用户名: 密码: 验证码:
石墨烯基材料的制备及其在多相催化中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯是一种新型碳材料,其组成可控、易官能化,石墨烯的表面积较大且表面利用效率高,具有良好的耐酸碱和耐高温等特性;与此同时,通过改变石墨烯的组成还可以有效调控其在不同介质中的分散特性。因此,相比于传统的活性炭和碳纳米管,石墨烯有望成为一种新的、高效的催化剂载体。本论文以石墨烯、氧化石墨烯(GO)、氮杂石墨烯为载体,先后合成了系列石墨烯负载的金属(Pt,Pd)、氧化物(MnO2,Co3O4)及复合的金属-氧化物(Pd-Ni2O3)催化剂,并探讨了这些催化剂在多相催化中的应用。
     首先,采用乙二醇直接还原法制备了石墨烯负载的纳米Pt催化齐(Pt/RGO_EG),并考察了其在芳香硝基化合物加氢反应中的活性规律。研究发现:在0℃,Pt/RGO-EG催化硝基苯加氢的比活性高达70.2mol-AN/(mol-pt·min),是活性炭和碳纳米管负载的Pt催化剂的19.5和12.5倍;当温度升至20℃,催化剂活性骤升至1138.3mol-AN/(mol-Pt·min)。这种催化剂可以在温和条件下实现系列硝基化合物的选择性加氢。我们认为,这种优异的催化活性不仅与石墨烯表面高分散的Pt纳米颗粒有关,而且还与催化剂在溶剂中的高分散性有关。
     其次,为了探索石墨烯的可塑性,在石墨烯负载钯的同时引入了Ni203,借助Ni203颗粒的隔离效应来协助调控Pd的形貌和稳定性。结果发现:Ni203颗粒的加入,可以有效剥离石墨烯片层、促进Pd的分散、改进载体在介质中的分散以及对底物的富集作用。这种复合的Pd-Ni/RGO催化剂在偶联反应中表现出明显优于传统的钯碳和均相催化剂的活性,在80℃下进行的溴苯偶联反应中,单个Pd原子的比活性最高可达38,750h-1,而且催化剂可以重复使用。而单纯的Pd与石墨烯的作用较弱、活性及稳定性均不如复合的Pd-Ni/RGO催化剂。
     为满足可持续发展的需求,本文还探究石墨烯上廉价活性物种的可控合成。在异丙醇-水组成的溶剂中、利用GO表面含氧官能团的静电作用,引导Mn02沿轴向生长,制备了特殊的MnO2纳米棒。通过优化GO的添加量、回流时间等,总结出MnO2纳米棒的可控生长规律。GO与MnO2的结合可以促进石墨烯片层的剥离、增加催化剂的表面积、改善活性组分的亲水性能。这种催化剂(MnO2/GO)特别适合于水相中芳香醇的一步氨氧化反应;催化剂活性高、稳定性好,而且产物的分离提纯简单,满足绿色化学的发展理念。
     为进一步增强石墨烯载体与负载活性组分之间的作用,本文尝试对石墨烯载体的组成进行调控。通过在水热合成过程中添加配体(氨水)实现了对石墨烯载体的氮掺杂,同时氨水的加入还可以有效控制石墨烯表面上C0304的形貌。相比于纯碳石墨烯负载的C0304和单纯的Co3O4, Co3O4/RGO-N复合物在烯烃和芳香醇的选择性氧化反应中具有更高的活性和稳定性。表征结果表明:石墨烯中的氮原子可以抑制其再石墨化、增强活性组分与载体之间的相互作用、改善其分散性。
     最后,本文采用分步法设计和构筑法制备了多功能的Pd/NRGO催化剂。先采用尿素水热法制备氮杂石墨烯,然后利用载体的“非均相配体”作用原位捕捉pd2+,并在H2气氛下还原制得Pd纳米颗粒。通过调控石墨烯中氮的含量,研究了氮杂石墨烯对活性组分形貌的控制和对底物分子的作用机制,从理论上深入探讨了氮杂石墨烯的催化机理。将所制备的催化剂用于肉桂醛的加氢测试,结果发现这种催化剂即使在水溶剂中也具有明显优于非氮杂催化剂的活性和产物选择性,且对各类不饱和化合物的水相加氢具有广泛的适用性。表征结果发现:石墨烯中的氮原子有利于形成高分散、超小尺寸和高稳定性的Pd纳米颗粒,这主要是由于载体与Pd之间的作用随着氮含量的增加而增强。理论计算结果表明:石墨烯的氮杂降低了H从Pd溢流至载体的能垒、促进了氢的活化、加速了反应的进行;同时氮杂石墨烯上的电子可以传递给C=O双键、保护C=O双键,从而间接提升C=C双键的活化和选择性转化。
     总之,本论文对石墨烯基催化剂载体的制备和应用进行了初步的探索,为拓展这种新型碳材料的应用供了经验。
Graphene is a kind of new carbon material, which is not only easily controlled in composition and function, but also possesses high utilization efficiency toward large surface area, good resistance to acid/alkali and high temperature. At the same time, the adjustment of composition allows graphene well dispersing in different kinds of solvents. Therefore, compared with the traditional activated carbon and carbon nanotubes, graphene is expected to become a new and efficient catalyst support. Herein, graphene and graphene oxide, nitrogen doped graphene are used as supports for fabricating metal (Pt, Pd), metal oxide (MnO2, Co3O4) and hybrid metal-metal oxide (Pd-Ni2Os) catalysts, and their applications in heterogeneous catalysis are also discussed.
     Firstly, reduced graphene oxide (RGO)-supported platinum (Pt) catalyst was prepared by simple ethylene glycol (EG) reduction and used for the hydrogenation of aromatic nitro compounds. Characterizations showed that EG as a reductant exhibited many more advantages than the widely used hydrazine hydrate to fabricate monodispersed, small sized Pt nanoparticles on the surface of RGO. The yield of aniline over the Pt/RGO-EG catalyst reached70.2mol-AN/(mol-p1·min) at0℃, which is12.5and19.5times higher than that of multi-walled carbon nanotube-and active carbon-supported Pt catalysts, respectively. When the reaction temperature was increased to20℃, the catalytic activity of Pt/RGO-EG jumped to1138.3mol-AN/(mol-pt·min), and it was also extremely active for the hydrogenation of a series of aromatic nitro compounds. The unique catalytic activity of Pt/RGO-EG is not only related to the well dispersed Pt clusters on the RGO sheets but also the well dispersion of Pt/RGO-EG in the reaction mixture.
     The active component can be modulated for further exploring the application scope of graphene. Here, Ni2O3-around-Pd hybrid can be fabricated on graphene oxide (Pd-Ni/RGO) by a simple one-pot wet chemical route. These isolated Pd clusters showed significantly improved performance for Suzuki coupling reaction compared to that of pure Pd/RGO, Ni2O3/RGO, popularly reported Pd/AC, as well as homogeneous PdCl2and PdCl2(PPh3)2. Characterizations disclosed that Ni2O3plays a multiple roles in exfoliating graphene sheets, mediating the size as well as stability of Pd clusters. Pd-Ni/RGO dispersed homogeneously in the aqueous reaction mixture, exhibited high enrichment towards reactants as well as extremely high activity and stability for the Suzuki coupling reaction. The best turnover frequencies of all Pd atoms reached38750h-1at80℃for bromobenzene coupling. It was concluded that the intimate interaction between Ni2O3nanoparticles and Pd clusters appears to be beneficial for activating the Pd surface for the catalytic cycle.
     To meet the sustainable development need, exploring the controllable synthesis of cheap active species on graphene is also carried out. Here, well-organized MnCO2nanorods on graphene oxide (MnO2/GO) were fabricated though a novel and easily controlled chemical route. The rod-like MnO2with5-20nm in diameter and100-600nm in length, uniformly and densely attached on both side of GO sheets. Compared with the bare MnO2, MnO2/GO nanocomposite is an efficient heterogeneous catalyst for a widely applicable synthesis of primary amides from primary alcohols and ammonia as well as for transformation of aldehydes or nitriles. More importantly, water is a superior medium for this reaction than other commonly used organic solvents, which is beneficial for catalyst/product separation. MnO2/GO catalyst has good recyclability in these reactions. High dispersion in water, high MnO dispersion on GO and suitable functional groups on carbon materials are important for a synergistic ammoxidation catalytic activity of MnO2and GO in the hybrid.
     Attempts to control the dispersion and durability of catalytic metal NPs are essential to catalytic performance and economical feasibility, which implys us to strengthen the interaction between support and active species by introducing dopant and defect into the graphene. Here, a sandwich-like N-doped graphene/Co3O4hybrid was prepared via a simple one-pot hydrothermal reaction in the solution of NH3. Characterizations disclosed that highly dispersed Co3O4nanoparticles with dominant exposed {112} and {110} planes were fabricated on both sides of well-exfoliated N-doped graphene, N-dopants in graphene matrix can prevent re-graphitization of graphene, strengthen the interaction between Co3O4and graphene matrix, and improve the dispersion of Co3O4. This hybrid (Co3O4/RGO-N) exhibited predominant activity and stability for the epoxidation of styrene than bulk Co3O4and N-free graphene supported Co3O4. At the same time, the resulting catalyst also showed high compatibility to various olefins and alcohols with good conversion and high selectivity.
