用户名: 密码: 验证码:
铬系催化乙烯选择性齐聚反应机理及新型催化剂开发研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
线性α-烯烃是近年来迅速发展的重要化工原料,其中1-己烯和1-辛烯主要作为共聚单体用于生产高性能的高密度聚乙烯和线性低密度聚乙烯,是目前国内急需的产品。相较传统的全分布生产方式,乙烯选择性三聚和四聚生产1-己烯和1-辛烯具有很高的原子利用率,更符合绿色化学的要求。目前制约该领域发展的一个重要原因是乙烯选择性齐聚机理未明,包括反应路径、活性中心金属氧化态和电子自旋态以及配体效应等。
     本文首先用基于密度泛函理论的计算方法研究了雪弗龙-菲利普公司的铬/吡咯体系催化乙烯三聚的反应机理。通过比较含有Cr(Ⅰ)/Cr(Ⅲ)和Cr(II)/Cr(IV)氧化还原循环的三聚反应路径中的自由能发现,Cr(Ⅰ)/Cr(Ⅲ)能更好地代表该体系中三聚活性中心的氧化态。同时还发现各个活性物种中的Cr-Cl距离、铬中心和氯原子的电荷随反应进程发生变化,说明氯原子在反应中表现出hemilabile特性,这一特性是该体系实现高1-己烯选择性的关键因素之一。
     随后又使用理论计算对Cr-SNS乙烯三聚体系进行了研究。为了阐明实验研究中存在的有关活性中心的争议,本文设计了含有不同金属氧化态和不同SNS配体的催化剂活性中心模型。从三聚反应的自由能垒图中可以看出,该反应的速率决定步骤为铬金属七元环的形成。电子自旋态分析的结果显示反应中的活性物种的基态倾向于不同的自旋多重态。发生在铬金属五元环形成之前的自旋交叉使反应从5重态自由能面转换到3重态自由能面上进行,从而有效降低了反应速率决定步骤的活化能。通过比较各个活性中心模型上反应速率决定步骤的活化能,本文发现含有未去质子化SNS配体的Cr(Ⅰ)/Cr(Ⅲ)配合物最有可能是该体系中的三聚活性物种。
     本文后半部分专注于新型乙烯三聚和四聚催化体系的开发。第一个体系的催化剂由Cr(acac)3和正吡咯基二苯基膦配体组成,助催化剂为甲基铝氧烷,体系的主要产物为1-己烯和1-辛烯,反应活性中等。通过改变反应条件(反应溶剂、助催化剂、催化剂浓度、配体/铬比例、反应温度和反应压力),液相产物中1-己烯/1-辛烯的比例可以从0.3调节至20,1-己烯和1-辛烯的选择性最高分别可达91%和74%。当使用脂肪族碳氢化合物为反应溶剂时,加入少量的甲苯能有效提高1-辛烯的选择性,使其成为主要液相产物;而当甲苯含量超过10vol-%后,体系逐渐失去三聚和四聚选择性,液相产物为符合统计学分布的一系列齐聚物。第二个体系的催化剂为一系列结构相似的含有吡啶-氨基膦配体的铬配合物,这些催化剂反应生成各种短链α-烯烃和聚乙烯时表现出不同的选择性和反应活性。配体结构对催化性能有显著影响,通过调节膦官能团上的取代基和配体中P-Cr-N角度可以调控C6或C8烯烃的选择性以及1-己烯和1-辛烯的纯度。含配体PyCH2N(Me)P'Pr2的铬配合物能催化乙烯生成大量的齐聚物和少量聚乙烯,其液相产物中C6和C8烯烃的总选择性高达99%,且1-己烯和1-辛烯的纯度很高。
     本文结合实验方法和理论计算来探索和解决化学问题。相比于单独使用实验方法或分子模拟方法,两种方法的有效结合有助于对乙烯选择性齐聚机理进行更加全面和深入的认识。
Since the discovery of ethylene trimerization in1967, selective ethylene oligomerization has stimulated both industrial and academic research for its ability to selectively produce a-olefins for linear low density polyethylene (LLDPE) manufacture. Compared to the conventional process for1-hexene and1-octene production via non-selective ethylene oligomerization, ethylene trimerization and tetramerization are favored for high atom efficiency and reduction of separation costs. Over the last decade, numerous selective ethylene tri-and tetramerization systems have been developed, including the successfully commercialized Chevron-Phillips ethylene trimerization system. However, lack of theoretical understanding of the factors influencing the catalytic performance makes trial and error the main approach in the catalyst development. In this thesis, the intriguing but challenging topic of selective ethylene oligomerization has been studied with both experimental and theoretical approaches.
     The first part of the thesis provides some mechanistic insights into two typical ethylene trimerization systems, investigating experimentally unsolved issues exclusively with theoretical methods. For the landmark Chevron-Phillips ethylene trimerization catalyst, a detailed mechanistic study has been carried out by density functional theory (DFT) calculations on a Cr/pyrrole-based model system. Possible reaction pathways are located on the basis of the metallacycle mechanism. Consistent with experimental results, the trimerization route is proven to be energetically preferred compared to ethylene dimerization or further ring expansion of the chromacycloheptane intermediate. From detailed analyses of oxidation states and electronic configurations, the Cr(I)/Cr(III) redox couple is found to be responsible for1-hexene selectivity and all active species involved in the catalytic cycle are constantly under quartet spin state. The importance of the coordination of a pendant chlorine, as was observed in various crystal structures, has been investigated for different intermediates. Bond distances and angles and charge analyses clearly prove a hemilabile behavior of the chlorine, which is considered a key factor for1-hexene selectivity.
     In the Cr-SNS ethylene trimerization system, long-term existing debates from experimental evidence, including the oxidation states of the active species and the occurrence of ligand deprotonation, have been examined by DFT methods. Gibbs free energy surfaces of full reaction cycles have been completely located, and formation of chromacycloheptane is identified as the rate-determining step. A detailed spin state analysis reveals that the ground states of the intermediates change along the redox cycle. A spin crossover occurs at the minimum energy crossing point before chromacyclopentane formation, which opens up a much lower energy pathway by spin acceleration. By comparison of the activation energies of the rate-determining step, Cr(I)/Cr(III) complexes bearing non-deprotonated ligands are proposed to be the most plausibly active species, which has been supported by experimental proof. Frontier orbital and natural population analyses have also been carried out to further elucidate the reason for high1-hexene selectivity in this system.
     In the second part of the thesis, two novel ethylene tri-and tetramerization systems have been developed and explored. The first system consists of Cr(acac)3, N-pyrrolyldiphenylphosphine ligand and aluminum alkyls as co-catalysts. Upon activation with a co-catalyst, the system is capable of selectively producing1-hexene and1-octene with moderate catalytic activity. The1-hexene/1-octene ratio can be tuned from0.3to20by adjusting the reaction conditions (solvent, co-catalyst, catalyst loading, ligand/Cr ratio, temperature and pressure). And the highest1-hexene and1-octene selectivities can be achieved up to91%and74%, respectively. Furthermore, addition of a small volume percentage of toluene to a system running in aliphatic hydrocarbons has been found crucial to generate1-octene as the dominant liquid fraction, whereas using higher concentrations of toluene gradually switches the system non-selective, producing oligomers with a statistic distribution.
