has been studied using density functional theory at the B3LYP/6-31g (d, p)level. In particular, the reaction mechanisms have been investigated in detail. Theresults indicate that the reaction involves a four-mamboed cyclic transition state withan energy barrier of21.63kcal mol-1. In addition, the analysis indicates that strongp-d interactions between styrene and Ni2+are very important for the activation ofstyrene.
     2. Norbornene polymerizations proceeded with bis(b-ketoamino)-nickel(II){Ni[CH3C(O)CHC(NR)CH3]2[R=phenyl (1) or naphthyl (2)]} complexes as thecatalyst precursors and the organo-Lewis compound tris(pentafluorophenyl)borane[B(C6F5)3] as a unique cocatalyst. From our calculations, comparing with phenyl assubstituent group of ligand, the naphthyl has strong electron delocalization ability.Because the positive charge of central ion will increase sharply, it possesses strongelectrophilic capacity and the catalyst activity is also high. The study also shows thatwhen substituent group of phenyl is electrondrawing group, the catalyst activitywould be enhanced greatly.
     3. In this part, we have studied bimetallic effects in the reaction of ethylenepolymerization for enhanced polar comonomer enchainment selectivity. The studiedshowed the hydrogen bond between H atom of alkane and Ni atom is that thebimetallic catalysts exhibit significantly higher activities than the monometalliccatalysts. Mechanistic studies confirm that, polymerizations follow a coordinativeinsertion process, with enhanced monomer enchainment facilitated by the secondcatalytic center
     4. The molecular structure and electronic structure of Ar′SnSnAr′andAr*SnSnAr*as well as their reaction activity with ethylene were studied by usingB3LYP DFT calculations in the present paper. The results show that Ar′SnSnAr′andAr*SnSnAr*have different stable spin state. For Ar'SnSnAr', the singlet state isground state with a planar structure (PL) that the plan of two central aryl rings areparallel and almost in a plane. However, for Ar*SnSnAr*, the triplet state is groundstate with a perpendicular structure (PE), the plan of two central aryl rings areperpendicular with each other. The result shows that the singlet and triplet statestabile stations are able to transfer to each other by crossing points of PES. Ourcalculation also indicates that both Ar'SnSnAr' and Ar*SnSnAr*reacts withethylene to via a concert reaction channel of triplet state via3TS3that was followedby a potential energy surfaces crossing point to reach to the product of singlet state.For the stepwise channel, both triplet and singlet potential energy surfaces holdhigher energy barrier than their in the concerted reactions.
引文
[1] John Boor Jr.齐格勒-纳塔催化剂和聚合[M].孙伯庆,栾瑛洁,张玉崑等译.北京:化学工业出版社,1986,1~19.
    [2]黄葆同,沈之荃等.烯烃双烯烃配位聚合进展[M].北京:科学出版社,1998,1~18.
    [3] Ewen J A. Mechanisms of Stereochemical Control in Propylene Polymerizationswith Soluble Group4B Metallocene/Methylalumoxane Catalysts[J]. J. Am.Chem. Soc.,1984,106(21):6355~6364.
    [4]陈金晖,阎卫东.李杨等.后过渡金属烯烃聚合催化剂的研究进展[J].化学通报,2000,4:1~7.
    [5] Ziegler K, Holzkamp E, Breil H, et al. Das MülheimerNormaldruck-Polyathylen-Verfahren[J]. Angew. Chem.,1955,67:541~547.
    [6] Natta G. Une nouvelle c1asse de polymeres d'α-olefines ayant une régularité destructure exceptionelle[J]. J. Polym. Sci.,1955,16:143~154.
    [7] Carrick W L, Turbett R J, Karol F J, et al. Ethylene polymerization withsupported bis(triphenylsilyl) chromate catalysts [J]. J. Pol ym. Sci.,1972,10(9):2609~2620.
    [8] Natta G. Stereospezifische Katalysen und isotaktische Polymere[J]. Angew.Chem.,1956,68(12):393~403.
    [9] Natta G. Von der stereospezifischen Polymerisation zur asymmetrischenautokatalytischen Synthese von Makromolekülen Nobel-Vortrag am12Dezember1963[J]. Angew. Chem.,1964,76:553~556.
    [10]Boffa L S, Novak B M. Copolymerization of Polar Monomers with Olefins UsingTransition-Metal Complexes[J]. Chem. Rev.,2000,100(40):1479~1493.
    [11]Matsugi T, Fujita T. High Performance Olefin Polymerization CatalystsDiscovered on the Basis of a New Catalyst Design Concept[J]. Chem. Soc. Rev.,2008,37:1264~1277.
    [12]Makio H, Kashiwa N, Fujita T. FI Catalysts: A New Family of High PerformanceCatalysts for Olefin Polymerization[J]. Adv. Synth. Catal.,2002,344(5):477~493.
    [13]Mitani M, Saito J, Ishii S I, et al. FI Catalysts: New Olefin PolymerizationCatalysts for the Creation of Value-Added Polymers[J]. Chem. Rec.,2004,4:137~158.
    [14]Fujita T, Tohi Y, Mitani M, et al. Olefin Polymerization Catalysts, Transition MetalCompounds, Processes for Olefin Polymerization, and Alpha-Olefin/ConjugatedDiene Coopolymers[P]. US Patent0115557A1,2002.
    [15]Sakuma A, Weiser M S, Fujita T. Living Olefin Polymerization and BlockCopolymer Formation with FI Catalysts[J]. Polym. J.,2007,39(3):193~207.
    [16]Nakayama Y, Saito J, Bando H, et al. MgCl2/R′nAl(OR)3-n: An ExcellentActivator/Support for Transition-Metal Complexes for Olefin Polymerization[J].Chem. Eur. J.,2006,12:7546~7556.
    [17]Johnson A L, Davidson M G, Lunn M D, et al. Synthesis, Isolation and StructuralInvestigation of Schiff-Base Alkoxytitanium Complexes: Steric Limitations ofLigand Coordination[J]. Eur. J. Inorg. Chem.,2006,3088~3098.
    [18]Kealy T J, Pauson P L. A New Type of Organo-Iron Compound[J]. Nature,1951,168:1039~1040.
    [19]Miller S A, Tebboth J A, Tremaine J F. Dicyclopentadienyliron[J]. J. Chem. Soc.,1952, p632~635.
    [20]Wilkinson G, Rosenblum M, Whiting M C, et al. The Structure of Iron Bis-Cyclopentadienyl[J]. J. Am. Chem. Soc.,1952,74:2125~2126.
    [21]Fischer E O, Pfab W. Zur Kristallstruktur der Di-Cyclopentadienyl-Verbindungendes zweiwertigen Eisens, Kobalts und Nickels[J]. Z. Naturforsch. B.,1952,7:377~379.
    [22]Dunitz J D, Orgel L E, Rich A. The crystal structure of ferrocene[J]. Acta Cryst.,1956,9:373~375.
    [23]Laszlo P, Hoffmann R. Ferrocene: Ironclad History or Rashomon Tale?[J].Angew. Chem. Int. Ed.,2000,39:123~124.
    [24]Brennan J G, Andersen R A, Zalkin A. Chemistry of trivalent UraniumMetallocenes: Electron-transfer Reactions. Synthesis and Characterization of
    [(MeC5H4)3U]2E (E=S,Se,Te) and the Crystal Structures of [(MeC5H4)3U]2Sand (MeC5H4)3UOPPh3[J]. Inorg. Chem.,1986,25:1761~1765.
    [25]Sinn H, Kaminsky W, Vollmer H J, et al.“Living Polymers” on Polymerizationwith Extremely Productive Ziegler Catalysts[J]. Angew. Chem. Int. Ed. Engl.,1980,19(5):390~392.