     In order to further explore the effect of support modification on the active component and its catalytic performance, the catalyst is fabricated by two-step method. Here, N-doped graphene, which is synthesized via a facial one-step hydrothermal reaction of graphene oxide with urea, is especially adapted for anchoring extremely ultrafine and highly stabilized Pd clusters under a very "clean" strategy using H2as reductant. This in situ hydrogen-water strategy allows catalyst self-assembly at atom level, and the adjustment of concentration of doped N in graphene results in a significant variation of Pd morphology. This N-doped graphene supported Pd (Pd/NRGO) is exclusively selective for the activation of C=C or benzene ring in aqueous medium. Our experimental work shows N-doped graphene is not only a good support for strong anchorage of Pd, and its well dispersion in both water and substrate phase, but also a powerful mediator in tuning reaction path. Density functional theory calculations disclosed that N dopants can obviously enhance the binding of Pd atom with graphene, decrease the barrier of H spillover from Pd to support, and promote the electrons transfer from support to substrate that protected C=O group and improved the activation of C=C.
     In conclusion, this thesis has carried out the preliminary exploration on both the preparation and application of graphene based catalyst supports. We except our research can provide simple, efficient and versatile blue-prints for low-cost fabrication of graphene-based nanocomposites for extending applications where graphene has rarely been exploited and beyond.
引文
[1]P Scharff. New carbon materials for research and technology. Carbon. 1998;36(5):481-486.
    [2]A Krueger. Carbon materials and nanotechnology:John Wiley & Sons; 2010.
    [3]G Li, Y Li, H Liu, Y Guo, Y Li, D Zhu. Architecture of graphdiyne nanoscale films. Chemical Communications.2010;46(19):3256-3258.
    [4]KS Novoselov, AK Geim, S Morozov, D Jiang, Y Zhang, S Dubonos, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666-669.
    [5]R Peierls. Quelques proprietes typiques des corps solides. Annales de l'institut Henri Poincare:Presses universitaires de France; p.177-222.
    [6]L Landau. Zur Theorie der phasenumwandlungen II. Phys Z Sowjetunion. 1937;11:26-35.
    [7]BM McCoy, TT Wu.{The Two-Dimensional Ising Model}.1973.
    [8]ND Mermin, H Wagner. Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models. Physical Review Letters. 1966;17:1133-1136.
    [9]A Fasolino, J Los, MI Katsnelson. Intrinsic ripples in graphene. Nature materials. 2007;6(11):858-861.
    [10]AK Geim, KS Novoselov. The rise of graphene. Nature materials. 2007;6(3):183-191.
    [11]R Dettori, E Cadelano, L Colombo. Elastic fields and moduli in defected graphene. Journal of Physics:Condensed Matter.2012;24(10):104020.
    [12]JC Meyer, AK Geim, M Katsnelson, K Novoselov, T Booth, S Roth. The structure of suspended graphene sheets. Nature.2007;446(7131):60-63.
    [13]J Meyer, A Geim, M Katsnelson, K Novoselov, D Obergfell, S Roth, et al. On the roughness of single-and bi-layer graphene membranes. Solid State Communications. 2007;143(1):101-109.
    [14]S Wang, LAI Tang, Q Bao, M Lin, S Deng, BM Goh, et al. Room-temperature synthesis of soluble carbon nanotubes by the sonication of graphene oxide nanosheets. Journal of the American Chemical Society.2009; 131 (46):16832-16837.
    [15]K Bolotin, K Sikes, J Hone, H Stormer, P Kim. Temperature-dependent transport in suspended graphene. Physical Review Letters.2008;101(9):096802.
    [16]K Novoselov, AK Geim, S Morozov, D Jiang, M Katsnelson, I Grigorieva, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature. 2005;438(7065):197-200.
    [17]Y Zhang, Y-W Tan, HL Stormer, P Kim. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature.2005;438(7065):201-204.
    [18]X Du, I Skachko, A Barker, EY Andrei. Approaching ballistic transport in suspended graphene. Nature nanotechnology.2008;3(8):491-495.
    [19]F Schedin, A Geim, S Morozov, E Hill, P Blake, M Katsnelson, et al. Detection of individual gas molecules adsorbed on graphene. Nature materials. 2007;6(9):652-655.
    [20]KS Novoselov, Z Jiang, Y Zhang, S Morozov, H Stormer, U Zeitler, et al. Room-temperature quantum Hall effect in graphene. Science. 2007;315(5817):1379-1379.
    [21]C Gomez-Navarro, RT Weitz, AM Bittner, M Scolari, A Mews, M Burghard, et al. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano letters.2007;7(11):3499-3503.
    [22]S Berber, Y-K Kwon, D Tomanek. Unusually high thermal conductivity of carbon nanotubes. Physical Review Letters.2000;84(20):4613.
    [23]AA Balandin, S Ghosh, W Bao, I Calizo, D Teweldebrhan, F Miao, et al. Superior thermal conductivity of single-layer graphene. Nano letters. 2008;8(3):902-907.
    [24]S Ghosh, D Nika, E Pokatilov, A Balandin. Heat conduction in graphene: experimental study and theoretical interpretation. New Journal of Physics. 2009;11(9):095012.
    [25]P Kim, L Shi, A Majumdar, P McEuen. Thermal transport measurements of individual multiwalled nanotubes. Physical Review Letters.2001;87(21):215502.
    [26]R Berman, E Foster, J Ziman. The thermal conductivity of dielectric crystals:the effect of isotopes. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences.1956;237(1210):344-354.
    [27]JH Seol, I Jo, AL Moore, L Lindsay, ZH Aitken, MT Pettes, et al. Two-dimensional phonon transport in supported graphene. Science. 2010;328(5975):213-216.
    [28]JH Seol, I Jo, Z Yao, AL Moore, L Shi. Thermal conductivity measurement of graphene exfoliated on silicon dioxide. Journal of Heat Transfer.2011;133(2):022403.
    [29]C Lee, X Wei, JW Kysar, J Hone. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science.2008;321(5887):385-388.
    [30]D Wei, Y Liu. Controllable synthesis of graphene and its applications. Advanced Materials.2010;22(30):3225-3241.
    [31]X Yang, X Dou, A Rouhanipour, L Zhi, HJ Rader, K Mullen. Two-dimensional graphene nanoribbons. Journal of the American Chemical Society. 2008;130(13):4216-4217.
    [32]J Wu, W Pisula, K Mullen. Graphenes as potential material for electronics. Chemical reviews.2007;107(3):718-747.
    [33]AN Obraztsov. Chemical vapour deposition:making graphene on a large scale. Nature nanotechnology.2009;4(4):212-213.
    [34]J Chen, Y Wen, Y Guo, B Wu, L Huang, Y Xue, et al. Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. Journal of the American Chemical Society.2011;133(44):17548-17551.
    [35]黄桂荣,陈建.石墨烯的合成与应用.炭素技术.2009;28(1):35-39.
    [36]刘忠良.碳化硅薄膜的外延生长,结构表征及石墨烯的制备.中国科学技术大学,2009.
    [37]D Deng, X Pan, H Zhang, Q Fu, D Tan, X Bao. Freestanding graphene by thermal splitting of silicon carbide granules. Advanced Materials. 2010;22(19):2168-2171.
    [38]DV Kosynkin, AL Higginbotham, A Sinitskii, JR Lomeda, A Dimiev, BK Price, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature.2009;458(7240):872-876.
    [39]AC Neto, F Guinea, N Peres, KS Novoselov, AK Geim. The electronic properties of graphene. Reviews of modern physics.2009;81(1):109.
    [40]C Hontoria-Lucas, A Lopez-Peinado, JdD Lopez-Gonzalez, M Rojas-Cervantes, R Martin-Aranda. Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon.1995;33(11):1585-1592.
    [41]WS Hummers Jr, RE Offeman. Preparation of graphitic oxide. Journal of the American Chemical Society.1958;80(6):1339-1339.
    [42]BC Brodie. On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London.1859:249-259.
    [43]L Staudenmaier. Verfahren zur darstellung der graphitsaure. Berichte der deutschen chemischen Gesellschaft.1898;31(2):1481-1487.
    [44]L Zhang, J Liang, Y Huang, Y Ma, Y Wang, Y Chen. Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation. Carbon. 2009;47(14):3365-3368.
    [45]KP Loh, Q Bao, G Eda, M Chhowalla. Graphene oxide as a chemically tunable platform for optical applications. Nature chemistry.2010;2(12):1015-1024.