     In the second catalytic system, a series of chromium catalysts containing pyridine-phosphine ligands with similar backbones have been synthesized and characterized. These catalysts show varying catalytic activities and selectivities towards the formation of a-olefins and polyethylene (PE). The ligand structure dramatically influences the catalytic behavior. Selectivities towards C6or C8as well as the purity of the1-hexene and1-octene can be controlled by subtle modifications of the substituents on phosphorous or the P-Cr-N bite angles. Ligand PyCH2N(Me)P'Pr2in combination with CrCl3(THF)3has been found to enable selective ethylene tri-and tetramerization, affording1-hexene and1-octene with good overall selectivity and high purity, albeit with the presence of small amounts of PE.
     Combining experiments and theoretical calculations, this thesis provides an example of effective teamwork in exploring and resolving chemical problems. Although both experimental and computational studies can give helpful suggestions on their own, the results presented in this thesis show that a more comprehensive understanding regarding selective ethylene oligomerization can be obtained by merging these two tools.
引文
[1]W. Keim. Oligomerization of Ethylene to a-Olefins:Discovery and Development of the Shell Higher Olefin Process (SHOP). Angew. Chem., Int. Ed.2013,52(48):12492-12496
    [2]R. M. Manyik, W. E. Walker, T. P. Wilson. US 3300458, (Union Carbide Corporation), 1967
    [3]R. M. Manyik, W. E. Walker, T. P. Wilson. A soluble chromium-based catalyst for ethylene trimerization and polymerization. J. Catal.1977,47(2):197-209
    [4]J. R. Briggs. Selective trimerization of ethylene to 1-hexene. J. Chem. Soc., Chem. Commun.1989,1989(11):674-675
    [5]C. Andes, S. B. Harkins, S. Murtuza, K. Oyler, A. Sen. New tantalum-based catalyst system for the selective trimerization of ethene to 1-hexene. J. Am. Chem. Soc.2001, 123(30):7423-7424
    [6]R. Arteaga-Muller, H. Tsurugi, T. Saito, M. Yanagawa, S. Oda, K. Mashima. New Tantalum Ligand-Free Catalyst System for Highly Selective Trimerization of Ethylene Affording 1-Hexene:New Evidence of a Metallacycle Mechanism. J. Am. Chem. Soc. 2009,131(15):5370-5371
    [7]P. J. W. Deckers, B. Hessen, J. H. Teuben. Switching a catalyst system from ethene polymerization to ethene trimerization with a hemilabile ancillary ligand. Angew. Chem., Int. Ed.2001,40(13):2516-2519
    [8]P. J. W. Deckers, B. Hessen, J. H. Teuben. Catalytic Trimerization of Ethene with Highly Active Cyclopentadienyl-Arene Titanium Catalysts. Organometallics.2002,21(23): 5122-5135
    [9]B. Hessen. Monocyclopentadienyl titanium catalysts:ethene polymerization versus ethene trimerisation. J. Mol. Catal. A:Chem.2004,213(1):129-135
    [10]H. Hagen, W. P. Kretschmer, F. R. van Buren, B. Hessen, D. A. van Oeffelen. Selective ethylene trimerization:A study into the mechanism and the reduction of PE formation. J. Mol. Catal. A:Chem.2006,248(1-2):237-247
    [11]E. Otten, A. A. Batinas, A. Meetsma, B. Hessen. Versatile Coordination of Cyclopentadienyl-Arene Ligands and Its Role in Titanium-Catalyzed Ethylene Trimerization. J. Am. Chem. Soc.2009,131(14):5298-5312
    [12]J. Huang, T. Wu, Y. Qian. Ethylene trimerization with a half-sandwich titanium complex bearing a pendant thienyl group. Chem. Commun.2003,2003(22):2816-2817
    [13]S. Kinoshita, K. Kawamura, T. Fujita. Early-Transition-Metal Catalysts with Phenoxy-Imine-Type Ligands for the Oligomerization of Ethylene. Chem. Asian J.2011,6(2): 284-290
    [14]Y. Suzuki, S. Kinoshita, A. Shibahara, S. Ishii, K. Kawamura, Y. Inoue, T. Fujita. Trimerization of Ethylene to 1-Hexene with Titanium Complexes Bearing Phenoxy-Imine Ligands with Pendant Donors Combined with MAO. Organometallics.2010, 29(11):2394-2396
    [15]J. A. Suttil, M. F. Shaw, D. S. McGuinness, M. G. Gardiner, S. J. Evans. Synthesis of Ti(iv) complexes of donor-functionalised phenoxy-imine tridentates and their evaluation in ethylene oligomerisation and polymerisation. Dalton Trans.2013,42(2013):9129-9138
    [16]J. T. Dixon, M. J. Green, F. M. Hess, D. H. Morgan. Advances in selective ethylene trimerization-a critical overview. J. Organomet. Chem.2004,689(23):3641-3668
    [17]D. F. Wass. Chromium-catalysed ethene trimerisation and tetramerisation-breaking the rules in olefin oligomerisation. Dalton Trans.2007,2007(8):816-819
    [18]T. Agapie. Selective Ethylene Oligomerization:Recent Advances in Chromium Catalysis and Mechanistic Investigations. Coord. Chem. Rev.2011,255(7-8):861-880
    [19]D. S. McGuinness. Olefin Oligomerization via Metallacycles:Dimerization, Trimerization, Tetramerization, and Beyond. Chem. Rev.2011,111(3):2321-2341
    [20]P. W. N. M. van Leeuwen, N. D. Clement, M. J. L. Tschan. New processes for the selective production of 1-octene. Coord. Chem. Rev.2011,255(13-14):1499-1517
    [21]F. Zhu, L. Wang, H. J. Yu. Recent Research Progress in Preparation of Ethylene Oligomers with Chromium-Based Catalytic Systems. Des. Monomers Polym.2011, 14(1):1-23
    [22]G. P. Belov. Tetramerization of ethylene to octene-1 (a review). Pet. Chem.2012,52(3): 139-154