    [26]Kuribayashi H K, Koga N, Morokuma K. An ab Initio MO and MM Study ofHomogeneous Olefin Polymerization with Silylene-Bridged ZirconoceneCatalyst and Its Regio-and Stereoselectivity[J]. J. Am. Chem. Soc.,1992,114:8687~8694.
    [27]Meier R J, Doremaele G H J Van, Iarlori S, et al. Ab Initio Molecular DynamicsStudy of Metallocene-Catalyzed Ethylene Polymerization[J]. J. Am. Chem. Soc.,1994,116:7274~7281.
    [28]M hring P C, Coville N J. Homogeneous group4metallocene ziegler-nattacatalysts: The influence of cyclopentadienyl-ring substituents[J]. J. Organomet.Chem.,1994,479:1~29.
    [29]Woo T K, Fan L, Ziegler T. A density functional study of chain growing andchain terminating steps in olefin polymerization by metallocene and constrainedgeometry catal[J]. Organometallics,1994,13:2252~2261.
    [30]Brintzinger H H, Fischer D, Mülhaupt R, et al. Stereospecific OlefinPolymerization with Chiral Metallocene Catalysts[J]. Angew. Chem., Int. Ed.Engl.,1995,34(11):1143~1170.
    [31]Lanza G, Fragala I L, Marks T J. Metal and Ancillary Ligand Structural Effectson Ethylene Insertion Processes at Cationic Group4Centers. A Systematic,Comparative Quantum Chemical Investigation at Various ab Initio Levelsysts [J].Organometallics,2001,20:4006~4017.
    [32]Borrelli M, Busico V, Cipullo R, et al. Selectivity of Metallocene-CatalyzedOlefin Polymerization: A Combined Experimental and Quantum MechanicalStudy. The ansa-Me2Si(Ind)2Zr and ansa-Me2C(Cp)(Flu)Zr Systems[J].Macromolecules,2003,36:8171~8177.
    [33]Yang S Y, Ziegler T. Combined Car-Parrinello QM/MM Dynamic Study on thePropagation and Termination Steps of Ethylene Polymerization Catalyzed by[Cp2ZrR(í-Me)B(C6F5)3](R) Me, Pr)[J]. Organometallics,2006,25:887~900.
    [34]李小璐,新型桥联咪唑环戊二烯配体及IVB族单茂金属配合物的合成及表征[D],西北大学,2008.
    [35]Kaminsky W, Laban A. Metallocene Catalysis[J]. Applied Catalysis A: Genernal,2001,222:47~61.
    [36]Kaminsky W. Polymerization Catalysis[J]. Catalysis Today,2000,62(1):23~34.
    [37]Kaminsky W, Bark A, Steiger R. Stereospeeific polymerization bymetalloeene/aluminoxane catalysts[J]. J. Mol. Catal.,1992,74(1-3):109~119.
    [38]Kaminsky W,Diplchem K K,Brintzinger H H,et al. Polymerisation von Propenund Buten Mit Einem Chiralen Zirco nocen und Methylaluminoxan alsCokatalysator[J]. Angew. Chem,1985,97(6):507~508.
    [39]Mallin D T,Rausch M D,Lin Yegang,et al. Rac-[Ethylidene(1-.eta.5-Tetramethylcyclopentadieny)(1-.eta.5-Indenyl)]Dichlorotitanium and ItsHomopolymerization of Propylene to Crystalline-Amorphous BlockThermoplastic Elastomers[J]. J. Am. Chem. Soc.,1990,112(5):2030~2031.
    [40]Coates G W,Waymouth R M. Oscillating Stereocontrol:A Strategy for theSynthesis of Thermoplastic Elastomeric Polypropene[J]. Science,1995,267(5195):217~219.
    [41]Canich J A M. EP-A0420436[P].1991, Canich J A M. UA5026798[P].1991and UA5096867,1992.
    [42]Jutzi P. Fluxional η1-Cyclopentadienyl Compounds of Main-Group Elements[J].Chem. Rev.,1986,86:983~996.
    [43]Herrmann W A, Morawietz M J A. J. Synthesis and characterization of bridgedhalf-sandwich amides of titanium and zirconium[J]. J. Organomet. Chem.,1994,482:169~181.
    [44]Dias H V R, Wang Z, Bott S G. Preparation of group4metal complexes of abulky amido-fluorenyl ligand[J]. J. Organomet. Chem.,1996,508:91~99.
    [45]Foster P, Rausch M D, Chine J C W. The synthesis and polymerization behaviorof methoxy-substituted (indenyl)trichlorotitanium complexes[J]. J. Organomet.Chem.,1997,527(1-2):71~74.
    [46]Ishihara N,Seimiya T,Kuramoto M,et al. Crystalline SyndiotacticPolystyrene[J]. Macromolecules,1986,19(9):2464~2465.
    [47]Idemitsu Kosan Co. Process for Production of Styrene Polymers[P]. US,4680353,1987.
    [48]The Dow Chemical Company. Constrained Geometry Addition PolymerizationCatalysts,Processes for Their Preparation,Precursors Therefor,Methods ofUse,and Novel Polymers Formed Therewith[P]. EP,0416815,1991.
    [49]Exxon Chemical Inc. Patent. Process for ProducingCrystallinePoly-.alpha.-Olefins with a Monocyclopentadienyl TransitionMetalCatalyst System[P]. US,5026798,1991.
    [50]The Dow Chemical Company. Metal Complex Compounds[P]. US,5064802,1991.
    [51]Nomura K,Naga N,Miki M. Synthesis of Various Nonbridged Titanium(Ⅳ)Cyclopentadienyl-Aryloxy Complexes of the Type CpTi(OAr)X2and Their Usein the Catalysis of Alkene Polymerization:Important Roles of Substitutes onBoth Aryloxy and Cyclopentadienyl Groups[J]. Organometallics,1998,17(11):2152~2154.
    [52]Nomura K,Liu Jingyu,Padmanabhan S,et al. Nonbridged Half-MetallocenesContaining Anionic Ancillary Donor Ligands:New Promising Candidates asCatalysts for Precise Olefin Polymerization[J]. J. Mol. Catal.,A,2007,267(1/2):1~29.
    [53]王伟,郑刚.单茂金属烯烃聚合催化剂[J].化学进展,2009,21(4):677~686.
    [54]Wang Wei,Fujiki M,Nomura K. Copolymerization of Ethylene withCyclohexene(CHE) Catalyzed by Nonbridged Half-Titanocenes ContainingAryloxo Ligand:Notable Effect of Both Cyclopentadienyl and Anionic DonorLigand for Efficient CHE Incorporation[J]. J. Am. Chem. Soc.,2005,127(13):4582~4583.
    [55]Breslow D S,Newburg N R. Bis-(Cyclopentadienyl)-TitaniumDichloride-Alkylaluminium Complexes as Soluble Catalysts for thePolymerization of Ethylene[J]. J. Am. Chem. Soc.,1959,81(1):81~86.
    [56]Sinn H,Kaminsky W,Vollmer H J,et al.“Lebende Polymere” BeiZiegler-Katalysatoren Extremer Produktivit t[J]. Angew Chem,1980,92(5):396~402.
    [57]Long P W, Breslow D S. Der Einflu von Wasser auf die katalytische Aktivit tvon Bis(π-cyclopentadienyl)titandichlorid-Dimethylaluminiumchlorid zurPolymerisation von thylen[J]. J. Liebigs. Ann. Chem.,1975,3:463~469.
    [58]Kaminsky W, Kopf J, Sinn H, et al. Extrem verzerrte Bindungswinkel beiOrganozirconium-Verbindungen, die gegen Ethylen aktiv sind[J]. Angew.Chem.,1976,88(20):688~689.