    [46]S Stankovich, DA Dikin, RD Piner, KA Kohlhaas, A Kleinhammes, Y Jia, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon.2007;45(7):1558-1565.
    [47]Y Gao, D Ma, C Wang, J Guan, X Bao. Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature. Chemical Communication. 2011;47(8):2432-2434.
    [48]Y Si, ET Samulski. Synthesis of water soluble graphene. Nano letters. 2008;8(6):1679-1682.
    [49]W Gao, LB Alemany, L Ci, PM Ajayan. New insights into the structure and reduction of graphite oxide. Nature chemistry.2009;1(5):403-408.
    [50]J Gao, F Liu, Y Liu, N Ma, Z Wang, X Zhang. Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chemistry of Materials. 2010;22(7):2213-2218.
    [51]DR Dreyer, S Murali, Y Zhu, RS Ruoff, CW Bielawski. Reduction of graphite oxide using alcohols. Journal of Materials Chemistry.2011;21(10):3443-3447.
    [52]W Chen, L Yan, PR Bangal. Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon. 2010;48(4):1146-1152.
    [53]LJ Cote, R Cruz-Silva, J Huang. Flash reduction and patterning of graphite oxide and its polymer composite. Journal of the American Chemical Society. 2009;131(31):11027-11032.
    [54]M Baraket, S Walton, Z Wei, E Lock, J Robinson, P Sheehan. Reduction of graphene oxide by electron beam generated plasmas produced in methane/argon mixtures. Carbon.2010;48(12):3382-3390.
    [55]D Yang, A Velamakanni, G Bozoklu, S Park, M Stoller, RD Piner, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon.2009;47(1):145-152.
    [56]C Mattevi, G Eda, S Agnoli, S Miller, KA Mkhoyan,O Celik, et al. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Advanced Functional Materials. 2009;19(16):2577-2583.
    [57]A Vollmer, X Feng, X Wang, L Zhi, K Mullen, N Koch, et al. Electronic and structural properties of graphene-based transparent and conductive thin film electrodes. Applied Physics A.2009;94(1):1-4.
    [58]S Mao, H Pu, J Chen. Graphene oxide and its reduction:modeling and experimental progress. Rsc Advances.2012;2(7):2643-2662.
    [59]W Cai, RD Piner, FJ Stadermann, S Park, MA Shaibat, Y Ishii, et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science.2008;321(5897):1815-1817.
    [60]AB Bourlinos, D Gournis, D Petridis, T Szabo, A Szeri, I Dekany. Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir.2003;19(15):6050-6055.
    [61]JR Lomeda, CD Doyle, DV Kosynkin, W-F Hwang, JM Tour. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. Journal of the American Chemical Society.2008; 130(48):16201-16206.
    [62]R Verdejo, F Barroso-Bujans, MA Rodriguez-Perez, JA de Saja, M Arroyo, MA Lopez-Manchado. Carbon nanotubes provide self-extinguishing grade to silicone-based foams. Journal of Materials Chemistry.2008;18(33):3933-3939.
    [63]Y Xu, Z Liu, X Zhang, Y Wang, J Tian, Y Huang, et al. A graphene hybrid material covalently functionalized with porphyrin:synthesis and optical limiting property. Advanced Materials.2009;21(12):1275-1279.
    [64]KP Loh, Q Bao, PK Ang, J Yang. The chemistry of graphene. Journal of Materials Chemistry.2010;20(12):2277-2289.
    [65]H Tang, H Yin, J Wang, N Yang, D Wang, Z Tang. Molecular architecture of cobalt porphyrin multilayers on reduced graphene oxide sheets for high-performance oxygen reduction reaction. Angewandte Chemie International Edition. 2013;125(21):5695-5699.
    [66]J Lu, S Nagase, X Zhang, D Wang, M Ni, Y Maeda, et al. Selective interaction of large or charge-transfer aromatic molecules with metallic single-wall carbon nanotubes:Critical role of the molecular size and orientation. Journal of the American Chemical Society.2006;128(15):5114-5118.
    [67]R Hao, W Qian, L Zhang, Y Hou. Aqueous dispersions of TCNQ-anion-stabilized graphene sheets. Chemical Communications. 2008(48):6576-6578.
    [68]Y Xu, L Zhao, H Bai, W Hong, C Li, G Shi. Chemically converted graphene induced molecular flattening of 5,10,15,20-tetrakis (1-methyl-4-pyridinio) porphyrin and its application for optical detection of cadmium (Ⅱ) ions. Journal of the American Chemical Society.2009;131(37):13490-13497.
    [69]S Wang, D Yu, L Dai, DW Chang, J-B Baek. Polyelectrolyte-functionalized graphene as metal-free electrocatalysts for oxygen reduction. ACS Nano. 2011;5(8):6202-6209.
    [70]Z Liu, JT Robinson, X Sun, H Dai. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. Journal of the American Chemical Society. 2008;130(33):10876-10877.
    [71]X Wang, X Li, L Zhang, Y Yoon, PK Weber, H Wang, et al. N-doping of graphene through electrothermal reactions with ammonia. Science. 2009;324(5928):768-771.
    [72]W Chen, S Chen, DC Qi, XY Gao, ATS Wee. Surface transfer p-type doping of epitaxial graphene. Journal of the American Chemical Society. 2007;129(34):10418-10422.
    [73]Z Lin, M-k Song, Y Ding, Y Liu, M Liu, C-p Wong. Facile preparation of nitrogen-doped graphene as a metal-free catalyst for oxygen reduction reaction. Physical Chemistry Chemical Physics.2012;14(10):3381-3387.
    [74]Y Shao, S Zhang, MH Engelhard, G Li, G Shao, Y Wang, et al. Nitrogen-doped graphene and its electrochemical applications. Journal of Materials Chemistry. 2010;20(35):7491-7496.
    [75]C Fecko, J Eaves, A Tokmakoff. Isotropic and anisotropic Raman scattering from molecular liquids measured by spatially masked optical Kerr effect spectroscopy. The Journal of Chemical Physics.2002; 117(3):1139-1154.
    [76]L Sun, L Wang, C Tian, T Tan, Y Xie, K Shi, et al. Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. Rsc Advances.2012;2(10):4498.
    [77]王凯,季炳成,韩美佳,李立伟.微波固相法快速制备氮掺杂石墨烯.无机化学学报.2013;29(10):2105-2109.
    [78]K Gopalakrishnan, A Govindaraj, C Rao. Extraordinary supercapacitor performance of heavily nitrogenated graphene oxide obtained by microwave synthesis. J Material Chemistry A.2013;1(26):7563-7565.
    [79]S Wang, L Zhang, Z Xia, A Roy, DW Chang, JB Baek, et al. BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angewandte Chemie International Edition.2012;51(17):4209-4212.
    [80]ZS Wu, A Winter, L Chen, Y Sun, A Turchanin, X Feng, et al. Three-dimensional nitrogen and Boron Co-doped graphene for high-performance all-solid - state supercapacitors. Advanced Materials.2012;24(37):5130-5135.
    [81]XH Li, M Antonietti. Polycondensation of Boron - and Nitrogen - codoped holey graphene monoliths from molecules:carbocatalysts for selective oxidation. Angewandte Chemie International Edition.2013;52(17):4572-4576.
    [82]V Georgakilas, D Gournis, V Tzitzios, L Pasquato, DM Guldi, M Prato. Decorating carbon nanotubes with metal or semiconductor nanoparticles. Journal of Materials Chemistry.2007; 17(26):2679-2694.
    [83]GG Wildgoose, CE Banks, RG Compton. Metal nanoparticles and related materials supported on carbon nanotubes:methods and applications. Small. 2006;2(2):182-193.
    [84]PV Kamat. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. The Journal of Physical Chemistry B.2002;106(32):7729-7744.
    [85]M-C Daniel, D Astruc. Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical reviews.2004;104(1):293-346.
    [86]R Kou, Y Shao, D Wang, MH Engelhard, JH Kwak, J Wang, et al. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochemistry Communications. 2009;11(5):954-957.
    [87]D Zhang, X Liu, X Wang. Green synthesis of graphene oxide sheets decorated by silver nanoprisms and their anti-bacterial properties. Journal of inorganic biochemistry.2011;105(9):1181-1186.
    [88]J Huang, L Zhang, B Chen, N Ji, F Chen, Y Zhang, et al. Nanocomposites of size-controlled gold nanoparticles and graphene oxide:formation and applications in SERS and catalysis. Nanoscale.2010;2(12):2733-2738.
    [89]HM Hassan, V Abdelsayed, SK Abd El Rahman, KM AbouZeid, J Terner, MS El-Shall, et al. Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. Journal of Materials Chemistry. 2009;19(23):3832-3837.
    [90]S-W Bain, Z Ma, Z-M Cui, L-S Zhang, F Niu, W-G Song. Synthesis of micrometer-sized nanostructured magnesium oxide and its high catalytic activity in the Claisen-Schmidt condensation reaction.2008.