    [23]K. P. Bryliakov, E. P. Talsi. Frontiers of mechanistic studies of coordination polymerization and oligomerization of a-olefins. Coord. Chem. Rev.2012,256(23-24): 2994-3007
    [24]A. Forestiere, H. Olivier-Bourbigou, L. Saussine. Oligomerization of Monoolefins by Homogeneous Catalysts. Oil Gas Sci. Technol.2009,64(6):649-667
    [25]K. Ziegler, H. Martin. Production of Dimers and Low Molecular Polymerization Products from Ethylene. US 2943123,1960
    [26]A. W. Al-Sa'doun. Dimerization of ethylene to butene-1 catalyzed by Ti(OR')4-A1R3. App1. Catal., A.1993,105(1):1-40
    [27]S. Zhang, K. Nomura. Highly Efficient Dimerization of Ethylene by (Imido)vanadium Complexes Containing (2-Anilidomethyl)pyridine Ligands:Notable Ligand Effect toward Activity and Selectivity. J. Am. Chem. Soc.2010,132(13):4960-4965
    [28]A. Igarashi, S. Zhang, K. Nomura. Ethylene Dimerization/Polymerization Catalyzed by (Adamantylimido)vanadium(V) Complexes Containing (2-Anilidomethyl)pyridine Ligands:Factors Affecting the Ethylene Reactivity. Organometallics.2012,31(9):3575-3581
    [29]K. Nomura, A. Igarashi, S. Katao, W. Zhang, W.-H. Sun. Synthesis and Structural Analysis of (Imido)Vanadium(V) Complexes Containing Chelate (Anilido)Methyl-imine Ligands:Ligand Effect in Ethylene Dimerization. Inorg. Chem.2013,52(5):2607-2614
    [30]N. Ajellal, M. C. A. Kuhn, A. D. G. Boff, M. Homer, C. M. Thomas, J.-F. Carpentier, O. L. Casagrande. Nickel Complexes Based on Tridentate Pyrazolyl Ligands for Highly Efficient Dimerization of Ethylene to 1-Butene. Organometallics.2006,25(5):1213-1216
    [31]F. Speiser, P. Braunstein, L. Saussine. Catalytic Ethylene Dimerization and Oligomerization:Recent Developments with Nickel Complexes Containing P,N-Chelating Ligands. Acc. Chem. Res.2005,38(10):784-793
    [32]W. K. Reagen. Process for olefin polymerization. EP 0417477, (Phillips Petroleum Company),1991
    [33]J. W. Freeman, J. L. Buster, R. D. Knudsen. Preparation of homogeneous catalysts for olefin oligomerization. US 5856257, (Phillips Petroleum Company),1999
    [34]Y. Araki, H. Nakamura, Y. Nanba, T. Okano. Process for producing a-olefin oligomer. US5856612, (Mitsubishi Chemical Corporation),1999
    [35]T. Yoshida, T. Yamamoto, H. Okada, H. Murakita. Catalyst for trimerization of ethylene and process for trimerizing ethylene using the catalyst. US 20020035029, (Tosoh Corporation),2002
    [36]J. Zhang, P. Braunstein, T. S. A. Hor. Highly selective chromium(III) ethylene trimerization catalysts with [NON] and [NSN] heteroscorpionate ligands. Organometallics.2008,27(17):4277-4279
    [37]J. Zhang, A. F. Li, T. S. A. Hor. Ligand effect on ethylene trimerisation with [NNN]-heteroscorpionate pyrazolyl Cr(III) catalysts. Dalton Trans.2009,2009(42):9327-9333
    [38]F.-J. Wu. Ethylene trimerization. US 5811618, (Amoco Corporation),1995
    [39]A. Carter, S. A. Cohen, N. A. Cooley, A. Murphy, J. Scutt, D. F. Wass. High activity ethylene trimerization catalysts based on diphosphine ligands. Chem. Commun.2002, 2002(8):858-859
    [40]D. S. McGuinness, P. Wasserscheid, W. Keim, C. Hu, U. Englert, J. T. Dixon, C. Grove. Novel Cr-PNP complexes as catalysts for the trimerization of ethylene. Chem. Commun. 2003,3(3):334-335
    [41]D. S. McGuinness, P. Wasserscheid, D. H. Morgan, J. T. Dixon. Ethylene Trimerization with Mixed-Donor Ligand (N,P,S) Chromium Complexes:Effect of Ligand Structure on Activity and Selectivity. Organometallics.2005,24(4):552-556
    [42]D. S. McGuinness, P. Wasserscheid, W. Keim, D. Morgan, J. T. Dixon, A. Bollmann, H. Maumela, F. Hess, U. Englert. First Cr(III)-SNS Complexes and Their Use as Highly Efficient Catalysts for the Trimerization of Ethylene to 1-Hexene. J. Am. Chem. Soc. 2003,125(18):5272-5273
    [43]D. S. McGuinness, D. B. Brown, R. P. Tooze, F. M. Hess, J. T. Dixon, A. M. Z. Slawin. Ethylene Trimerization with Cr-PNP and Cr-SNS Complexes:Effect of Ligand Structure, Metal Oxidation State, and Role of Activator on Catalysis. Organometallics.2006, 25(15):3605-3610
    [44]K. Albahily, S. Gambarotta, R. Duchateau. Ethylene Oligomerization Promoted by a Silylated-SNS Chromium System. Organometallics.2011,30(17):4655-4664
    [45]S. Peitz, N. Peulecke, B. R. Aluri, S. Hansen, B. H. Muller, A. Spannenberg, U. Rosenthal, M. H. Al-Hazmi, F. M. Mosa, A. Wohl, W. Muller. A Selective Chromium Catalyst System for the Trimerization of Ethene and Its Coordination Chemistry. Eur. J. Inorg. Chem.2010,2010(8):1167-1171
    [46]B. Reddy Aluri, N. Peulecke, S. Peitz, A. Spannenberg, B. H. Muller, S. Schulz, H.-J. Drexler, D. Heller, M. H. Al-Hazmi, F. M. Mosa, A. Wohl, W. Muller, U. Rosenthal. Coordination chemistry of new selective ethylene trimerisation ligand Ph2PN(iPr)P(Ph)NH(R) (R= iPr, Et) and tests in catalysis. Dalton Trans.2010,39(34): 7911-7920
    [47]S. Peitz, N. Peulecke, B. R. Aluri, B. H. Muller, A. Spannenberg, U. Rosenthal, M. H. Al-Hazmi, F. M. Mosa, A. Wohl, W. Muller. Activation and Deactivation by Temperature:Behavior of Ph2PN(iPr)P(Ph)N(iPr)H in the Presence of Alkylaluminum Compounds Relevant to Catalytic Selective Ethene Trimerization. Chem. Eur. J.2010, 16(40):12127-12132