    [59]陈伟.金属茂催化剂及其聚烯烃的研究开发[J].高分子通报,1997,1:54~58.
    [60]Kaminsky W, Remmer F. High melting polypropenes by silica-supportedzirconocene catalysts[J]. Makromol. Chem. Rapid Commun.,1993,14(4):239~243.
    [61]Mülhaupt R, Duschek T, Fischer D, et al, Novel polypropene materials derivedfrom vinylidene-terminated oligopropenes[J]. Polym. Adv. Technol.,1993,4(7):439~449.
    [62]Yang X, Stern C L, Marks T J.“Cation-like” Homogeneous OlefinPolymerization Catalysts Based upon Zirconocene Alkyls andTris(pentafluorophenyl) borane[J]. J. Am. Chem. Soc.,1991,113:3623~3625.
    [63]Yang X, Stern C L, Marks T J. Cationic Zirconocene Olefin PolymerizationCatalysts Based on the Organo-Lewis Acid Tris(pentafluorophenyl)borane. ASynthetic,Structural, Solution Dynamic, and Polymerization Catalytic Study[J]. J.Am. Chem. Soc.,1994,116(22):10015~10031.
    [64]Burger B J, Thompson M E, Cotter W D, etal. Ethylene insertion andbeta-hydrogen elimination for permethylscandocene alkyl complexes. A study ofthe chain propagation and termination steps in Ziegler-Natta polymerization ofethylene[J]. J. Am. Chem. Soc.,1990,112(4):1566~1577.
    [65]Mogstad A L, Waynouth R M. Chain transfer to aluminum in the homogeneouscyclopolymerization of1,5-hexadiene[J]. Macromolecules,1992,25(8):2282~2284.
    [66]Ready T E, Chien J C W, Rausch M D. J. Alkyl-substituted indenyl titaniumprecursors for syndiospecific ziegler-natta polymerization of styrene[J]. J.Organomet. Chem.,1996,519(1-2):21~28.
    [67]朱蔚璞,王立,叶朝阳.烯烃聚合催化剂的研究进展[J].合成树脂及塑料,2001,18(6):38~42.
    [68]Imanishi Y, Naga N. Recent developments in olefin polymerizations withtransition metal catalysts[J]. Progress in polymer science,2001,26(8):1147~1198.
    [69]刘永明.后过渡金属络合物双-(-酮胺)镍(Ⅱ)催化烯烃聚合研究[D].2007,南昌大学.
    [70]Johnson L K, Killian C M, Brookhart M. New Pd(Ⅱ)-and Ni(Ⅱ)-basedcatalysts for polymerization of ethylene and ɑ-olefins[J].J Am. Chem. Soc.,1995,117(23):6414~6415.
    [71]Small B L, Brookhart M. Iron-based catalysts with exceptionally high activitiesand selectivities for oligomerization of ethylene to Linear α-olefins [J]. J AmChem Soc,1998,120:7143~7144.
    [72]Small B L, Brookhart M, Bennett A M A. Highly Active Iron and CobaltCatalysts for the Polymerization of Ethylene[J]. J. Am. Chem. Soc.,1998,120(16):4049~4050.
    [73]Britovsek G J P, Gibson V C, Kimberley B S, et al. Novel olefin polymerizationcatalysts based on iron and cobalt[J]. Chem. Commun.,1998,7:849~850.
    [74]Britovsek G J P, Bruce M, Gibson V C, et al. Iron and Cobalt EthylenePolymerization Catalysts Bearing2,6-Bis(Imino)Pyridyl Ligands: Synthesis,Structures, and Polymerization Studies[J]. J. Am. Chem. Soc.,1999,121(38):8728~8740.
    [75]李永飞,高美丽,伍青.后过渡金属催化烯烃以及环烯烃聚合的研究进展[J].现代化工,2007,27(2):52~54.
    [76]Scollard J D, McConville D H, Payne N C, et al. Polymerization of α-Olefinsby Chelating Diamide Complexes of Titanium[J]. Macromolecules,1996,29:5241-5243.
    [77]Gibson V C, Spitzmesser S K. Advances in non-metallocene olefinpolymerization catalysis[J]. Chem. Rev.,2003,103(1):283~316.
    [78]万大维,含[P,O]骨架或[O N X]三齿配体的过渡金属烯烃聚合催化剂的合成和应用[D].苏州大学,2012.
    [79]E.I. DU Pont Nemours and Company,University of North Carlina at Chapel Hill.Alpha-Olefins and Olefin Polymers and Processes Therefor[P]. WO,9623010,1996.
    [80]BP Chemicals Limited. Novel Compounds and Their Use in Polymerisation[P].WO,9849208,1998.
    [81]E.I. DuPont Nemours and Company,University of North Carlina at Chapel Hill.Polymerization of Propylene[P]. WO,9830612,1998.
    [82]Marques M M, Fernandes S, Correia S G, et al. Synthesis of polar vinylmonomer-olefin copolymers by α-diimine nickel catalyst[J]. Polym. Int.,2001,50:579~587.
    [83]Bielawski C W, Benitez D, Grubbs R H. An“Endless” Route to Cyclic Polymers[J]. Science,2002,297(5589):2041~2044.
    [84]Camacho D H, Guan Z B. Designing late-transition metal catalysts for olefininsertionpolymerization and copolymerization[J]. Chem. Commun,2010,46:7879~7893.
    [85]Fernandes S, Marques M M, Correia S G, et al. Diimine nickel catalysis ofethylene copolymerization with polar cyclic monomers[J]. Macromol. Chem.Phys.,2000,201:2566~2572.
    [86]Johnson L K, Mecking S, Brookhart M. Copolymerization of Ethylene andPropylene with Functionalized Vinyl Monomers by Palladium(II) Catalysts[J]. J.Am. Chem. Soc.,1996,118:267~278.
    [87]Vanka K, Xu Z, Ziegler T. A Combined Density Functional Theory andMolecular Mechanics (QM/MM) Study of Single-Site Ethylene PolymerizationCatalyzed by [(C6H5NCH)C4H3N]2-RM+{M=Ti, Zr} in the Presence of theCounterion CH3B(C6F5)3[J]. Organometallics.,2004,23(12):2900~2910.
    [88]Johnson L K, Bennett A M A, Wang L, et al. Polymerization of Olefins[P]. US6,174,975B1,2001.
    [89]Wang C, Friedrich S, Grubbs R H, et al. Neutral Nickel(II)-Based Catalysts forEthylene Polymerization[J]. Organometal lics,1998,17:3149~3251.
    [90]Britovsek G J P, Gibson V C, SPitzmesser S K,et al. Cationic2,6-bis(imino)Pyridine iron and cobalt complexes: synthesis, structures, ethylenepolymerization and ethylene/polar monomer co-polymerisation studies[J]. J.Chem. Soc. Dalton Trans.2002,6:1159~1171.
    [91]宋东坡.中性镍催化剂催化烯烃聚合的研究[D].吉林大学,2008.
    [92]Killiam C M, Tempel D J, Brookhart M, et al. Living Polymerization ofɑ-Olefins Using Ni(II)-ɑ-Diimine Catalysts. Synthesis of New Block PolymersBased on ɑ-Olefins[J]. J. Am. Chem. Soc.,1996,118:11664~11665.
    [93]Brookhart M, DeSimone J M, Grant B E, et al. Cobalt(III)-Cata1yzed LivingPolymerization of Ethylene: Routes to End-Capped Polyethylene with a NarrowMolar Mass Distribution[J]., Macromolecules,1995,28(15):5378~5380.
    [94]Keim W. Nickel: An Element with Wide Application in Industrial HomogeneousCatalysis[J]. Angew. Chem. Int. Ed. Engl.,1990,29(3):235~244.