    [91]J-f Liu, X Wang, Q Peng, Y Li. Vanadium pentoxide nanobelts:highly selective and stable ethanol sensor materials. Advanced Materials.2005;17(6):764-767.
    [92]Z-M Cui, L-Y Jiang, W-G Song, Y-G Guo. High-yield gas-liquid interfacial synthesis of highly dispersed Fe3O4 nanocrystals and their application in lithium-ion batteries. Chemistry of Materials.2009;21(6):1162-1166.
    [93]C Chen, W Cai, M Long, B Zhou, Y Wu, D Wu, et al. Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction. ACS Nano. 2010;4(11):6425-6432.
    [94]S Chen, J Zhu, Q Han, Z Zheng, Y Yang, X Wang. Shape-controlled synthesis of one-dimensional MnO2 via a facile quick-precipitation procedure and its electrochemical properties. Crystal Growth & Design.2009;9(10):4356-4361.
    [95]Y Liang, Y Li, H Wang, J Zhou, J Wang, T Regier, et al. CO3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nature materials. 2011,10(10):780-786.
    [96]D Wang, D Choi, J Li, Z Yang, Z Nie, R Kou, et al. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano. 2009;3(4):907-914.
    [97]A Cao, Z Liu, S Chu, M Wu, Z Ye, Z Cai, et al. A facile one - step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials. Advanced Materials.2010;22(1):103-106.
    [98]G Zhou, D-W Wang, F Li, L Zhang, N Li, Z-S Wu, et al. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chemistry of Materials.2010;22(18):5306-5313.
    [99]D Wang, R Kou, D Choi, Z Yang, Z Nie, J Li, et al. Ternary self-assembly of ordered metal oxide- graphene nanocomposites for electrochemical energy storage. ACS Nano.2010;4(3):1587-1595.
    [100]Z Yin, S Wu, X Zhou, X Huang, Q Zhang, F Boey, et al. Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small.2010;6(2):307-312.
    [101]X-J Zhu, J Hu, H-L Dai, L Ding, L Jiang. Reduced graphene oxide and nanosheet-based nickel oxide microsphere composite as an anode material for lithium ion battery. Electrochimica Acta.2012;64:23-28.
    [102]L Hao, H Song, L Zhang, X Wan, Y Tang, Y Lv. SiO2/graphene composite for highly selective adsorption of Pb (Ⅱ) ion. Journal of colloid and interface science. 2012;369(1):381-387.
    [103]H-W Wang, Z-A Hu, Y-Q Chang, Y-L Chen, Z-Q Lei, Z-Y Zhang, et al. Facile solvothermal synthesis of a graphene nanosheet-bismuth oxide composite and its electrochemical characteristics. Electrochimica Acta.2010;55(28):8974-8980.
    [104]F Kim, J Luo, R Cruz-Silva, LJ Cote, K Sohn, J Huang. Self-propagating domino-like reactions in oxidized graphite. Advanced Functional Materials. 2010;20(17):2867-2873.
    [105]JK Lee, KB Smith, CM Hayner, HH Kung. Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chemical Communications. 2010;46(12):2025-2027.
    [106]G Wang, B Wang, X Wang, J Park, S Dou, H Ann, et al. Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. Journal of Materials Chemistry.2009;19(44):8378-8384.
    [107]P Chen, TY Xiao, YH Qian, SS Li, SH Yu. A nitrogen-doped graphene/carbon nanotube nanccomposite with synergistically enhanced electrochemical activity. Advanced Materials.2013;25(23):3192-3196.
    [108]E Yoo, J Kim, E Hosono, H-s Zhou, T Kudo, I Honma. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano letters.2008;8(8):2277-2282.
    [109]X-H Li, J-S Chen, X Wang, J Sun, M Antonietti. Metal-free activation of dioxygen by graphene/g-C3N4 nanocomposites:functional dyads for selective oxidation of saturated hydrocarbons. Journal of the American Chemical Society. 2011;133(21):8074-8077.
    [110]C Petit, TJ Bandosz. MOF-graphite oxide composites:combining the uniqueness of graphene layers and metal-organic frameworks. Advanced Materials. 2009;21(46):4753-4757.
    [111]J-M Nhut, L Pesant, J-P Tessonnier, G Wine, J Guille, C Pham-Huu, et al. Mesoporous carbon nanotubes for use as support in catalysis and as nanosized reactors for one-dimensional inorganic material synthesis. Applied Catalysis A: General.2003;254(2):345-363.
    [112]X Pan, X Bao. Reactions over catalysts confined in carbon nanotubes. Chemical Communications.2008(47):6271-6281.
    [113]Y Yao, Q Fu, Z Zhang, H Zhang, T Ma, D Tan, et al. Structure control of Pt-Sn bimetallic catalysts supported on highly oriented pyrolytic graphite (HOPG). Applied surface science.2008;254(13):3808-3812.
    [114]H Zhang, Q Fu, Y Yao, Z Zhang, T Ma, D Tan, et al. Size-dependent surface reactions of Ag nanoparticles supported on highly oriented pyrolytic graphite. Langmuir.2008;24(19):10874-10878.
    [115]DS Su, J Zhang, B Frank, A Thomas, X Wang, J Paraknowitsch, et al. Metal-free heterogeneous catalysis for sustainable chemistry. ChemSusChem. 2010;3(2):169-180.
    [116]C Xu, X Wang, J Zhu. Graphene-metal particle nanocomposites. The Journal of Physical Chemistry C.2008;112(50):19841-19845.
    [117]GM Scheuermann, L Rumi, P Steurer, W Bannwarth, R Mulhaupt. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki- Miyaura coupling reaction. Journal of the American Chemical Society.2009;131(23):8262-8270.
    [118]B Sheng, L Hu, T Yu, X Cao, H Gu. Highly-dispersed ultrafine Pt nanoparticles on graphene as effective hydrogenation catalysts. Rsc Advances. 2012;2(13):5520-5523.
    [119]Q Zhao, D Chen, Y Li, G Zhang, F Zhang, X Fan. Rhodium complex immobilized on graphene oxide as an efficient and recyclable catalyst for hydrogenation of cyclohexene. Nanoscale.2013;5(3):882-885.
    [120]S Wu, Q He, C Zhou, X Qi, X Huang, Z Yin, et al. Synthesis of Fe3O4 and Pt nanoparticles on reduced graphene oxide and their use as a recyclable catalyst. Nanoscale.2012;4(7):2478-2483.
    [121]X-k Kong, Z-y Sun, M Chen, Q-w Chen. Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by N-doped graphene. Energy & Environmental Science.2013;6(11):3260-3266.
    [122]Y Zhang, X Yuan, Y Wang, Y Chen. One-pot photochemical synthesis of graphene composites uniformly deposited with silver nanoparticles and their high catalytic activity towards the reduction of 2-nitroaniline. Journal of Materials Chemistry.2012;22(15):7245-7251.
    [123]E KyungaJeon. Mussel-inspired green synthesis of silver nanoparticles on graphene oxide nanosheets for enhanced catalytic applications. Chemical Communications.2013;49(33):3392-3394.
    [124]M Stein, J Wieland, P Steurer, F Tolle, R Miilhaupt, B Breit. Iron nanoparticles supported on chemically-derived graphene:catalytic hydrogenation with magnetic catalyst separation. Advanced Synthesis & Catalysis. 2011;353(4):523-527.
    [125]S Chandra, S Bag, P Das, D Bhattacharya, P Pramanik. Fabrication of magnetically separable palladium-graphene nanocomposite with unique catalytic property of hydrogenation. Chemical Physics Letters.2012;519:59-63.
    [126]D Marquardt, C Vollmer, R Thomann, P Steurer, R Mulhaupt, E Redel, et al. The use of microwave irradiation for the easy synthesis of graphene-supported transition metal nanoparticles in ionic liquids. Carbon.2011;49(4):1326-1332.
    [127]J Li, C-y Liu, Y Liu. Au/graphene hydrogel:synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. Journal of Materials Chemistry. 2012;22(17):8426-8430.
    [128]Y Choi, HS Bae, E Seo, S Jang, KH Park, B-S Kim. Hybrid gold nanoparticle-reduced graphene oxide nanosheets as active catalysts for highly efficient reduction of nitroarenes. Journal of Materials Chemistry. 2011;21(39):15431-15436.
    [129]K Szori, R Puskas, G Szollosi, I Bertoti, J Szepvolgyi, M Bartok. Palladium nanoparticle-graphene catalysts for asymmetric hydrogenation. Catalysis letters. 2013;143(6):539-546.
    [130]J Shi, R Nie, P Chen, Z Hou. Selective hydrogenation of cinnamaldehyde over reduced graphene oxide supported Pt catalyst. Catalysis Communications. 2013;41:101-105.
    [131]X Wang, D Liu, S Song, H Zhang. CeO2-based Pd (Pt) nanoparticles grafted onto Fe3O4/graphene:a general self - assembly approach to fabricate highly efficient catalysts with magnetic recyclable capability. Chemistry-A European Journal. 2013;19(16):5169-5173.