    [48]B. H. Muller, N. Peulecke, A. Spannenberg, U. Rosenthal, M. H. Al-Hazmi, R. Schmidt, A. Wohl, W. Muller. Synthesis and Reactions of the Homoleptic Chromium(II) Bis-amide [Ph2PN(iPr)P(Ph)N(iPr)-]2Cr with Relevance to a Selective Catalytic Ethene Trimerization System to 1-Hexene. Organometallics.2012,31(9):3695-3699
    [49]N. Peulecke, B. H. Muller, S. Peitz, B. R. Aluri, U. Rosenthal, A. Wohl, W. Muller, M. H. Al-Hazmi, F. M. Mosa. Immobilized Chromium Catalyst System for Selective Ethene Trimerization to 1-Hexene with a PNPNH Ligand. Chemcatchem.2010,2(9):1079-1081
    [50]C. Klemps, E. Payet, L. Magna, L. Saussine, X. F. Le Goff, P. Le Floch. PCNCP Ligands in the Chromium-Catalyzed Oligomerization of Ethylene:Tri-versus Tetramerization. Chem. Eur. J.2009,15(33):8259-8268
    [51]I. Thapa, S. Gambarotta, I. Korobkov, R. Duchateau, S. V. Kulangara, R. Chevalier. Switchable Chromium(II) Complexes of a Chelating Amidophosphine (N-P) for Selective and Nonselective Ethylene Oligomerization. Organometallics.2010,29(18): 4080-4089
    [52]K. Albahily, D. Al-Baldawi, S. Gambarotta, R. Duchateau, E. Koc, T. J. Burchell. Preparation and Characterization of a Switchable Single-Component Chromium Trimerization Catalyst. Organometallics.2008,27(21):5708-5711
    [53]K. Albahily, V. Fomitcheva, Y. Shaikh, E. Sebastiao, S. I. Gorelsky, S. Gambarotta, I. Korobkov, R. Duchateau. New Self-Activating Organochromium Catalyst Precursor for Selective Ethylene Trimerization. Organometallics.2011,30(15):4201-4210
    [54]K. Albahily, V. Fomitcheva, S. Gambarotta, I. Korobkov, M. Murugesu, S. I. Gorelsky. Preparation and Characterization of a Reduced Chromium Complex via Vinyl Oxidative Coupling:Formation of a Self-Activating Catalyst for Selective Ethylene Trimerization. J. Am. Chem. Soc.2011,133(16):6380-6387
    [55]O. L. Sydora, T. C. Jones, B. L. Small, A. J. Nett, A. A. Fischer, M. J. Carney. Selective Ethylene Tri-/Tetramerization Catalysts. ACS Catal.2012,2(12):2452-2455
    [56]C. Pellecchia, D. Pappalardo, G. J. Gruter. Branched Polyethylene Produced by a Half-Titanocene Catalyst. Macromolecules.1999,32(13):4491-4493
    [57]A. Bollmann, K. Blann, T. Dixon John, M. Hess Fiona, E. Killian, H. Maumela, S. McGuinness David, H. Morgan David, A. Neveling, S. Otto, M. Overett, M. Z. Slawin Alexandra, P. Wasserscheid, S. Kuhlmann. Ethylene tetramerization:a new route to produce 1-octene in exceptionally high selectivities. J. Am. Chem. Soc.2004,126(45): 14712-14713
    [58]T. Jiang, S. Zhang, X. Jiang, C. Yang, B. Niu, Y. Ning. The effect of N-aryl bisphosphineamine ligands on the selective ethylene tetramerization. J. Mol. Catal. A: Chem.2008,279(1):90-93
    [59]N. Cloete, H. G. Visser, I. Engelbrecht, M. J. Overett, W. F. Gabrielli, A. Roodt. Ethylene Tri-and Tetramerization:a Steric Parameter Selectivity Switch from X-ray Crystallography and Computational Analysis. Inorg. Chem.2013,52(5):2268-2270
    [60]Z. Weng, S. Teo, T. S. A. Hor. Chromium(III) catalyzed ethylene tetramerization promoted by bis(phosphino)amines with an N-functionalized pendant. Dalton Trans. 2007,2007(32):3493-3498
    [61]G. Mao, Y. Ning, W. Hu, S. Li, X. Song, B. Niu, T. Jiang. Synthesis of a novel triple-site diphosphinoamine (PNP) ligand and its applications in ethylene tetramerization. Chin. Sci. Bull.2008,53(22):3511-3515
    [62]T. Jiang, Y. Ning, B. Zhang, J. Li, G. Wang, J. Yi, Q. Huang. Preparation of 1-octene by the selective tetramerization of ethylene. J. Mol. Catal. A:Chem.2006,259(1-2):161-165
    [63]H. Chen, X. Liu, W. Hu, Y. Ning, T. Jiang. Effects of halide in homogeneous Cr(III)/PNP/MAO catalytic systems for ethylene tetramerization toward 1-octene. J. Mol. Catal. A:Chem.2007,270(1-2):273-277
    [64]T. Jiang, X. Liu, Y. Ning, H. Chen, M. Luo, L. Wang, Z. Huang. Performance of various aluminoxane activators in ethylene tetramerization based on PNP/Cr(Ⅲ) catalyst system. Catal. Commun.2007,8(7):1145-1148
    [65]M. J. Overett, K. Blann, A. Bollmann, R. de Villiers, J. T. Dixon, E. Killian, M. C. Maumela, H. Maumela, D. S. McGuinness, D. H. Morgan, A. Rucklidge, A. M. Z. Slawin. Carbon-bridged diphosphine ligands for chromium-catalysed ethylene tetramerisation and trimerisation reactions. J. Mol. Catal. A:Chem.2008,283(1-2):114-119
    [66]S.-K. Kim, T.-J. Kim, J.-H. Chung, T.-K. Hahn, S.-S. Chae, H.-S. Lee, M. Cheong, S. O. Kang. Bimetallic Ethylene Tetramerization Catalysts Derived from Chiral DPPDME Ligands:Syntheses, Structural Characterizations, and Catalytic Performance of [(DPPDME)CrC13]2 (DPPDME= S,S-and R,R-chiraphos and meso-achiraphos). Organometallics.2010,29(22):5805-5811
    [67]S. Licciulli, I. Thapa, K. Albahily, I. Korobkov, S. Gambarotta, R. Duchateau, R. Chevalier, K. Schuhen. Towards Selective Ethylene Tetramerization. Angew. Chem., Int. Ed.2010,49(48):9225-9228
    [68]Y. Shaikh, K. Albahily, M. Sutcliffe, V. Fomitcheva, S. Gambarotta, . Korobkov, R. Duchateau. A Highly Selective Ethylene Tetramerization Catalyst. Angew. Chem., Int. Ed.2012,51(6):1366-1369
    [69]Y. Shaikh, J. Gurnham, K. Albahily, S. Gambarotta, I. Korobkov. Aminophosphine-Based Chromium Catalysts for Selective Ethylene Tetramerization. Organometallics. 2012,31(21):7427-7433