    [95]Killian C M, Johnson L K, Brookhart M. Preparation of Linear ɑ-Olefins UsingCationic Nickel(II) ɑ-Diimine Catalysts[J]. Organometallics,1997,16:2005~2007.
    [96]McLain S J, Feldman J, Brookhart M, et al. Addition Polymerization ofCyclopentene With Nickel and Palladium Catalysts[J]. Macromolecules,1998,31:6705~6707.
    [97]Ittel S D, Johnson L K, Brookhart M. Late-metal catalysts for ethylene homo-and copolymerization[J]. Chem. Rev.,2000,100(4):1169~1204.
    [98]Brookhart M, Wangner M I. Synthesis of a Stereoblock Polyketone throughAncillary Ligand Exchange[J]. J. Am. Chem. Soc.,1996,118:7219~7220.
    [99]Gibson V C, Spitzmesser S K. Advances in non-metallocene olefinpolymerization catalysis [J]. Chem. Rev.,2003,103(1):283~315.
    [100]Koten G, Vrieze K.1,4-Diaza-1,3-butadiene (α-diimine)ligands: theircoordination modes and the reactivity of their metal complexes [J]. Adv.Organomet. Chem.,1982,21:151~239.
    [101]Baird M C. Carbocationic alkene polymerizations initiated by organotransitionmetal complexes: an alternative, unusual role for soluble ziegler-natta catalysts[J].Chem. Rev.,2000,100(4):1471~1478.
    [102]金国新,周光远,刘宇.高分子化的茂金属催化剂的制备方法[P].中国专利,CN98125651.1,2000.
    [103]Small B L, Brookhart M, Bennett A M A. Highly active iron and cobalt catalystsfor the polymerization of ethylene[J]. J. Am. Chem. Soc.,1998,120:4049~4058.
    [104]杨志洪,罗河宽,毛炳权等.铁系催化剂的乙烯聚合研究[J].石油化工,2000,29(6):425~427.
    [105]周光远,金国新.壳-核结构高分子化的茂金属催化剂的制备[P].中国专利,CN99121245.2,2001.
    [106]刘长坤,金国新.高分子化不对称型“茂后”烯烃聚合催化剂的制备方法[P].中国专利, CN00136190.2,2001.
    [107]Lutz E F. Shell higher olefins process[J]. J. Chem. Edu.,1986,63(3):202~203.
    [108]Parr R G, Yang W. Density Functional Theory of Atoms and Molecules[M[.Oxford, Oxford Unversity press,1989.
    [109]Dreizler R M, Gross E K U. Density Functional Theory[M]. Springer-Vertag,Berlin,1990.
    [110]黄祖飞. LiMnO_2体系结构与性能的第一性原理研究[D].吉林大学,2006.
    [111]W. Kohn. Nobel Lecture: Electronic structure of matter—wave functions anddensity functionals[J]. Rev. Mod. Phys.,1999,71(5):1253~1266.
    [112]贾秀华,鲁玉祥,齐国梁.密度泛函理论在催化领域的应用[J].石油化工,2009,38(9):1016~1021.
    [113]余淑娴,罗冬梅,洪三国等.白藜芦醇甙结构、频率及热力学性质的量子化学研究.南昌大学学报(理科版)[J],2007,31(5):473~477.
    [114]陈丽萍、陈慧萍、余淑娴、洪三国.8-喹啉磺酸乙酯、异丙酯的气相热解反应的理论研究[J].南昌大学学报(理科版),2005,29(6):521~525
    [115]Poole J A, Gill P M W, Johnson B G. Kohn-Sham Density-Functional Theorywithin a finite basis set[J]. Chemical Physics Letters.,1992,199:557~561.
    [116]Becke A D. Density-Functional Exchange-Energy Approximation With CorrectAsymptotic Behavior [J]. Phys. Rev. A,1988,38(6):3098~3100.
    [117]Becke A D. Density-Functional Thermochemistry Ⅰ.The Effect of TheExchange-only Gradient Correction[J]. J. Chem. Phys.,1992,96:2155~2160.
    [118]Becke A D. Density-Functional Thermochemistry Ⅲ. The role of exact exchange[J]. J. Chern. Phys.,1993,98(7):5648~5652.
    [119]Becke A D. Density-functional thermochemistry IV. A new dynamicalcorrelation functional and implications for exact-exchange mixing[J]. J. Chem.Phys.,1996,104:1040~1046.
    [120]Perdew J P. Generalized gradient approx for exchange and approximationcorrelation: a look backward and forward[J]. Physica B,1991,172:l~2.
    [121]Perdew J P, Wang Y. Theory of the cyclotron resonance spectrum of a polaron intow dimensions[J]. Phys. Rev. B,1986,33:8800~8809.
    [122]Perdew J P, In: Ziesche P, Eshring H. Eletronic Structure of Solids[M].Akademie Veriag, Berlin,1991.
    [123]Cossi, M. Barone, V. Cammi, R. Tomasi, J. Ab initio study of solvated molecules:a new implementation of the polarizable continuum model]J]. Chem. Phys.Lett.,1996,255,327~335.
    [124]王红明.密度泛函方法对有机反应和有机催化反应体系的理论研究[D].中国科学院研究生院,2006.
    [125]Hohenberg P, Kohn W. Inhomogeneous Electron Gas[J]. Phys. Rev.,1964,136:B864-B871.
    [126]Kohn W, Sham L J. Self-Consistent Equations Including Exchange andCorrelation Effects [J]. Phys. Rev.,1965,140:A1133-A1138.
    [127]张跃斌.配基分子与可溶性鸟苷酸环化酶血红素结构域作用的理论研究[D].吉林大学,2010.
    [128]许光学,刘水平,林尚安.茂金属催化剂催化苯乙烯间规聚合ⅡCpTi(CH2SiMe3)3/B(C6F5)3的结构与活性中心[J].催化学报,1998,19(3):94~96.
    [129]许学翔,谢光华.-二酮钛配合物/甲基铝氧烷催化体系用于苯乙烯的间规聚合[J].高分子学报,1997,19(2):126~128.
    [130]祝方明,林尚安.茂钛催化剂的苯乙烯间规聚合[J].高等学校化学学报,1997,18(12):2065~2069.
    [131]阎卫东,周鼐,冯茹等.单茚钛与二酮钛催化苯乙烯间规聚合反应的性能[J].催化学报,1999,20(6):90~93.
    [132]Longo P, Grassi A, Oliva L, et al. Some13C NMR evidence on isotacticpolymerization Of styrene[J]. Makromol. Chem.,1990,191(1):237~242.
    [133]Sun H M, Shen Q, Yang M J. New neutral Ni(Ⅱ)-and Pd(Ⅱ)-based initiators forPolymerization of styrene[J]. Eur. Polym. J.,2002,38(10):2045~2049.
    [134]Sun H M, Li W F, Han X Y, et al. Indenyl nickel complexes: synthesis,characterization and styrene polymerization catalysis[J]. Organomet. Chem.,2003,688(12):132~137.
    [135]Yang M J, Xu J L, Shen Z H. Homogeneous rare earth coordination catalysts forcopolymerization of styrene with acrylonitrile. J. Polyms. Sci. Part A,1990,28(12):3231~3240.
    [136]Jiang L M, Sheng Z Q, Zhang Y F, et al. Styren polymerization With rare earthcatalysts using a magnesium alkyl cocatalyst[J]. J. Polym. Sci. Part A,1996,34(17):3519~3525.
    [137]刘丽,郑玉莲,龚志等.稀土催化合成等规聚苯乙烯[J].应用化学,1997,14(5):118~119.