    [132]F He, N Niu, F Qu, S Wei, Y Chen, S Gai, et al. Synthesis of three-dimensional reduced graphene oxide layer supported cobalt nanocrystals and their high catalytic activity in F-T CO2 hydrogenation. Nanoscale. 2013;5(18):8507-8516.
    [133]T Truong-Huu, K Chizari, I Janowska, MS Moldovan, O Ersen, LD Nguyen, et al. Few-layer graphene supporting palladium nanoparticles with a fully accessible effective surface for liquid-phase hydrogenation reaction. Catalysis today. 2012;189(1):77-82.
    [134]R Tan, C Li, J Luo, Y Kong, W Zheng, D Yin. An effective heterogeneous 1-proline catalyst for the direct asymmetric aldol reaction using graphene oxide as support. Journal of Catalysis.2013;298:138-147.
    [135]J-H Yang, G Sun, Y Gao, H Zhao, P Tang, J Tan, et al. Direct catalytic oxidation of benzene to phenol over metal-free graphene-based catalyst. Energy& Environmental Science.2013;6(3):793-798.
    [136]H Sun, Y Wang, S Liu, L Ge, L Wang, Z Zhu, et al. Facile synthesis of nitrogen doped reduced graphene oxide as a superior metal-free catalyst for oxidation. Chemical Communications.2013;49(85):9914-9916.
    [137]X Xie, J Long, J Xu, L Chen, Y Wang, Z Zhang, et al. Nitrogen-doped graphene stabilized gold nanoparticles for aerobic selective oxidation of benzylic alcohols. Rsc Advances.2012;2(32):12438-12446.
    [138]T Xue, S Jiang, Y Qu, Q Su, R Cheng, S Dubin, et al. Graphene-supported hemin as a highly active biomimetic oxidation catalyst. Angewandte Chemie International Edition.2012;124(16):3888-3891.
    [139]M Mahyari, A Shaabani. Graphene oxide-iron phthalocyanine catalyzed aerobic oxidation of alcohols. Applied Catalysis A:General.2014;469:524-531.
    [140]Y Gao, G Hu, J Zhong, Z Shi, Y Zhu, DS Su, et al. Nitrogen-doped sp2 -hybridized carbon as a superior catalyst for selective oxidation. Angewandte Chemie International Edition.2013;52(7):2109-2113.
    [141]DR Dreyer, H-P Jia, CW Bielawski. Graphene oxide:a convenient carbocatalyst for facilitating oxidation and hydration reactions. Angewandte Chemie International Edition.2010:n/a-n/a.
    [142]K Liu, T Chen, Z Hou, Y Wang, L Dai. Graphene oxide as support for the immobilization of phosphotungstic acid:application in the selective oxidation of benzyl alcohol. Catalysis letters.2013;144(2):314-319.
    [143]M Gopiraman, S Ganesh Babu, Z Khatri, W Kai, YA Kim, M Endo, et al. Dry synthesis of easily tunable nano Ruthenium supported on graphene:novel nanocatalysts for aerial oxidation of alcohols and transfer hydrogenation of ketones. The Journal of Physical Chemistry C.2013;117(45):23582-23596.
    [144]X-H Li, J-S Chen, X Wang, J Sun, M Antonietti. Metal-free activation of dioxygen by graphene/g-C3N4 nanocomposites:functional dyads for selective oxidation of saturated hydrocarbons. Journal of the American Chemical Society. 2011;133(21):8074-8077.
    [145]J Long, X Xie, J Xu, Q Gu, L Chen, X Wang. Nitrogen-doped graphene nanosheets as metal-free catalysts for aerobic selective oxidation of benzylic alcohols. ACS Catalysis.2012;2(4):622-631.
    [146]SK Movahed, M Fakharian, M Dabiri, A Bazgir. Gold nanoparticle decorated reduced graphene oxide sheets with high catalytic activity for Ullmann homocoupling. RSC Advances.2014;4(10):5243.
    [147]J Cheng, G Zhang, J Du, L Tang, J Xu, J Li. New role of graphene oxide as active hydrogen donor in the recyclable palladium nanoparticles catalyzed ullmann reaction in environmental friendly ionic liquid/supercritical carbon dioxide system. Journal of Materials Chemistry.2011;21(10):3485-3494.
    [148]S Santra, PK Hota, R Bhattacharyya, P Bera, P Ghosh, SK Mandal. Palladium nanoparticlcs on graphite oxide:a recyclable catalyst for the synthesis of biaryl cores. ACS Catalysis.2013;3(12):2776-2789.
    [149]Y Deng, Y Cai, Z Sun, J Liu, C Liu, J Wei, et al. Multifunctional mesoporous composite microspheres with well-designed nanostructure:A highly integrated catalyst system. Journal of the American Chemical Society.2010;132(24):8466-8473.
    [150]AR Siamaki, AERS Khder, V Abdelsayed, MS El-Shall, BF Gupton. Microwave-assisted synthesis of palladium nanoparticles supported on graphene:A highly active and recyclable catalyst for carbon-carbon cross-coupling reactions. Journal of Catalysis.2011;279(1):1-11.
    [151]Q-Y Meng, Q Liu, J-J Zhong, H-H Zhang, Z-J Li, B Chen, et al. Graphene-supported RuO2 nanoparticles for efficient aerobic cross-dehydrogenative coupling reaction in water. Organic letters.2012;14(23):5992-5995.
    [152]A Shaabani, M Mahyari. PdCo bimetallic nanoparticles supported on PPI-grafted graphene as an efficient catalyst for Sonogashira reactions. Journal of Materials Chemistry A.2013;1(32):9303.
    [153]N Shang, S Gao, C Feng, H Zhang, C Wang, Z Wang. Graphene oxide supported N-heterocyclic carbene-palladium as a novel catalyst for the Suzuki-Miyaura reaction. Rsc Advances.2013;3(44):21863.
    [154]J Hu, Y Wang, M Han, Y Zhou, X Jiang, P Sun. A facile preparation of palladium nanoparticles supported on magnetite/s-graphene and their catalytic application in Suzuki-Miyaura reaction. Catalysis Science & Technology. 2012;2(11):2332.
    [155]F Liu, J Sun, L Zhu, X Meng, C Qi, F-S Xiao. Sulfated graphene as an efficient solid catalyst for acid-catalyzed liquid reactions. Journal of Materials Chemistry.2012;22(12):5495.
    [156]L Wang, D Wang, S Zhang, H Tian. Synthesis and characterization of sulfonated graphene as a highly active solid acid catalyst for the ester-exchange reaction. Catalysis Science & Technology.2013;3(5):1194.
    [157]J Ji, G Zhang, H Chen, S Wang, G Zhang, F Zhang, et al. Sulfonated graphene as water-tolerant solid acid catalyst. Chemical Science.2011;2(3):484.
    [158]C Yuan, W Chen, L Yan. Amino-grafted graphene as a stable and metal-free solid basic catalyst. Journal of Materials Chemistry.2012;22(15):7456.
    [159]N Cao, J Su, W Luo, G Cheng. Graphene supported Ru@Co core-shell nanoparticles as efficient catalysts for hydrogen generation from hydrolysis of ammonia borane and methylamine borane. Catalysis Communications. 2014;43:47-51.
    [160]J Wang, X-B Zhang, Z-L Wang, L-M-Wang, Y Zhang. Rhodium-nickel nanoparticles grown on graphene as highly efficient catalyst for complete decomposition of hydrous hydrazine at room temperature for chemical hydrogen storage. Energy & Environmental Science.2012;5(5):6885.
    [161]J Wang, Y-L Qin, X Liu, X-B Zhang. In situ synthesis of magnetically recyclable graphene-supported Pd@Co core-shell nanoparticles as efficient catalysts for hydrolytic dehydrogenation of ammonia borane. Journal of Materials Chemistry. 2012;22(25):12468.
    [162]L Yang, J Su, X Meng, W Luo, G Cheng. In situ synthesis of graphene supported Ag@CoNi core-shell nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane and methylamine borane. Journal of Materials Chemistry A.2013;1(34):10016.
    [163]C Peng, B Jiang, Q Liu, Z Guo, Z Xu, Q Huang, et al. Graphene-templated formation of two-dimensional lepidocrocite nanostructures for high-efficiency catalytic degradation of phenols. Energy & Environmental Science.2011;4(6):2035.
    [164]P Shi, R Su, F Wan, M Zhu, D Li, S Xu. Co3O4 nanocrystals on graphene oxide as a synergistic catalyst for degradation of Orange Ⅱ in water by advanced oxidation technology based on sulfate radicals. Applied Catalysis B:Environmental. 2012;123-124:265-272.
    [165]S Guo, G Zhang, Y Guo, JC Yu. Graphene oxide-Fe203 hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants. Carbon.2013;60:437-444.