    [70]P. Cossee. Ziegler-Natta catalysis Ⅰ. Mechanism of polymerization of a-olefins with Ziegler-Natta catalysts. J. Catal.1964,3(1):80-88
    [71]E. J. Arlman, P. Cossee. Ziegler-Natta catalysis Ⅲ. Stereospecific polymerization of propene with the catalyst system TiC13/AlEt3. J. Catal.1964,3(1):99-104
    [72]G. P. Belov, T. S. Dzhabiev, I. M. Kolesnikov. Activation of C-H and C-C bonds in ethylene and piperylene catalytic reactions. J. Mol. Catal.1982,14(1):105-112
    [73]J. A. Suttil, D. S. McGuinness. Mechanism of Ethylene Dimerization Catalyzed by Ti(OR')4/A1R3. Organometallics.2012,31(19):7004-7010
    [74]R. Robinson, D. S. McGuinness, B. F. Yates. The Mechanism of Ethylene Dimerization with the Ti(OR')4/A1R3 Catalytic System:DFT Studies Comparing Metallacycle and Cossee Proposals. ACS Catal.2013,2013(3):3006-3015
    [75]J. X. McDermott, J. F. White, G. M. Whitesides. Preparation and thermal decomposition of platinum(II) metallocycles. J. Am. Chem. Soc.1973,95(13):4451-4452
    [76]J. X. McDermott, J. F. White, G. M. Whitesides. Thermal decomposition of bis(phosphine)platinum(II) metallocycles. J. Am. Chem. Soc.1976,98(21):6521-6528
    [77]D. S. McGuinness, J. A. Suttil, M. G. Gardiner, N. W. Davies. Ethylene oligomerization with Cr-NHC catalysts:Further insights into the extended metallacycle mechanism of chain growth. Organometallics.2008,27(16):4238-4247
    [78]A. K. Tomov, J. J. Chirinos, D. J. Jones, R. J. Long, V. C. Gibson. Experimental evidence for large ring metallacycle intermediates in polyethylene chain growth using homogeneous chromium catalysts. J. Am. Chem. Soc.2005,127(29):10166-10167
    [79]R. Emrich, O. Heinemann, P. W. Jolly, C. Krueger, G. P. J. Verhovnik. The Role of Metallacycles in the Cr-Catalyzed Trimerization of Ethylene. Organometallics.1997, 16(8):1511-1513
    [80]T. Agapie, J. A. Labinger, J. E. Bercaw. Mechanistic Studies of Olefin and Alkyne Trimerization with Chromium Catalysts:Deuterium Labeling and Studies of Regiochemistry Using a Model Chromacyclopentane Complex. J. Am. Chem. Soc.2007, 129(46):14281-14295
    [81]T. Agapie, S. J. Schofer, J. A. Labinger, J. E. Bercaw. Mechanistic Studies of the Ethylene Trimerization Reaction with Chromium-Diphosphine Catalysts:Experimental Evidence for a Mechanism Involving Metallacyclic Intermediates. J. Am. Chem. Soc. 2004,126(5):1304-1305
    [82]A. K. Tomov, J. J. Chirinos, R. J. Long, V. C. Gibson, M. R. J. Elsegood. An unprecedented alpha-olefin distribution arising from a homogeneous ethylene oligomerization catalyst. J. Am. Chem. Soc.2006,128(24):7704-7705
    [83]A. N. J. Blok, P. H. M. Budzelaar, A. W. Gal. Mechanism of Ethene Trimerization at an ansa-(Arene)(cyclopentadienyl) Titanium Fragment. Organometallics.2003,22(13): 2564-2570
    [84]T. J. M. de Bruin, L. Magna, P. Raybaud, H. Toulhoat. Hemilabile Ligand Induced Selectivity:a DFT Study on Ethylene Trimerization Catalyzed by Titanium Complexes. Organometallics.2003,22(17):3404-3413
    [85]S. Tobisch, T. Ziegler. Catalytic linear oligomerization of ethylene to higher alpha-olefins:Insight into the origin of the selective generation of 1-hexene promoted by a cationic cyclopentadienyl-arene titanium active catalyst. Organometallics.2003,22(26): 5392-5405
    [86]Z.-X. Yu, K. N. Houk. Why trimerization? Computational elucidation of the origin of selective trimerization of ethene catalyzed by [TaC13(CH3)2] and an agostic-assisted hydride transfer mechanism. Angew. Chem., Int. Ed.2003,42(7):808-811
    [87]W. J. van Rensburg, C. Grove, J. P. Steynberg, K. B. Stark, J. J. Huyser, P. J. Steynberg. A DFT Study toward the Mechanism of Chromium-Catalyzed Ethylene Trimerization. Organometallics.2004,23(6):1207-1222
    [88]S. Bhaduri, S. Mukhopadhyay, S. A. Kulkarni. Density functional studies on chromium catalyzed ethylene trimerization. J. Organomet. Chem.2009,694(9-10):1297-1307
    [89]P. H. M. Budzelaar. Ethene trimerization at Cr-I/Cr-III-A density functional theory (DFT) study(1). Can. J. Chem.2009,87(7):832-837
    [90]Y. Qi, Q. Dong, L. Zhong, Z. Liu, P. Y. Qiu, R. H. Cheng, X. L. He, J. Vanderbilt, B. P. Liu. Role of 1,2-Dimethoxyethane in the Transformation from Ethylene Polymerization to Trimerization Using Chromium Tris(2-ethylhexanoate)-Based Catalyst System:A DFT Study. Organometallics.2010,29(7):1588-1602
    [91]Y. Yang, Z. Liu, L. Zhong, P. Qiu, Q. Dong, R. Cheng, J. Vanderbilt, B. Liu. Spin Surface Crossing between Chromium(Ⅰ)/Sextet and Chromium(Ⅲ)/Quartet without Deprotonation in SNS-Cr Mediated Ethylene Trimerization. Organometallics.2011, 30(19):5297-5302
    [92]S. Peitz, B. R. Aluri, N. Peulecke, B. H. Muller, A. Wohl, W. Muller, M. H. Al-Hazmi, F. M. Mosa, U. Rosenthal. An Alternative Mechanistic Concept for Homogeneous Selective Ethylene Oligomerization of Chromium-Based Catalysts:Binuclear Metallacycles as a Reason for 1-Octene Selectivity? Chem. Eur. J.2010,16(26):7670-7676
    [93]L. H. Do, J. A. Labinger, J. E. Bercaw. Spectral Studies of a Cr(PNP)-MAO System for Selective Ethylene Trimerization Catalysis:Searching for the Active Species. ACS Catal. 2013,3(1):2582-2585
    [94]T. E. Stennett, M. F. Haddow, D. F. Wass. Avoiding MAO:Alternative Activation Methods in Selective Ethylene Oligomerization. Organometallics.2012,31(19):6960-6965