    [138]Zhang Q S, Ni X F, Zhang Y F, et al. Homopolymerization andCopolymerization of Isoprene and Styrene with a Neodymium Catalyst Using anAlkylmagnesium Cocatalyst[J]. Maromol Rapid Commun,2001,22(18):1493~1496.
    [139]Ishihara N, Kuramoto M, Uoi M. Stereospecific Polymerization of StyreneGiving the Syndiotactic Polymer[J]. Macromolecules,1988,21:3356~3360.
    [140]Kaminsky W. Highly active metallocene catalysts for olefin polymerization[J].J.Chem Soc, Dalton Trans.,1998,5:1413~1418.
    [141]Coates G W, Waymouth RM. Oscillating Stereocontrol in the Polymerization ofPropylene: A New Strategy for the Synthesis of Thermoplastic ElastomericPolypropylene[J]. Science,1995,267:217~218.
    [142]Margl P, Deng L Q, Zieg ler T. Cobalt (Ⅱ) Imino Pyridine Assisted EthylenePolymerization: A Quantum-mechanical/Molecular-Mechanical DensityFunctiona l Theory Investigation[J]. Organometallics,1999,18:5701~5708.
    [143]Rose J M, Deplace F, Lynd N A, et al. C2-Symmetric Ni(II) α-DiiminesFeaturing Cumyl-Derived Ligands: Synthesis of Improved ElastomericRegioblock Polypropylenes[J]. Macromolecules,2008,41:9548~9555.
    [144]Matsui S, Mitani M, Saito J, et al. Post-metallocenes: a newbis(salicylaldiminato)zirconium complex for ethylene polymerization[J]. Chem.Lett.,1999,1263~1264.
    [145]Tang L M, Duan Y Q, Pan L, et al. Copolymerization of ethylene andcyclopentene with bis(β-enaminoketonato) titanium complexes[J]. J. Polym. Sci.Part A: Polym. Chem.,2005,43:1681~1689.
    [146]Li X F, Dai K, Ye W P, et al. New titanium complexes bearing twoβ-ketoiminato chelate ligands: Syntheses, structures, and olefin polymerizationactivities[J]. Organometallics,2004,23:1223~1230.
    [147]George J P B, Gibson V C, Wass D F. The Search for New-Generation OlefinPolymerization Catalysts: Life beyond Metallocenes[J]. Angew. Chem. Int. Ed.,1999,38:428~447.
    [148]Younkin T R, Connor E F, Grubbs R H, et al. Neutral, Single-Component Nickel(II) PolyoleTn Catalysts That Tolerate Heteroatoms[J]. Science,2000,287:460~462.
    [149]Wang C M, Friedrich S, Grubbs R H, et al. Neutral nickel (Ⅱ)-based catalystsfor ethylene polymerization[J]. Organometallics,1998,17(15):3149~3151.
    [150]Chan M S W, Deng L, Ziegler T. Density Functional Study of NeutralSalicylaldiminato Nickel(II) Complexes as Olefin Polymerization Catalysts[J].Organometallics,2000,19:2741~2750.
    [151]Liu Y, Yang Z D, Liu Ying. Density Functional Theory Study onSalicyladiminato-Pd(Ⅱ) Model Complexes as Propene PolymerizationCatalyst[J]. Acta Chimica. Sinica.,2003,61(10):1528~1532.
    [152]Liu Jiawen, Liu Ying, Liu Yue, et al. The Neutral Mechanism Of The NovelNickel Catalyst For Ethylene Polymerzation[J]. Acta Polymerica Sinica,2004,3:333~338.
    [153]Shuxian yu, Xiaohui He, Yiwang Chen*, Sanguo Hong, et al. Polymerization ofStyrene Using Bis(-ketoamino)nickel(Ⅱ)/MAO Catalytic Systems[J]. J. Appl.Polym. Sci.,2007,105(2):500~509.
    [154]He X H, Yao Y Z, Luo X, et al. Nickel(Ⅱ) complexes bearing N,O-chelateligands: Synthesis, solid-structure characterization, and reactivity toward thepolymerization of Polar monomer[J]. Organometallies,2003,22(24):4952~4957.
    [155]Cam D, Albizzai E, Chinquina P. Characterization of Methylalumoxane byMeansof Gel-Permeation Chromatography[J]. Macromol. Chem.,1990,191(7):1641~1647.
    [156]Shuxian Yu, Sanguo Hong, Yiwang Chen, and Hongming Wang, A DFT studyof styrene polymerization using neutral (2Z,4E)-4-(methylimino)pent-2-en-2-olnickel(Ⅱ)[J]. Reaction Kinetics and Mechanism,2011,36(1):18~26.
    [157]M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M.Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani,N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda,J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X.Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts,R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G.Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A.D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul,S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A.Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W.Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA,2003.
    [158]Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energyformula into a functional of the electron density [J]. Phys Rev. B,1988,37:785~789
    [159]刘颖,段纪东,刘跃,等.烯烃催化聚合反应中的区位选择性和Mulliken位置电荷[J].高分子通报,2011,5:93~97.
    [160]刘佳雯,刘颖,刘跃.中性水杨醛亚胺镍催化烯烃聚合反应链引发机理的密度泛函研究[J].分子催化,2006,20(1):51~56.
    [161]Truett W L, Johnson D R, Robinson I M, et al. Polynorbornene by Co rdinationPolymerization[J]. J. Am. Chem. Soc.,1960,82(9):2337~2340.
    [162]Janiak C, Lassahn P G. Metal catalysts for the vinyl polymerization ofnorborneneJ. Mol. Catal. A: Chem.,2001,166(2):193~209.
    [163]Grove N R, Kohl P A, Allen S A B, et al. Functionalized polynorbornenedielectric polymers: adhesion and mechanical properties[J]. J. Polym. Sci. Part B:Polym. Phys.,1999,37,3003~3010.
    [164]Ahmed S, Bidstrup S A, Kohl P A, et al. Development of a New Force Field forPolynorbornene[J]. J. Phys. Chem. B,1998,102(49):9783~9790.
    [165]Wu Q, Lu Y Y. Synthesis of a soluble vinyl-type polynorbornene with ahalf-titanocene/methylaluminoxane catalyst[J]. J. Polym. Sci. Part A: Polym.Chem.,2002,40(10):1421~1425.
    [166]Andersen A W, Merkling N G. Polymeric bicyclo[2,2,1] hept-2-ene[P]. US2721189,1955.
    [167]Kennedy J P, Makowski H S, Carbonium Ion Polymerization of Norbornene andIts Derivatives[J]. J. Macromol. Sci. Chem.,1967,1(3):345~370.
    [168]Seehof N, Mehler C, Breun ing S, et al. Pd2+Catalyzed Addition Polymerizationsof Norbornene and Norbornene Derivatives[J]. J. Mol. Catal.,1992,76:219~228.
    [169]Janiak C h, Lassahn P G. The Vinyl Homopolymerization of Norbornene[J].Macromol Rapid Commun,2001,22:479~492.
    [170]Rush S, Reinmuth A, Risse W. Palladium (Ⅱ)-Cat alyzed Olefin Addit ionPolym erizat ions of3,3-Dialkyl-Substituted Cyclopropenes[J]. Macromolecules,1997,30:7375~7385.
    [171]Galletti A M R, Hayatifar M. Highly active and easily accessible catalysts forvinyl polymerization of norbornene obtained by oxidative addition ofsalicylaldimine ligands to bis(1,5-cyclooctadiene)nickel(0) andmethylaluminoxane[J]. J. Polym. Sci. Part A: Polym. Chem.,2012,50(21):4459~4464.
    [172]王媛媛,祝方明,林尚安.双吡唑亚胺镍/甲基铝氧烷催化降冰片烯的聚合[J].高等学校化学学报,2008,29:1684~1688.