    [166]W Xu, X Wang, Q Zhou, B Meng, J Zhao, J Qiu, et al. Low-temperature plasma-assisted preparation of graphene supported palladium nanoparticles with high hydrodesulfurization activity. Journal of Materials Chemistry.2012;22(29):14363.
    [167]X Jin, L Dang, J Lohrman, B Subramaniam, S Ren, RV Chaudhari. Lattice-matched bimetallic CuPd-graphene nanocatalysts for facile conversion of biomass-derived polyols to chemicals. ACS Nano.2013;7(2):109-1316.
    [168]S Verma, HP Mungse, N Kumar, S Choudhary, SL Jain, B Sain, et al. Graphene oxide:an efficient and reusable carbocatalyst for aza-Michael addition of amines to activated alkenes. Chemical Communication.2011;47(47):12673-12675.
    [169]L Shang, T Bian, B Zhang, D Zhang, LZ Wu, CH Tung, et al. Graphene -supported ultrafine metal nanoparticles encapsulated by mesoporous silica:robust catalysts for oxidation and reduction reactions. Angewandte Chemie International Edition.2014;126(1):254-258.
    [170]H-U Blaser. A golden boost to an old reaction. Science. 2006;313(5785):312-313.
    [171]Z Zhu, D Su, G Weinberg, R Schlogl. Supermolecular self-assembly of graphene sheets:formation of tube-in-tube nanostructures. Nano letters. 2004;4(11):2255-2259.
    [172]K Erickson, R Erni, Z Lee, N Alem, W Gannett, A Zettl. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Advanced Materials.2010;22(40):4467-4472.
    [173]RI Jafri, N Rajalakshmi, S Ramaprabhu. Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. Journal of Materials Chemistry.2010;20(34):7114-7117.
    [174]E Yoo, T Okata, T Akita, M Kohyama, J Nakamura, I Honma. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano letters.2009;9(6):2255-2259.
    [175]N Shang, P Papakonstantinou, P Wang, SRP Silva. Platinum integrated graphene for methanol fuel cells. The Journal of Physical Chemistry C 2010;114(37):15837-15841.
    [176]Y Li, W Gao, L Ci, C Wang, PM Ajayan. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon. 2010;48(4):1124-1130.
    [177]GM Scheuermann, L Rumi, P Steurer, W Bannwarth, R Mulhaupt. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction. Journal of the American Chemical Society.2009;131:8262-8270.
    [178]H Wang, X Xiang, F Li. Facile synthesis and novel electrocatalytic performance of nanostructured Ni-Al layered double hydroxide/carbon nanotube composites. Journal of Materials Chemistry.2010;20(19):3944.
    [179]ED Grayfer, AS Nazarov, VG Makotchenko, S-J Kim, VE Fedorov. Chemically modified graphene sheets by functionalization of highly exfoliated graphite. Journal of Materials Chemistry.2011;21(10):3410-3414.
    [180]H-W Tien, Y-L Huang, S-Y Yang, J-Y Wang, C-CM Ma. The production of graphene nanosheets decorated with silver nanoparticles for use in transparent, conductive films. Carbon.2011;49(5):1550-1560.
    [181]Y Liang, H Zhang, H Zhong, X Zhu, Z Tian, D Xu, et al. Preparation and characterization of carbon-supported PtRulr catalyst with excellent CO-tolerant performance for proton-exchange membrane fuel cells. Journal of Catalysis. 2006;238(2):468-476.
    [182]J Zhang, K Sasaki, E Sutter, R Adzic. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science. 2007;315(5809):220-222.
    [183]M Kang, Y-S Bae, C-H Lee. Effect of heat treatment of activated carbon supports on the loading and activity of Pt catalyst. Carbon.2005;43(7):1512-1516.
    [184]Z Sun, Y Zhao, Y Xie, R Tao, H Zhang, C Huang, et al. The solvent-free selective hydrogenation of nitrobenzene to aniline:an unexpected catalytic activity of ultrafine Pt nanoparticles deposited on carbon nanotubes. Green Chemistry. 2010;12(6):1007-1011.
    [185]J Wu, SW Ong, HC Kang, ES Tok. Hydrogen adsorption on mixed platinum and nickel nanoclusters:the influence of cluster composition and graphene support. The Journal of Physical Chemistry C.2010;114(49):21252-21261.
    [186]J Wang, Z Yuan, R Nie, Z Hou, X Zheng. Hydrogenation of nitrobenzene to aniline over silica gel supported nickel catalysts. Industrial & Engineering Chemistry Research.2010;49(10):4664-4669.
    [187]HD Burge, DJ Collins, BH Davis. Intermediates in the Raney nickel catalyzed hydrogenation of nitrobenzene to aniline. Industrial & Engineering Chemistry Product Research and Development.1980;19(3):389-391.
    [188]A Corma, P Concepcion, P Serna. A different reaction pathway for the reduction of aromatic nitro compounds on gold catalysts. Angewandte Chemie International Edition.2007;119(38):7404-7407.
    [189]M Liang, X Wang, H Liu, H Liu, Y Wang. Excellent catalytic properties over nanocomposite catalysts for selective hydrogenation of halonitrobenzenes. Journal of Catalysis.2008;255(2):335-342.
    [190]CC Johansson Seechurn, MO Kitching, TJ Colacot, V Snieckus. Palladium-catalyzed cross-coupling:a historical contextual perspective to the 2010 Nobel prize. Angewandte Chemie International Edition.2012;51(21):5062-5085.
    [191]M Lamblin, L Nassar-Hardy, JC Hierso, E Fouquet, FX Felpin. Recyclable heterogeneous palladium catalysts in pure water:sustainable developments in Suzuki, Heck, Sonogashira and Tsuji-Trost reactions. Advanced Synthesis & Catalysis. 2010;352(1):33-79.
    [192]L Yin, J Liebscher. Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chemical Reviews-Columbus. 2007;107(1):133-173.
    [193]N Miyaura, A Suzuki. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chemical reviews.1995;95(7):2457-2483.
    [194]C Amatore, A Jutand. Anionic Pd (0) and Pd (Ⅱ) intermediates in palladium-catalyzed Heck and cross-coupling reactions. Accounts of chemical research.2000;33(5):314-321.
    [195]R Narayanan, MA E1-Sayed. Effect of catalysis on the stability of metallic nanoparticles:Suzuki reaction catalyzed by PVP-palladium nanoparticles. Journal of the American Chemical Society.2003;125(27):8340-8347.
    [196]D Astruc, F Lu, JR Aranzaes. Nanoparticles as recyclable catalysts:the frontier between homogeneous and heterogeneous catalysis. Angewandte Chemie International Edition.2005;44(48):7852-7872.
    [197]A Gniewek, JJ Ziolkowski, AM Trzeciak, M Zawadzki, H Grabowska, J Wrzyszcz. Palladium nanoparticles supported on alumina-based oxides as heterogeneous catalysts of the Suzuki-Miyaura reaction. Journal of Catalysis. 2008;254(1):121-130.
    [198]K Okumura, H Matsui, T Tomiyama, T Sanada, T Honma, S Hirayama, et al. Highly dispersed Pd species active in the Suzuki-Miyaura reaction. ChemPhysChem. 2009;10(18):3265-3272.
    [199]Y Wan, H Wang, Q Zhao, M Klingstedt, O Terasaki, D Zhao. Ordered mesoporous Pd/silica-carbon as a highly active heterogeneous catalyst for coupling reaction of chlorobenzene in aqueous media. Journal of the American Chemical Society.2009;131(12):4541-4550.
    [200]S-Y Ding, J Gao, Q Wang, Y Zhang, W-G Song, C-Y Su, et al. Construction of covalent organic framework for catalysis:Pd/COF-LZUl in Suzuki-Miyaura coupling reaction. Journal of the American Chemical Society. 2011;133(49):19816-19822.
    [201]X Xu, Y Li, Y Gong, P Zhang, H Li, Y Wang. Synthesis of palladium nanoparticles supported on mesoporous N-doped carbon and their catalytic ability for biofuel upgrade. Journal of the American Chemical Society. 2012;134(41):16987-16990.
    [202]R Nie, J Shi, S Xia, L Shen, P Chen, Z Hou, et al. MnO2/graphene oxide:a highly active catalyst for amide synthesis from alcohols and ammonia in aqueous media. Journal of Materials Chemistry.2012;22(35):18115.
    [203]MN Patel, X Wang, DA Slanac, DA Ferrer, S Dai, KP Johnston, et al. High pseudocapacitance of MnO2 nanoparticles in graphitic disordered mesoporous carbon at high scan rates. Journal of Materials Chemistry.2012;22(7):3160-3169.
    [204]Z Zhang, L Xin, K Sun, W Li. Pd-Ni electrocatalysts for efficient ethanol oxidation reaction in alkaline electrolyte. International Journal of Hydrogen Energy. 2011;36(20):12686-12697.