    [95]M. Eisen, R. J. Batrice, E. Domeshek, S. Aharonovich, B. Tumanskii, M. Botoshansky. Organoactinides in the Polymerization of Ethylene:Is TIBA a Better Cocatalyst than MAO? Dalton Trans.2013,42(2013):9069-9078
    [96]W. J. van Rensburg, J.-A. van den Berg, P. J. Steynberg. Role of MAO in Chromium-Catalyzed Ethylene Tri-and Tetramerization: A DFT Study. Organometallics.2007, 26(4):1000-1013
    [97]D. Shoken, M. Sharma, M. Botoshansky, M. Tamm, M. S. Eisen. Mono(imidazolin-2-iminato) Titanium Complexes for Ethylene Polymerization at Low Amounts of Methylaluminoxane. J. Am. Chem. Soc.2013,135(34):12592-12595
    [98]D. S. McGuinness, A. J. Rucklidge, R. P. Tooze, A. M. Z. Slawin. Cocatalyst Influence in Selective Oligomerization:Effect on Activity, Catalyst Stability, and 1-Hexene/1-Octene Selectivity in the Ethylene Trimerization and Tetramerization Reaction. Organometallics.2007,26(10):2561-2569
    [99]D. S. McGuinness, M. Overett, R. P. Tooze, K. Blann, J. T. Dixon, A. M. Z. Slawin. Ethylene Tri-and Tetramerization with Borate Cocatalysts:Effects on Activity, Selectivity, and Catalyst Degradation Pathways. Organometallics.2007,26(4):1108-1111
    [100]A. Jabri, C. B. Mason, Y. Sim, S. Gambarotta, T. J. Burchell, R. Duchateau. Isolation of Single-Component Trimerization and Polymerization Chromium Catalysts:The Role of the Metal Oxidation State. Angew. Chem., Int. Ed.2008,47(50):9717-9721
    [101]I. Vidyaratne, G. B. Nikiforov, S. I. Gorelsky, S. Gambarotta, R. Duchateau, I. Korobkov. Isolation of a Self-Activating Ethylene Trimerization Catalyst. Angew. Chem., Int. Ed.2009,48(35):6552-6556
    [102]I. Thapa, S. Gambarotta, I. Korobkov, M. Murugesu, P. Budzelaar. Isolation and Characterization of a Class II Mixed-Valence Chromium(Ⅰ)/(Ⅱ) Self-Activating Ethylene Trimerization Catalyst. Organometallics.2011,31(1):486-494
    [103]K. Albahily, Y. Shaikh, Z. Ahmed, I. Korobkov, S. Gambarotta, R. Duchateau. Isolation of a Self-Activating Ethylene Trimerization Catalyst of a Cr-SNS System. Organometallics.2011,30(15):4159-4164
    [104]R. D. Kohn, D. Smith, M. F. Mahon, M. Prinz, S. Mihan, G. Kociok-Kohn. Coordination chemistry of the activation of (triazacyclohexane)CrC13 with PhNMe2H B(C6F5)(4) and A1R3. J. Organomet. Chem.2003,683(1):200-208
    [105]A. J. Rucklidge, D. S. McGuinness, R. P. Tooze, A. M. Z. Slawin, J. D. A. Pelletier, M. J. Hanton, P. B. Webb. Ethylene tetramerization with cationic chromium(I) complexes. Organometallics.2007,26(10):2782-2787
    [106]I. Y. Skobelev, V. N. Panchenko, O. Y. Lyakin, K. P. Bryliakov, V. A. Zakharov, E. P. Talsi. In Situ EPR Monitoring of Chromium Species Formed during Cr-Pyrrolyl Ethylene Trimerization Catalyst Formation. Organometallics.2010,29(13):2943-2950
    [107]K. Albahily, Y. Shaikh, E. Sebastiao, S. Gambarotta, I. Korobkov, S. I. Gorelsky. Vinyl Oxidative Coupling as a Synthetic Route to Catalytically Active Monovalent Chromium. J. Am. Chem. Soc.2011,133(16):6388-6395
    [108]W. H. Monillas, J. F. Young, G. Yap, K. H. Theopold. A well-defined model system for the chromium-catalyzed selective oligomerization of ethylene. Dalton Trans.2013, 42(25):9198-9210
    [109]E. Carter, K. J. Cavell, W. F. Gabrielli, M. J. Hanton, A. J. Hallett, L. McDyre, J. A. Platts, D. M. Smith, D. M. Murphy. Formation of [Cr(CO)x(Ph2PN(iPr)PPh2)]+ Structural Isomers by Reaction of Triethylaluminum with a Chromium N,N-Bis(diarylphosphino)amine Complex [Cr(CO)4(Ph2PN(iPr)PPh2)]+:An EPR and DFT Investigation. Organometallics.2013,32(6):1924-1931
    [110]J. Rabeah, M. Bauer, W. Baumann, A. E. C. McConnell, W. Gabrielli, P. B. Webb, D. Selent, A. Bruckner. Formation, operation and deactivation of Cr catalysts in ethylene tetramerization directly assessed by operando EPR and XAS. ACS Catal.2013,3(1):95-102
    [111]S. Licciulli, K. Albahily, V. Fomitcheva, I. Korobkov, S. Gambarotta, R. Duchateau. A Chromium Ethylidene Complex as a Potent Catalyst for Selective Ethylene Trimerization. Angew. Chem., Int. Ed.2011,50(10):2346-2349
    [112]A. Jabri, C. Temple, P. Crewdson, S. Gambarotta, I. Korobkov, R. Duchateau. Role of the Metal Oxidation State in the SNS-Cr Catalyst for Ethylene Trimerization:Isolation of Di-and Trivalent Cationic Intermediates. J. Am. Chem. Soc.2006,128(28):9238-9247
    [113]C. Temple, A. Jabri, P. Crewdson, S. Gambarotta, I. Korobkov, R. Duchateau. The question of the Cr oxidation state in the{Cr(SNS)} catalyst for selective ethylene trimerization:an unanticipated re-oxidation pathway. Angew. Chem., Int. Ed.2006, 45(42):7050-7053
    [114]A. Bruckner, J. K. Jabor, A. E. C. McConnell, P. B. Webb. Monitoring structure and valence state of chromium sites during catalyst formation and ethylene oligomerization by in situ EPR spectroscopy. Organometallics.2008,27(15):3849-3856
    [115]W. H. Monillas, G. P. A. Yap, K. H. Theopold. A Tale of Two Isomers:A Stable Phenyl Hydride and a High-Spin (S=3) Benzene Complex of Chromium. Angew. Chem., Int. Ed.2007,46(35):6692-6694
    [116]R. D. Kohn. Reactivity of chromium complexes under spin control. Angew. Chem., Int. Ed.2008,47(2):245-247