    [173]Shi X C, Jin G X. Synthesis and Characterization of Nickel(II) and Palladium(II)Complexes based on Tridentate [N–NP] and [N–NS] Ligands and TheirApplications in Norbornene Polymerization[J]. Organometallics,2012,31(13):4748~4754.
    [174]Schut J H. New Cyclic Olefins Are Clearly Worth a Look[J]. Plast. Tech.,2000,3:45~46.
    [175]Sartori G, Ciampoll F, Gameli N. Polymerization of norbornene[J]. Chim. Ind.,1963,45(12):1478~1482.
    [176]Tsujino T, Saeguss T, Furukawa J. Polymerization of norbornene by modifiedZiegler-catalysts[J]. Die Makromolekulare Chemie,1965,85(1):71~79.
    [177]Saegusa T, Tsujino T, Furukawa J. Polymerization of norbornene by modifiedziegler catalyst[J]. Die Makromolekulare Chemie,1964,78(1):231~233.
    [178]Pedeutour J N, Radhakrishnan K, Cramail H, et al. Reactivity of MetalloceneCatalysts for Olefin Polymerization: Influence of Activator Nature andStructure[J]. Macromol. Rapid Commun.,2001,22:1095~1123.
    [179]Kamins W, Bark A, Arndt M. New Polymers by Homogenous ZireonoceneAluminoxane Catalysts[J]. Makromol. Chem. Maeromol. Symp.,1991,47:83~93.
    [180]Kaminsky W. New polymers by metallocene catalysis[J]. Macromol. Chem.Phys.,1996,197(12):3907~3945.
    [181]Peueker U, Heitz W. Vinylie Polymerization and Copolymerization ofNorborneneand Ethene by Homogeneous Chromium(Ⅲ) Catalysts[J]. Macromol.Chem. Phys.,2001,202(8):1289~1297.
    [182]王齐,翁建华,徐君庭,等.茂金属催化乙烯与降冰片烯共聚合研究[J].高分子学报,1998,2:154~159.
    [183]McKnight A L, Waymouth R M. Ethylene/Norbornene Copolymerizations withTitanium CpA Catalysts[J]. Macromolecules,1999,32(9):2816~2825.
    [184]Wu Q, Lu Y, Lu Z. Addition Polymerization of Norbornene Catalyzed byMonocyclopentadienyltitanium/MAO Catalyst[J]. Polym. Mater. Sci. Eng.,1999,80:483~484.
    [185]Nelkenbaum E, Kapon M, Eisen M S. Synthesis and Moleeular Struetures ofNeutral Niekel Complexes. Catalytie Aetivity of(Benzamidinato)(acetylaeetonato)niekel for the Addition Polymerization ofNorbomene, the Oligomerization of Ethylene, and the Dimerization ofPropylene[J]. Organometallies,2005,24(11):2645~2659.
    [186]Sacchi M C, Sonzogni M, Losio S, et al.Vinylic Polymerization of Norbomeneby Late Transition Metal-based Catalysis[J].Macromol. Chem. Phys.,2001,202(10):2052-2058.
    [187]Heinz B S, Alt F P, Heitz W. Pd(Ⅱ)-cata]yzed vinylic polymerization ofnorbornene and copolymerization with norbornene carboxylic acid esters[J].Maeromol Rapid Commun,1998,19(5):251~256.
    [188]Alt F P, Heitz W. Vinylic polymerization of bicyclo[2.2.1]hept-2-ene byCo(Ⅱ)-catalysis[J]. Macromol Chem Phys,1998,199(9):1951-1956.
    [189]Sen A, Lai T W. Reactions of electrophilic transition metal cations with olefinsand small ring compounds. Rearrangements and polymerizations[J]. J OrganometChem,1988,358(1-3):567~588.
    [190]Piche L, Daigle J C, Rehse G, et al. Structure–Activity Relationship of PalladiumPhosphanesulfonates: Toward Highly Active Palladium-Based PolymerizationCatalysts[J]. Chem. Eur. J.,2012,18(11)3277~3285.
    [191]Roquette P, Maronna A, Peters A, et al. On the Electronic Structure ofNi(II) Complexes That Feature Chelating Bisguanidine Ligands[J]. Chem. Eur. J.,2010,16(4):1336~1350.
    [192]Weberski Jr M P, Chen C, Delferro M, et al. Ligand Steric and FluoroalkylSubstituent Effects on Enchainment Cooperativity and Stability in BimetallicNickel(II) Polymerization Catalysts[J]. Chem. Eur. J.,2012,18(34):10715~10732.
    [193]Sachse A, Demeshko S, Dechert S, et al. Highly preorganized pyrazolate-bridged palladium(II) and nickel(II)complexes in bimetallic norbornenepolymerization[J]. Dalton Trans.,2010,39:3903~3914.
    [194]Delferro M, McInnis J P, Marks T J. Ethylene Polymerization Characteristics ofan Electron-Deficient Nickel(II) Phenoxyiminato Catalyst Modulated byNon-Innocent Intramolecular Hydrogen Bonding[J]. Organometallics,2010,29(21):5040~5049.
    [195]Weberski M P, Chen CL, Delferro M, et al. Suppression of beta-Hydride ChainTransfer in Nickel(II)-Catalyzed Ethylene Polymerization via Weak FluorocarbonLigand-Product Interactions[J]. Organometallics,2012,31:3773~3789.
    [196]Byun G S, Kim S Y, Cho I. Pd(II)-catalyzed polymerization of optically activenorbornene carboxylic acid esters[J]. J. Polym. Sci. Part A: Polym. Chem.,2006,44(3)1263~1270.
    [197]Guo L H, Gao H Y, Guan Q R, et al. Substituent Effects of the Backbone inα-Diimine Palladium Catalysts on Homo-and Copolymerization of Ethylene withMethyl Acrylate[J]. Organometallics,2012,31(17):6054~6062.
    [198]Takamiya I, Yamashita M, Nozaki K. Syntheses of Ester-Substituted NorbornylPalladium Complexes Ligated with tBu3P: Studies on the Insertion of exo-and endo-Monomers in the Ester-Substituted Norbornene Polymerization[J].Organometallics,2008,27(20):5347~5352.
    [199]Kong Y, Ren H, Xu S, et al. Synthesis, Structures, and NorbornenePolymerization Behavior of Bis(aryloxide-N-heterocyclic carbene) PalladiumComplexes[J]. Organometallics,2009,28(20):5934~5940.
    [200]Johnson L K, Mecking S, Brookhart M. Copolymerization of Ethylene andPropylene with Functionalized Vinyl Monomers by Palladium(II) Catalysts[J]. J.Am. Chem. Soc.,1996,118:267~268.
    [201]Ravasio A, Boggioni L, Tritto I. Copolymerization of Ethylene with Norborneneby Neutral Aryl Phosphine Sulfonate Palladium Catalyst[J]. Macromolecules,2011,44(11):4180~4186.
    [202]Kang M, Sen A. Reaction of Palladium1,5-Cyclooctadiene Alkyl Chloride withNorbornene Derivatives: Relevance to Metal-Catalyzed Addition Polymerizationof Functionalized Norbornenes[J]. Organometallics,2004,23(23):5396~5398.
    [203]Funk J K, Andes C E, Sen A. Addition Polymerization of FunctionalizedNorbornenes: The Effect of Size, Stereochemistry, and Coordinating Ability of theSubstituent[J]. Organometallics,2004,23(8):1680~1683.
    [204]Liu S, Borkar S, Newsham D, et al. Synthesis of Palladium Complexes with anAnionic P O Chelate and Their Use in Copolymerization of Ethene withFunctionalized Norbornene Derivatives: Unusual Functionality Tolerance[J].Organometallics,2007,26(1):210~216.