    [205]J Nan, Y Yang, Z Lin. In situ photoelectrochemistry and Raman spectroscopic characterization on the surface oxide film of nickel electrode in 30wt.% KOH solution. Electrochimica Acta.2006;51(23):4873-4879.
    [206]M Vidaleshurtado, A Mendozagalvan. Electrochromism in nickel oxide-based thin films obtained by chemical bath deposition. Solid State Ionics. 2008;179(35-36):2065-2068.
    [207]Y Wu, D Wang, P Zhao, Z Niu, Q Peng, Y Li. Monodispersed Pd-Ni nanoparticles:composition control synthesis and catalytic properties in the Miyaura- Suzuki reaction. Inorganic Chemistry.2011;50(6):2046-2048.
    [208]Z Song, X Bao, U Wild, M Muhler, G Ertl. Oxidation of amorphous Ni-Zr alloys studied by XPS, UPS, ISS and XRD. Applied surface science. 1998;134(1):31-38.
    [209]R Kou, Y Shao, D Mei, Z Nie, D Wang, C Wang, et al. Stabilization of electrocatalytic metal nanoparticles at metal-metal oxide-graphene triple junction points. Journal of the American Chemical Society.2011;133(8):2541-2547.
    [210]S MacQuarrie, JH Horton, J Barnes, K McEleney, HP Loock, CM Crudden. Visual observation of redistribution and dissolution of palladium during the Suzuki-Miyaura reaction. Angewandte Chemie International Edition.2008;47(17):3279-3282.
    [211]SR Borhade, SB Waghmode. Studies on Pd/NiFe2O4 catalyzed ligand-free Suzuki reaction in aqueous phase:synthesis of biaryls, terphenyls and polyaryls. Beilstein journal of organic chemistry.2011;7(1):310-319.
    [212]M Mondal, U Bora. An efficient protocol for palladium-catalyzed ligand-free Suzuki-Miyaura coupling in water. Green Chemistry.2012;14(7):1873-1876.
    [213]C Gunanathan, D Milstein. Selective synthesis of primary amines directly from alcohols and ammonia. Angewandte Chemie International Edition. 2008;47(45):8661-8664.
    [214]CL Allen, JM Williams. Metal-catalysed approaches to amide bond formation. Chemical Society Reviews.2011;40(7):3405-3415.
    [215]E Valeur, M Bradley. Amide bond formation:beyond the myth of coupling reagents. Chemical Society Reviews.2009;38(2):606-631.
    [216]GE Veitch, KL Bridgwood, SV Ley. Magnesium nitride as a convenient source of ammonia:Preparation of primary amides. Organic letters. 2008;10(16):3623-3625.
    [217]VR Pattabiraman, JW Bode. Rethinking amide bond synthesis. Nature. 2011;480(7378):471-479.
    [218]W-J Yoo, C-J Li. Highly efficient oxidative amidation of aldehydes with amine hydrochloride salts. Journal of the American Chemical Society. 2006;128(40):13064-13065.
    [219]R Ohmura, M Takahata, H Togo. Metal-free one-pot oxidative conversion of benzylic alcohols and benzylic halides into aromatic amides with molecular iodine in aq ammonia, and hydrogen peroxide. Tetrahedron Letters.2010;51(33):4378-4381.
    [220]L Cao, J Ding, M Gao, Z Wang, J Li, A Wu. Novel and direct transformation of methyl ketones or carbinols to primary amides by employing aqueous ammonia. Organic letters.2009; 11(17):3810-3813.
    [221]M Mentel, MJ Beier, R Breinbauer. An environmentally benign electrochemical process for the reduction of carboxylic acid hydrazides to amides. Synthesis.2009;2009(09):1463-1468.
    [222]IT Harrison, S Harrison, LS Hegedus, LG Wade, M Smith. Compendium of organic synthetic methods:Wiley Online Library; 1971.
    [223]M Tamura, H Wakasugi, K-i Shimizu, A Satsuma. Efficient and substrate-specific hydration of nitriles to amides in water by using a CeO2 catalyst. Chemistry-A European Journal.2011;17(41):11428-11431.
    [224]K Yamaguchi, M Matsushita, N Mizuno. Efficient hydration of nitriles to amides in water, catalyzed by Ruthenium hydroxide supported on Alumina. Angewandte Chemie International Edition.2004;43(12):1576-1580.
    [225]T Zweifel, J-V Naubron, H Grtuzmacher. Catalyzed dehydrogenative coupling of primary alcohols with water, methanol, or amines. Angewandte Chemie International Edition.2009;48(3):559-563.
    [226]MG Crestani, A Arevalo, JJ Garcia. Catalytic hydration of benzonitrile and acetonitrile using Nickel (0). Advanced Synthesis & Catalysis.2006;348(6):732-742.
    [227]K Tani, BM Stoltz. Synthesis and structural analysis of 2-quinuclidonium tetrafluoroborate. Nature.2006;441(7094):731-734.
    [228]F Damkaci, P DeShong. Stereoselective synthesis of α-and β-glycosylamide derivatives from glycopyranosyl azides via isoxazoline intermediates. Journal of the American Chemical Society.2003;125(15):4408-4409.
    [229]K-i Shimizu, K Ohshima, A Satsuma. Direct dehydrogenative amide synthesis from alcohols and amines catalyzed by y-Alumina supported silver cluster. Chemistry-A European Journal.2009;15(39):9977-9980.
    [230]T Oishi, K Yamaguchi, N Mizuno. Catalytic oxidative synthesis of nitriles directly from primary alcohols and ammonia. Angewandte Chemie International Edition.2009;48(34):6286-6288.
    [231]T Oishi, K Yamaguchi, N Mizuno. An efficient one-pot synthesis of nitriles from alcohols or aldehydes with NH3 catalyzed by a supported Ruthenium hydroxide. Topics in Catalysis.2010;53(7-10):479-486.
    [232]Y Wang, D Zhu, L Tang, S Wang, Z Wang. Highly efficient amide synthesis from alcohols and amines by virtue of a water-soluble Gold/DNA catalyst. Angewandte Chemie International Edition.2011;50(38):8917-8921.
    [233]K Yamaguchi, H Kobayashi, Y Wang, T Oishi, Y Ogasawara, N Mizuno. Green oxidative synthesis of primary amides from primary alcohols or aldehydes catalyzed by a cryptomelane-type manganese oxide-based octahedral molecular sieve, OMS-2. Catalysis Science & Technology.2013;3(2):318.
    [234]J Su, M Cao, L Ren, C Hu. Fe3O4-graphene nanocomposites with improved lithium storage and magnetism properties. The Journal of Physical Chemistry C. 2011;115(30):14469-14477.
    [235]H Huang, X Wang. Graphene nanoplate-MnO2 composites for supercapacitors:a controllable oxidation approach. Nanoscale.2011;3(8):3185.
    [236]S Chen, J Zhu, X Wu, Q Han, X Wang. Graphene oxide- MnO2 nanocomposites for supercapacitors. ACS Nano.2010;4(5):2822-2830.
    [237]T Gao, H Fjellvag, P Norby. A comparison study on Raman scattering properties of α-and β-MnO2. Analytica Chimica Acta.2009;648(2):235-239.
    [238]D Banerjee, H Nesbitt. XPS study of dissolution of birnessite by humate with constraints on reaction mechanism. Geochimica et Cosmochimica Acta. 2001;65(11):1703-1714.
    [239]Y Li, H Li, K Zhang, KM Liew. The theoretical possibility of a graphene sheet spontaneously scrolling round an iron nanowire. Carbon.2012;50(2):566-576.
    [240]K Yamaguchi, H Kobayashi, T Oishi, N Mizuno. Heterogeneously catalyzed synthesis of primary amides directly from primary alcohols and aqueous ammonia. Angewandte Chemie International Edition.2012;124(2):559-562.
    [241]X Chen, G Wu, J Chen, X Chen, Z Xie, X Wang. Synthesis of "clean" and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. Journal of the American Chemical Society.2011;133(11):3693-3695.
    [242]K Gong, F Du, Z Xia, M Durstock, L Dai. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science. 2009;323(5915):760-764.
    [243]R Nie, J Wang, L Wang, Y Qin, P Chen, Z Hou. Platinum supported on reduced graphene oxide as a catalyst for hydrogenation of nitroarenes. Carbon. 2012;50(2):586-596.
    [244]HJ Shin, WM Choi, SM Yoon, GH Han, YS Woo, ES Kim, et al. Transfer -free growth of few-layer graphene by self-assembled monolayers. Advanced Materials.2011;23(38):4392-4397.
    [245]K Subrahmanyam, L Panchakarla, A Govindaraj, C Rao. Simple method of preparing graphene flakes by an arc-discharge method. The Journal of Physical Chemistry C.2009;113(11):4257-4259.
    [246]T Szabo, O Berkesi, I Dekany. DRIFT study of deuterium-exchanged graphite oxide. Carbon.2005;43(15):3186-3189.