    [117]J. S. Hess, S. Leelasubcharoen, A. L. Rheingold, D. J. Doren, K. H. Theopold. Spin surface crossing in chromium-mediated olefin epoxidation with O-2. J. Am. Chem. Soc. 2002,124(11):2454-2455
    [118]Z. Liu, L. Zhong, Y. Yang, R. Cheng, B. Liu. DFT and CASPT2 Study on the Mechanism of Ethylene Dimerization over Cr(II)OH+Cation. J. Phys. Chem. A.2011, 115(28):8131-8141
    [119]R. Walsh, D. H. Morgan, A. Bollmann, J. T. Dixon. Reaction kinetics of an ethylene tetramerisation catalyst. Appl. Catal., A.2006,306(2006):184-191
    [120]S. Kuhlmann, C. Paetz, C. Hagele, K. Blann, R. Walsh, J. T. Dixon, J. Scholz, M. Haumann, P. Wasserscheid. Chromium catalyzed tetramerization of ethylene in a continuous tube reactor--Proof of concept and kinetic aspects. J. Catal.2009,262(1):83-91
    [121]A. Wohl, W. Muller, N. Peulecke, B. H. Muller, S. Peitz, D. Heller, U. Rosenthal. Reaction kinetics of the ethene tetramerization catalyst system CrC13(THF)(3), Ph2PN(Pr-i)PPh2 and MAO:The unexpected and unusual formation of odd-numbered 1-olefins. J. Mol. Catal. A:Chem.2009,297(1):1-8
    [122]A. Wohl, W. Muller, S. Peitz, N. Peulecke, B. R. Aluri, B. H. Muller, D. Heller, U. Rosenthal, M. H. Al-Hazmi, F. M. Mosa. Influence of Process Parameters on the Reaction Kinetics of the Chromium-Catalyzed Trimerization of Ethylene. Chem. Eur. J. 2010,16(26):7833-7842
    [123]W. Muller, A. Wohl, S. Peitz, N. Peulecke, B. R. Aluri, B. H. Mueller, D. Heller, U. Rosenthal, M. H. Al-Hazmi, F. M. Mosa. A Kinetic Model for Selective Ethene Trimerization to 1-Hexene by a Novel Chromium Catalyst System. Chemcatchem.2010, 2(9):1130-1142
    [124]Y. Yang, H. Kim, J. Lee, H. Paik, H. G. Jang. Roles of chloro compound in homogeneous [Cr(2-ethylhexanoate)3/2,5-dimethylpyrrole/triethylaluminum/chloro compound] catalyst system for ethylene trimerization. Appl. Catal., A.2000,193(1-2): 29-38
    [125]Chevron Phillips press release via the web,1-21-2003:http://www.cpchem.com
    [126]Y. Fang, Y. Liu, Y. Ke, C. Guo, N. Zhu, X. Mi, Z. Ma, Y. Hu. A new chromium-based catalyst coated with paraffin for ethylene oligomerization and the effect of chromium state on oligomerization selectivity. Appl. Catal., A.2002,235(1-2):33-38
    [127]H.-K. Luo, D.-G. Li, S. Li. The effect of halide and the coordination geometry of chromium center in homogeneous catalyst system for ethylene trimerization. J. Mol. Catal. A:Chem.2004,221(1-2):9-17
    [128]Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
    [129]R. Poli, J. N. Harvey. Spin forbidden chemical reactions of transition metal compounds. New ideas and new computational challenges. Chem. Soc. Rev.2003,32(1):1-8
    [130]K. P. Jensen, B. O. Roos, U. Ryde. Performance of density functionals for first row transition metal systems. J. Chem. Phys.2007,126(1):014103
    [131]J. N. Harvey, M. Aschi. Spin-forbidden dehydrogenation of methoxy cation:a statistical view. Phys. Chem. Chem. Phys.1999,1(24):5555-5563
    [132]E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Wemhold. NBO Version 3.1.
    [133]S. Tobisch, T. Ziegler. Catalytic Oligomerization of Ethylene to Higher Linear alpha Olefins Promoted by Cationic Group 4 Cyclopentadienyl-Arene Active Catalysts: Toward the Computational Design of Zirconium-and Hafnium-Based Ethylene Trimerization Catalysts. Organometallics.2005,24(2):256-265
    [134]S. Tobisch, T. Ziegler. Catalytic Oligomerization of Ethylene to Higher Linear alfa-Olefins Promoted by Cationic Group 4 Cyclopentadienyl-Arene Active Catalysts:A DFT Investigation Exploring the Influence of Electronic Factors on the Catalytic Properties by Modification of the Hemilabile Arene Functionality. Organometallics.2004,23(17): 4077-4088
    [135]S. Tobisch, T. Ziegler. Catalytic Oligomerization of Ethylene to Higher Linear alpha-Olefins Promoted by the Cationic Group 4 [(h5-Cp-(CMe2-bridge)-Ph)MII(ethylene)2]+ (M=Ti, Zr, Hf) Active Catalysts:A Density Functional Investigation of the Influence of the Metal on the Catalytic Activity and Selectivity. J. Am. Chem. Soc.2004,126(29): 9059-9071
    [136]T. de Bruin, P. Raybaud, H. Toulhoat. A DFT chemical descriptor to predict the selectivity in alpha-olefins in the catalytic metallacyclic oligomerization reaction of ethylene according to the (hemi)labile ligand coordinating to titanium. Organometallics. 2008,27(19):4864-4872
    [137]This result is different from the conclusion of a previous DFT study which also assumes Cr(II)/(IV) redox cycle for ethylene trimerization. It should be noted that in that study, electronic configuration analyses were only conducted for several selected intermediates, not all species involved in the reaction pathway.
    [138]B. Blom, G. Klatt, J. C. Q. Fletcher, J. R. Moss. Computational investigation of ethene trimerization catalyzed by cyclopentadienyl chromium complexes. Inorg. Chim. Acta. 2007,360(9):2890-2896
    [139]C. N. Temple, S. Gambarotta, I. Korobkov, R. Duchateau. New insight into the role of the metal oxidation state in controlling the selectivity of the Cr-(SNS) ethylene trimerization catalyst. Organometallics.2007,26(18):4598-4603
    [140]Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT,2004.