    [205]Hasan T, Ikeda T, Shiono T. Homo-and copolymerization of norbornenederivatives with ethene by ansa-fluorenylamidodimethyltitanium activated withmethylaluminoxane[J]. J. Polym. Sci. Part A: Polym. Chem.,2007,45(20):4581~4587.
    [206]Liu B Y, Li Y, Shin B G, et al. Pd (II)-catalyzed vinyl addition polymerization ofnovel functionalized norbornene bearing dimethyl carboxylate groupse[J]. J.Polym. Sci. Part A: Polym. Chem.,2007,45(15):3391~3399.
    [207]He F P, Chen Y W, He X H, et al. Copolymerization of norbornene and5-norbornene-2-yl acetate using novelbis(β-ketonaphthylamino)Ni(II)/B(C6F5)3/AlEt3catalytic system[J]. J. Polym. Sci.Part A: Polym. Chem.,2009,47(16):3990~4000.
    [208]Leone G, Boglia A, Boccia A C, et al. Vinyl-Type Addition Polymerization ofNorbornene and Synthesis of Norbornene Macromonomers in the Presence ofEthylene Catalyzed by Cobalt(II) Phosphine Complexes[J]. Macromolecules,2009,42(23):9231~9237.
    [209]Ihara E, Honjyo S, Kobayashi K, et al. Radical copolymerization of methyl2-norbornene-2-carboxylate and2-phenyl-2-norbornene with styrene, alkylacrylate, and methyl methacrylate: Facile incorporation of norbornane frameworkinto polymer main chain and its effect on glass transition temperature[J]. Polymer,2010,51(2):397~402.
    [210]He L P, Liu J Y, Li Y G, et al. High-Temperature Living Copolymerization ofEthylene with Norbornene by Titanium Complexes Bearing Bidentate [O, P]Ligands[J]. Macromolecules,2009,42:8566~8570.
    [211]Nabhriain N, Brintzinger H H, Ruchatz D, et al. Polymeryl Exchangebetween ansa-Zirconocene Catalysts for Norbornene Ethene Copolymerizationand Aluminum or Zinc Alkyls[J]. Macromolecules,2005,38(6):2056~2063.
    [212]Hennis A D, Polley J D, Long G S, et al. Novel, efficient, palladium-basedsystem for the polymerization of norbornene derivatives: scope and mechanism[J].Organometallics,2001,20(13):2802~2812.
    [213]Mecking S, Johnson L K, Brookhart M, et al. Mechanistic Studies of thePalladium-Catalyzed Copolymerization of Ethylene and α-Olefins with MethylAcrylate[J]. J. Am. Chem. Soc.,1998,120(5):888~899.
    [214]Ittel S D, Johnson L K, Brookhart M. Late-Metal Catalysts for Ethylene Homo-and Copolymerization[J]. Chem. Rev.,2000,100(4):1169~1203.
    [215]Anselment T M, Vagin S I, Rieger B. Activation of late transition metal catalystsfor olefin polymerizations and olefin/CO copolymerizations[J]. Dalton Trans.,2008,34,4537~4548.
    [216]Guan Z B, Popeney C S. Recent Progress in Late Transition Metal ɑ-DiimineCatalysts for Olefin Polymerization[J]. Top. Organomet. Chem.,2009,26,179~220.
    [217]Mecking S. Olefin Polymerization by Late Transition Metal Complexes-A Rootof Ziegler Catalysts Gains New Ground[J]. Angew. Chem. Int. Ed.,2001,40(3):534~540.
    [218]Killian C M, Johnson L K, Brookhart M. Preparation of Linear Olefins UsingCationic Nickel(II) Diimine Catalysts[J]. Organometallics,1997,16:2005~2016.
    [219]Guan Z B, Cotts P M, McCord E F, et al. Chain Walking: A New Strategy toControl Polymer Topology[J]. Science,1999,283:2059~2062.
    [220]Cotts P M, Guan Z B, McCord E F, et al. Novel Branching Topology inPolyethylenes As Revealed by Light Scattering and13C NMR[J].Macromolecules,2000,33(19):6945~6952.
    [221]He X H, Chen Y W, Liu Y M, Yu S X, Hong S G, Wu Q. AdditionPolymerization of Norbornene Using Bis-(β-ketoamino) nickel(II)/B(C6F5)3Catalytic Systems[J]. J. Polym. Sci. Part A: Polym. Chem.,2007,45(20):4733~4743.
    [222]Berchtold B, Lozan V, Lassahn P G, et al. Niekel(Ⅱ) and Palladium(Ⅱ)complexes with alpha-dioxime ligands as catalysts for the vinyl polymerization ofnorbomene in combination with methylaluminoxane, tris(pentafluorophenyl)borane or triethylaluminum cocatalyst systems[J]. J. Polym. Sci. A,2002,40(21):3604~3614.
    [223]He X H,Wu Q. Polymerization of norbornene usingbis(beta-ketoamino)nickel(Ⅱ)/MAO catalytic systems[J].J Appl. Polym.Sci.,2006,101(6):4172~4180.
    [224]Li Y F, Gao M L,W u Q. Vinyl polymerization of norbornene by nickel(II)complexes bearing β-diketiminate ligands[J]. Appl Organomet Chem.,2007,21(11):965~969.
    [225]Madan R, Srivastava A, Anand R C, et al. Polymers derived frombicylo[2.2.1]heptene and its derivatives[J]. Prog. Polym. Sci.,1998,23(4):621~663.
    [226]Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.;Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.;Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.;Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven,T.; Montgomery, J. A.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin,K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell,A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega,N.; Millam, J. M.;Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.;Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.;Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.;Salvador, P.;. Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.;Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian09, Revision A.02, Gaussian, Inc., Wallingford CT,2009.
    [227]Delferro M, Marks T J. Multinuclear Olefin Polymerization Catalysts[J]. Chem.Rev.,2011,111:2450~2485.
    [228]Makio H, Terao H, Iwashita A, Fujita T, FI Catalysts for OlefinPolymerization-A Comprehensive Treatment[J], Chem. Rev.,2011,111:2363~2449.
    [229]Hu T, Li Y G, Li Y S, et al. Novel highly active binuclear neutral nickel andpalladium complexes as precatalysts for norbornene polymerization[J]. J. Mol.Catal. A: Chem.,2006,253:155~164.
    [230]Na S J, Joe D J, Sujith S, et al. Bimetallic Nickel Complexes of MacrocyclicTetraiminodiphenols and Their Ethylene Polymerization[J]. J.Organomet. Chem.,2006,69:611~620.
    [231]Sujith S, Joe D J, Na S J, et al. Ethylene/Polar Norbornene Copolymerizations byBimetallic Salicylaldimine-Nickel Catalysts[J]. Macromolecules,2005,38:10027~10033.
    [232]Wang W H, Jin G X. Binuclear neutral nickel complexes bearing bis(bidentate)salicylaldiminato ligands: Synthesis, structure and ethylene polymerizationbehavior[J]. Inorg. Chem. Commun.,2006,9:548~550.
    [233]Zhang D, Jin G X. Bimetallic nickel complexes of trimethyl phenyl linkedsalicylaldimine ligands: Synthesis, structure and their ethylene polymerizationbehaviors[J]. Inorg. Chem. Commun.,2006,9:1322~1325.
    [234]Motta A, Fragala I L, Marks T J. Proximity and Cooperativity Effects inBinuclear d0Olefin Polymerization Catalysts. Theoretical Analysis of Structureand Mechanism[J]. J. Am. Chem. Soc.,2008,130:3974~3984.