    [247]V Chandra, J Park, Y Chun, JW Lee, I-C Hwang, KS Kim. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano. 2010;4(7):3979-3986.
    [248]JE Spanier, RD Robinson, F Zhang, S-W Chan, IP Herman. Size-dependent properties of CeO2 nanoparticles as studied by Raman scattering. Physical Review B. 2001;64(24):245407.
    [249]V Dzhagan, MY Valakh, A Raevskaya, A Stroyuk, SY Kuchmiy, D Zahn. Size effects on Raman spectra of small CdSe nanoparticles in polymer films. Nanotechnology.2008;19(30):305707.
    [250]R Nie, H Lei, S Pan, L Wang, J Fei, Z Hou. Core-shell structured CuO-ZnO@ H-ZSM-5 catalysts for CO hydrogenation to dimethyl ether. Fuel. 2012;96:419-425.
    [251]CY Ma, Z Mu, JJ Li, YG Jin, J Cheng, GQ Lu, et al. Mesoporous Co3O4 and Au/Co3O4 catalysts for low-temperature oxidation of trace ethylene. Journal of the American Chemical Society.2010;132(8):2608-2613.
    [252]Y Li, Y Zhao, H Cheng, Y Hu, G Shi, L Dai, et al. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. Journal of the American Chemical Society.2011; 134(1):15-18.
    [253]J Zhu, K Kailasam, A Fischer, A Thomas. Supported cobalt oxide nanoparticles as catalyst for aerobic oxidation of alcohols in liquid phase. ACS Catalysis.2011;1(4):342-347.
    [254]J Liu, Z Zhao, J Wang, C Xu, A Duan, G Jiang, et al. The highly active catalysts of nanometric CeO2-supported cobalt oxides for soot combustion. Applied Catalysis B:Environmental.2008;84(1):185-195.
    [255]S Petitto, M Langell. Surface composition and structure of CoO (110) and the effect of impurity segregation. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films.2004;22:1690.
    [256]GS Armatas, AP Katsoulidis, DE Petrakis, PJ Pomonis, MG Kanatzidis. Nanocasting of ordered mesoporous Co3O4-based polyoxometalate composite frameworks. Chemistry of Materials.2010;22(20):5739-5746.
    [257]T Yu, Y Zhu, X Xu, Z Shen, P Chen, CT Lim, et al. Controlled growth and field-emission properties of cobalt oxide nanowalls. Advanced Materials. 2005;17(13):1595-1599.
    [258]C Sun, S Rajasekhara, Y Chen, JB Goodenough. Facile synthesis of monodisperse porous Co3O4 microspheres with superior ethanol sensing properties. Chemical Communications.2011;47(48):12852-12854.
    [259]Y Wang, Q Zhang, T Shishido, K Takehira. Characterizations of iron-containing MCM-41 and its catalytic properties in epoxidation of styrene with hydrogen peroxide. Journal of Catalysis.2002;209(1):186-196.
    [260]Q Tang, Q Zhang, H Wu, Y Wang. Epoxidation of styrene with molecular oxygen catalyzed by cobalt (Ⅱ)-containing molecular sieves. Journal of Catalysis. 2005;230(2):384-397.
    [261]H Cui, Y Zhang, Z Qiu, L Zhao, Y Zhu. Synthesis and characterization of cobalt-substituted SBA-15 and its high activity in epoxidation of styrene with molecular oxygen. Applied Catalysis B:Environmental.2010;101 (1):45-53.
    [262]X Xie, Y Li, Z-Q Liu, M Haruta, W Shen. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature.2009;458(7239):746-749.
    [263]K Gopalakrishnan, HM Joshi, P Kumar, L Panchakarla, C Rao. Selectivity in the photocatalytic properties of the composites of TiO2 nanoparticles with B-and N-doped graphenes. Chemical Physics Letters.2011;511(4):304-308.
    [264]C-H Jun. Transition metal-catalyzed carbon-carbon bond activation. Chemical Society Reviews.2004;33(9):610-618.
    [265]Y Yamamoto, U Radhakrishnan. Palladium catalysed pronucleophile addition to unactivated carbon-carbon multiple bonds. Chemical Society Reviews. 1999;28(3):199-207.
    [266]M Armbruster, K Kovnir, M Friedrich, D Teschner, G Wowsnick, M Hahne, et al. Al13Fe4 as a low-cost alternative for palladium in heterogeneous hydrogenation. Nature materials.2012;11(8):690-693.
    [267]JA Widegren, RG Finke. A review of the problem of distinguishing true homogeneous catalysis from soluble or other metal-particle heterogeneous catalysis under reducing conditions. Journal of Molecular Catalysis A:Chemical. 2003;198(1-2):317-341.
    [268]SJ Roseblade, A Pfaltz. Iridium-catalyzed asymmetric hydrogenation of olefins. Accounts of chemical research.2007;40(12):1402-1411.
    [269]GR Meyer. Conjugate and nonconjugate reduction with LiAlHU and NaBH4. Journal of Chemical Education.1981;58(8):628.
    [270]Z Peng, H Yang. Designer platinum nanoparticles:Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today. 2009;4(2):143-164.
    [271]X Yang, D Chen, S Liao, H Song, Y Li, Z Fu, et al. High-performance Pd-Au bimetallic catalyst with mesoporous silica nanoparticles as support and its catalysis of cinnamaldehyde hydrogenation. Journal of Catalysis.2012;291:36-43.
    [272]B Li, Z Guan, W Wang, X Yang, J Hu, B Tan, et al. Highly dispersed Pd catalyst locked in knitting aryl network polymers for Suzuki-Miyaura coupling reactions of aryl chlorides in aqueous media. Advanced Materials. 2012;24(25):3390-3395.
    [273]MJ Jin, DH Lee. A practical heterogeneous catalyst for the Suzuki, Sonogashira, and Stille coupling reactions of unreactive aryl chlorides. Angewandte Chemie International Edition.2010;122(6):1137-1140.
    [274]P Giannozzi, S Baroni, N Bonini, M Calandra, R Car, C Cavazzoni, et al. QUANTUM ESPRESSO:a modular and open-source software project for quantum simulations of materials. Journal of Physics:Condensed Matter.2009;21(39):395502.
    [275]G Kresse, D Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B.1999;59(3):1758.
    [276]JP Perdew, K Burke, M Ernzerhof. Generalized gradient approximation made simple. Physical Review Letters.1996;77(18):3865.
    [277]G Mills, H Jonsson, GK Schenter. Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surface Science. 1995;324(2):305-337.
    [278]G Henkelman, BP Uberuaga, H Jonsson. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. The Journal of Chemical Physics.2000;113(22):9901-9904.
    [279]R Nie, J Shi, W Du, W Ning, Z Hou, F-S Xiao. A sandwich N-doped graphene/Co3O4 hybrid:an efficient catalyst for selective oxidation of olefins and alcohols. Journal of Materials Chemistry A.2013;1(32):9037-9045.
    [280]DL Duong, GH Han, SM Lee, F Gunes, ES Kim, ST Kim, et al. Probing graphene grain boundaries with optical microscopy. Nature.2012;490(7419):235-239.
    [281]VH Pham, TV Cuong, SH Hur, E Oh, EJ Kim, EW Shin, et al. Chemical functionalization of graphene sheets by solvothermal reduction of a graphene oxide suspension in N-methyl-2-pyrrolidone. Journal of Materials Chemistry. 2011;21(10):3371.
    [282]M Jahan, Q Bao, KP Loh. Electrocatalytically active graphene-porphyrin MOF composite for oxygen reduction reaction. Journal of the American Chemical Society.2012;134(15):6707-6713.
    [283]T Van Khai, HG Na, DS Kwak, YJ Kwon, H Ham, KB Shim, et al. Influence of N-doping on the structural and photoluminescence properties of graphene oxide films. Carbon.2012;50(10):3799-3806.
    [284]K-J Huang, D-J Niu, J-Y Sun, C-H Han, Z-W Wu, Y-L Li, et al. Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA. Colloids and Surfaces B:Biointerfaces. 2011;82(2):543-549.
    [285]R Arrigo, M Havecker, R Schlogl, DS Su. Dynamic surface rearrangement and thermal stability of nitrogen functional groups on carbon nanotubes. Chemical Communications.2008(40):4891-4893.
    [286]L Zhang, JM Winterbottom, AP Boyes, S Raymahasay. Studies on the hydrogenation of cinnamaldehyde over Pd/C catalysts. Journal of Chemical Technology and Biotechnology.1998;72(3):264-272.
    [287]PO Lowdin. On the non - orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. The Journal of Chemical Physics.1950;18:365.
    [288]Y Wang, J Yao, H Li, D Su, M Antonietti. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media. Journal of the American Chemical Society.2011;133(8):2362-2365.
    [289]H Liu, T Jiang, B Han, S Liang, Y Zhou. Selective phenol hydrogenation to cyclohexanone over a dual supported Pd-lewis acid catalyst. Science. 2009;326(5957):1250-1252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700