    [141]M. Reiher, O. Salomon, B. A. Hess. Reparameterization of hybrid functionals based on energy differences of states of different multiplicity. Theor. Chem. Ace.2001,107(1): 48-55
    [142]N. C. Handy, A. J. Cohen. Left-right correlation energy. Mol. Phys.2001,99(5):403-412
    [143]R. Poli. Open shell organometallics:a general analysis of their electronic structure and reactivity. J. Organomet. Chem.2004,689(24):4291-4304
    [144]J. N. Harvey, R. Poli, K. M. Smith. Understanding the reactivity of transition metal complexes involving multiple spin states. Coord. Chem. Rev.2003,238-239(2003):347-361
    [145]K. M. Smith, R. Poli, J. N. Harvey. Ligand dissociation accelerated by spin state change: locating the minimum energy crossing point for phosphine exchange in CpMoC12(PR3)(2) complexes. New J. Chem.2000,24(2):77-80
    [146]T. K. Han, M. A. Ok, S. S. Chae, S. O. Kang, J. H. Jung. Ethylene tetramerization catalyst systems and method for preparing 1-octene using the same. WO2008088178A1, (SK Energy Co., Ltd., S. Korea.),2008
    [147]A. Jabri, P. Crewdson, S. Gambarotta, I. Korobkov, R. Duchateau. Isolation of a Cationic Chromium(II) Species in a Catalytic System for Ethylene Tri-and Tetramerization. Organometallics.2006,25(3):715-718
    [148]A. Dulai, C. L. McMullin, K. Tenza, D. F. Wass. N,N'-Bis(diphenylphosphino)diaminophenylphosphine Ligands for Chromium-Catalyzed Selective Ethylene Oligomerization Reactions. Organometallics.2011,30(5):935-941
    [149]S. Peitz, N. Peulecke, B. R. Aluri, B. H. Miiller, A. Spannenberg, U. Rosenthal, M. H. Al-Hazmi, F. M. Mosa, A. Wohl, W. Muller. Metalation and Transmetalation Studies on Ph2PN(Pr-i)P(Ph)N(Pr-i)H for Selective Ethene Trimerization to 1-Hexene. Organometallics.2010,29(21):5263-5268
    [150]A. D. Burrows, M. F. Mahon, M. Varrone. Sterically hindered electron-withdrawing ligands:the reactions of N-carbazolyl phosphines with rhodium and palladium centres. Dalton Trans.2004,2004(20):3321-3330
    [151]K. G. Moloy, J. L. Petersen. N-Pyrrolyl Phosphines:An Unexploited Class of Phosphine Ligands with Exceptional.pi.-Acceptor Character. J. Am. Chem. Soc.1995, 117(29):7696-7710
    [152]W. K. Reagen, J. W. Freeman, B. K. Conroy, T. M. Pettijohn, E. A. Benham. Catalysts for olefin polymerization, especially ethylene trimerization. EP 0608447, (Phillips Petroleum Co., USA),1994
    [153]L. Calucci, U. Englert, E. Grigiotti, F. Laschi, G. Pampaloni, C. Pinzino, M. Volpe, P. Zanello. Synthesis and characterization of chromium(Ⅰ) bis(η6-toluene) derivatives containing sterically demanding anions. J. Organomet. Chem.2006,691(5):829-836
    [154]Y. C. Tsai, P. Y. Wang, S. A. Chen, J. M. Chen. Inverted-sandwich Dichromium(I) complexes supported by two beta-diketiminates:A multielectron reductant and syntheses of chromium dioxo and imido. J. Am. Chem. Soc.2007,129(26):8066-8067
    [155]M. J. Overett, K. Blann, A. Bollmann, J. T. Dixon, D. Haasbroek, E. Killian, H. Maumela, D. S. McGuinness, D. H. Morgan. Mechanistic Investigations of the Ethylene Tetramerization Reaction. J. Am. Chem. Soc.2005,127(30):10723-10730
    [156]T. P. Zhuze, A. S. Zhurba. Solubilities of ethylene in hexane, cyclohexane, and benzene under pressure. Russ. Chem. Bull.1960,9(2):335-337
    [157]P. R. Elowe, C. McCann, P. G. Pringle, S. K. Spitzmesser, J. E. Bercaw. Nitrogen-Linked Diphosphine Ligands with Ethers Attached to Nitrogen for Chromium-Catalyzed Ethylene Tri-and Tetramerizations. Organometallics.2006,25(22):5255-5260
    [158]K. Albahily, E. Koc, D. Al-Baldawi, D. Savard, S. Gambarotta, T. J. Burchell, R. Duchateau. Chromium catalysts supported by a nonspectator NPN ligand:Isolation of single-component chromium polymerization catalysts. Angew. Chem., Int. Ed.2008, 47(31):5816-5819
    [159]L. E. Bowen, M. F. Haddow, A. G. Orpen, D. F. Wass. One electron oxidation of chromium N,N-bis(diarylphosphino)amine and bis(diarylphosphino) methane complexes relevant to ethene trimerisation and tetramerisation. Dalton Trans.2007,2007(11):1160-1168
    [160]T. Agapie, M. W. Day, L. M. Henling, J. A. Labinger, J. E. Bercaw. A Chromium-Diphosphine System for Catalytic Ethylene Trimerization:Synthetic and Structural Studies of Chromium Complexes with a Nitrogen-Bridged Diphosphine Ligand with ortho-Methoxyaryl Substituents. Organometallics.2006,25(11):2733-2742
    [161]S. J. Schofer, M. W. Day, L. M. Henling, J. A. Labinger, J. E. Bercaw. Ethylene Trimerization Catalysts Based on Chromium Complexes with a Nitrogen-Bridged Diphosphine Ligand Having ortho-Methoxyaryl or ortho-Thiomethoxy Substituents: Well-Defined Catalyst Precursors and Investigations of the Mechanism. Organometallics. 2006,25(11):2743-2749
    [162]K. Blann, A. Bollmann, H. de Bod, J. T. Dixon, E. Killian, P. Nongodlwana, M. C. Maumela, H. Maumela, A. E. McConnell, D. H. Morgan, M. J. Overett, M. Pretorius, S. Kuhlmann, P. Wasserscheid. Ethylene tetramerisation:Subtle effects exhibited by N-substituted diphosphinoamine ligands. J. Catal.2007,249(2):244-249
    [163]S. Peitz, N. Peulecke, B. H. Muller, A. Spannenberg, H. J. Drexler, U. Rosenthal, M. H. Al-Hazmi, K. E. Al-Eidan, A. Wohl, W. Muller. Heterobimetallic Al-CI-Cr Intermediates with Relevance to the Selective Catalytic Ethene Trimerization Systems Consisting of CrC13(THF)(3), the Aminophosphorus Ligands Ph2PN(R)P(Ph)N(R)H, and Triethylaluminum. Organometallics.2011,30(8):2364-2370
    [164]K. Blann, A. Bollmann, J. T. Dixon, F. M. Hess, E. Killian, H. Maumela, D. H. Morgan, A. Neveling, S. Otto, M. J. Overett. Highly selective chromium-based ethylene trimerization catalysts with bulky diphosphinoamine ligands. Chem. Commun.2005, 2005(5):620-621
    [165]M. J. Overett, K. Blann, A. Bollmann, J. T. Dixon, F. Hess, E. Killian, H. Maumela, D. H. Morgan, A. Neveling, S. Otto. Ethylene trimerisation and tetramerisation catalysts with polar-substituted diphosphinoamine ligands. Chem. Commun.2005,2005(5):622-624
    [166]P. Crewdson, S. Gambarotta, M. C. Djoman, I. Korobkov, R. Duchateau. Switchable chromium(II) ethylene oligomerization/polymerization catalyst. Organometallics.2005, 24(22):5214-5216
    [167]E. Y.-X. Chen, T. J. Marks. Cocatalysts for Metal-Catalyzed Olefin Polymerization: Activators, Activation Processes, and Structure-Activity Relationships. Chem. Rev.2000, 100(4):1391-1434
    [168]K. Albahily, D. Al-Baldawi, S. Gambarotta, E. Koc, R. Duchateau. Isolation of a Chromium Hydride Single-Component Ethylene Polymerization Catalyst. Organometallics.2008,27(22):5943-5947
    [169]T. M. Pettijohn, E. A. Benham, W. K. Reagen, J. W. Freeman, B. K. Conroy. Preparation of catalysts for polymerization of olefins, especially oligomerization of ethylene.93-31932,650808, (Phillips Petroleum Co., Australia),1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700