    [235]Amin S B. Marks T J. Alkenylsilane Structure Effects on Mononuclear andBinuclear Organotitanium-Mediated Ethylene Polymerization: Scope andMechanism of Simultaneous Polyolefin Branch and Functional GroupIntroduction[J]. J. Am. Chem. Soc.,2007,129(10):2938~953.
    [236]Guo N, Stern C L, Marks T J. Bimetallic Effects in Homopolymerization ofStyrene and Copolymerization of Ethylene and Styrenic Comonomers: Scope,Kinetics, and Mechanism[J]. J. Am. Chem. Soc.,2008,130:2246~2261.
    [237]Amin S B, Marks T J. Alkenylsilane Effects on Organotitanium-CatalyzedEthylene Polymerization. Toward Simultaneous Polyolefin Branch andFunctional Group Introduction[J]. J. Am. Chem. Soc.,2006,128(14):4506~4507.
    [238]Guo N, Li L, Marks T J. Bimetallic Catalysis for Styrene Homopolymerizationand Ethylene-Styrene Copolymerization. Exceptional Comonomer Selectivity andInsertion Regiochemistry[J]. J. Am. Chem. Soc.,2004,126(21):6542~6543.
    [239]Domski G J, Rose J M, Coates G W, et al. Living alkene polymerization: Newmethods for the precision synthesis of polyolefins[J]. Prog. Polym. Sci.,2007,32:30~92.
    [240]Zhang L, Brookhart M, White P S. Synthesis, Characterization, and EthylenePolymerization Activities of Neutral Nickel(II) Complexes Derived from Anilino-Substituted Enone Ligands Bearing Trifluoromethyl and TrifluoroacetylSubstituents[J]. Organometallics,2006,25:1868~1874.
    [241]Mccord E F,McLain S J, Johnson L K, et al.13C NMR Analysis of α-OlefinEnchainment in Poly(α-olefins) Produced with Nickel and Palladium α-DiimineCatalysts[J]. Macromolecules,2007,40:410~420.
    [242]Connor E F, Younkin T R, Grubbs R H, et al. Linear FunctionalizedPolyethylene Prepared with Highly Active Neutral Ni(II) Complexes[J]. J. Polym.Sci., Part A: Polym. Chem.,2002,40(16):2842~2854.
    [243]Waltman A W,Younkin T R, Grubbs R H. Insights into the Deactivation ofNeutral Nickel Ethylene Polymerization Catalysts in the Presence ofFunctionalized Olefins[J]. Organometallics,2004,23(22):5121~5123.
    [244]Rodriguez B A, Delferro M, Marks T J. Bimetallic Effects for Enhanced PolarComonomer Enchainment Selectivity in Catalytic Ethylene Polymerization[J]. J.Am. Chem. Soc.,2009,131(16):5902~5919.
    [245]Radlauer M R, Day M W, Agapie T. Bimetallic Effects on EthylenePolymerization in the Presence of Amines: Inhibition of the Deactivation byLewis Bases[J]. J. Am. Chem.Soc.,2012,134:1478~1481.
    [246]Goldberg D E, Hitchcock P B, Lappert M F, et al. Subvalent Group4B MetalAlkyls and Amides. Part9.1Germanium and Tin Alkene Analogues, theDimetallenes M2R4[M=Ge or Sn, R=CH(SiMe3)2]: X-Ray Structures,+Molecular Orbital Calculations for M2H4, and Trends in the Series M2R′4[M=C,Si, Ge, Or Sn; R′=R, Ph, C6H2Me,-2,4,6, Or C6H3Et2-2,6][J]. J. Chem. Soc.Dalton Trans.,1986,2387~2394.
    [247]Sekiguchi A, Zigler S S, West R, et al. Synthon for the silicon-silicon triplebond[J]. J. Am. Chem. Soc.,1986,108:4242~4244.
    [248]Pietschnig R, West R, Powell D R. Reduction of Terphenyltrifluorosilanes: C-CInsertion Products and Possible Formation of a Disilyne[J].Organometallics,2000,19:2724~2729.
    [249]Wiberg N, Finger C M M, Polborn K. Tetrakis(tri-tert-butylsilyl)-tetrahedro-tetrasilane(tBu3Si)4Si4: The First Molecular Silicon Compound with aSi4Tetrahedron[J]. Angew. Chem., Int. Ed.,1993,32(7):1054~1056.
    [250]Karni M, Apeloig Y, Schroeder D, et al. HCSiF and HCSiCl: The First Detectionof Molecules with Formal C≡Si Triple Bonds[J]. Angew. Chem. Int. Ed.,1999,38(3):332~335.
    [251]Landis C R, Weinhold F. Origin of Trans-Bent Geometries in Maximally BondedTransition Metal and Main Group Molecules[J]. J. Am. Chem. Soc.2006,128:7335-7345.
    [252]Sekiguchi A, Kinjo R, Ichinohe M. A Stable Compound Containing aSilicon-Silicon Triple Bond[J]. Science,2004,305:1755~1757.
    [253]Kobayashi K, Nagase S. Silicon Silicon Triple Bonds: Do Substituents MakeDisilynes Synthetically Accessible?[J]. Organometallics,1997,16:2489~2491.
    [254]Kobayashi K, Takagi N, Nagase S. Do Bulky Aryl Groups Make StableSilicon Silicon Triple Bonds Synthetically Accessible?[J]. Organometallics,2001,20:234~236.
    [255]Davidson P J, Lappert M. Stabilisation of Metals in a Low Co-ordinativeEnvironment using the Bis(trimethylsi1yl)methyl Ligand; Coloured SnII and PbIIAlkyls, M[CH(SiMe3)2]2[J]. J.C.S. Chem. Comm.,1973,317.
    [256]Takagi N, Nagase S. Substituent Effects on Germanium Germanium andTin Tin Triple Bonds[J]. Organometallics.,2001,20:5498~5500.
    [257]Sugiyama Y, Sasamori T, Hosoi Y, et al. Synthesis and Properties of a NewKinetically Stabilized Digermyne: New Insights for a Germanium Analogue of anAlkyne[J]. J. Am. Chem. Soc.,2006,128:1023~1031.
    [258]Phillips A D, Wright R J, Olmstead M M, et al. Synthesis and Characterization of2,6-Dipp2-H3C6SnSnC6H3-2,6-Dipp2(Dipp=C6H3-2,6-Pri2): A Tin Analogue ofan Alkyne[J]. J. Am.Chem. Soc.,2002,124:5930~5931.
    [259]Spikes G H, Giuliani J R, Power P P, et al. Solid-State119Sn NMR andMo1ssbauer Spectroscopy of “Distannynes”: Evidence for Large StructuralDifferences in the Crystalline Phase[J]. Inorg. Chem.,2006,45(22):9132~9136.
    [260]Pu L, Twamley B, Power P P. Synthesis and Characterization of2,6-Trip2H3C6PbPbC6H3-2,6-Trip2(Trip=C6H2-2,4,6-i-Pr3): A Stable HeavierGroup14Element Analogue of an Alkyne[J]. J. Am. Chem. Soc.,2000,122(14):3524~3525.
    [261]Takagi N, Nagase S. Tin Analogues of Alkynes. Multiply Bonded Structures vsSingly Bonded Structures[J]. Organometallics,2007,26(3):469~471.
    [262]Jung Y, Brynda M, Power P P, et al. Ab Initio Quantum Chemistry Calculationson the Electronic Structure of Heavier Alkyne Congeners: Diradical Character andReactivity[J]. J. Am. Chem.Soc.,2006,128:7185~7192.
    [263]Peng Y, Ellis B D, Power P P, et al. Reversible Reactions of Ethylene withDistannynes Under Ambient Conditions[J]. Science,2009,325:1668~1670.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700