用户名: 密码: 验证码:
特殊浸润性仿生智能响应凝胶材料的制备与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
向自然学习是人类获得科技进步,提高生活质量的起点。科研工作者通过对自然界生物的细致观察和研究,揭示了生命能够适应环境生存繁衍的深刻道理。巧妙的生存本领为科研工作者们提供了无穷无尽的灵感,促成了各种智能仿生材料的开发以及在生产生活领域的应用。凝胶材料作为人工材料中十分重要的一个领域,每天都影响着人们的生活和科技的发展进步。受生物体内的细胞生长分化启发的仿生干细胞培植分化,以及水下鱼鳞超疏油对仿生抗油污、抗生物粘附的水下涂层的启发,人们已经从自然中学习了很多巧妙的材料设计理念,用以发明各种在科研和生产生活领域产生广泛应用的凝胶材料。然而到目前为止,一方面由于对油相凝胶材料的表面特殊浸润性的研究方兴未艾,另一方面对于水凝胶材料表面浸润性的调控不存在类似固体表面修饰方法这样普适的方法。导致对于多数水凝胶体系而言,后处理水凝胶界面浸润性质,或者说对多数水凝胶体系普遍适用的表面改性策略仍然是一个挑战。本文在这样的背景下,从水下鱼鳞的水凝胶层以及细胞膜疏水机制出发,道法自然,对具有特殊浸润性的智能响应凝胶材料进行了研究。尤其是针对不同的潜在应用需求,分别深入地探索了凝胶材料在单个液滴的可逆性操控、石油管道防结蜡性能和溶剂的动力学扩散进程的影响等方向的研究,具体开展了如下工作:
     (1)受鱼鳞表面水凝胶的启发,我们制备了能够实现通过温度控制的对于水滴粘附的可逆开关控制的油凝胶材料。我们通过将高温熔化的石蜡液体溶胀聚二甲基硅氧烷(PDMS)交联网络当中,制备出了具有熔点特性的油凝胶材料。这种材料的熔点特性体现在当温度低于石蜡熔点时,油凝胶材料呈现出不透明的乳白色固体状态,此时材料的表面对于水滴的粘附呈现Wenzel高粘附态。而当温度升高时油凝胶的石蜡成分彻底熔化,使材料展现液态性质,材料对水滴产生了润滑效果的低粘附状态。研究还显示这种对水滴粘附的转变能实现多次可逆控制。在本文中我们还研究了如何通过调节石蜡碳原子数目来调节产生粘附可逆性变化的临界温度。另外材料透明性的温控特性也为实现温控光学开关和窗体材料提供了新的思路。
     (2)从(1)中的油凝胶材料出发,我们将用于溶胀聚二甲基硅氧烷(PDMS)的有机溶剂进行了拓展研究。发现,在溶胀了小分子量的各种烷烃、芳烃混合物(包括汽油、柴油、甚至原油)以后,我们发现油凝胶材料表面具有对于发生相变过程的石蜡产生极低的粘附作用。我们首先通过系统的研究获得了油凝胶材料的溶胀率同各种因素,如溶剂成分、温度、交联度等的关系。通过石蜡的超低粘附行为我们分析并提出了油凝胶材料对于相变过程中石蜡的超低粘附的形成机理。其核心的概念是石蜡在有油膜包覆的油凝胶材料表面由于良溶剂中的自由结晶而全程被避免了的同固体表面的直接接触。进一步的研究证实这种特殊的油凝胶材料能够在相对低温的条件下起到十分显著的防止石油管道内表面石蜡沉积的作用。通过测试我们证明该材料比目前主流的石油管道内衬材料的防石蜡沉积性能高两个数量级以上。
     (3)我们受细胞膜的启发疏水层的选择透过性启发,我们还研究了通过水/油界面化学反应对水凝胶的表面进行疏水的改性。向常规的水凝胶成胶体系中引入含有二甲氨基团的功能单体,进而通过季胺化反应,将含有不同碳链长度的烷基链以及溴代对家苯乙烯聚合物化学键联到水凝胶的表面。藉此我们将水/油界面季胺化改性水凝胶表面的方法进行了普适性的研究。通过实验我们发现,经过表面改性的水凝胶一方面在空气中能够呈现出稳定疏水性质,另一方面表面改性的水凝胶表面展现出了明显的水下亲油和油下疏水的性质,这一性质与水凝胶原本的液相下的浸润性恰好相反。因此我们成功地得到了理想的水凝胶表面改性材料。在此基础上,我们结合模板冲孔和牺牲模板法制备了具有高长径比的水凝胶表面锥状阵列。与季胺化疏水处理相结合,我们成功地构筑了水凝胶超疏水表面。接下来我们通过三明治法制备了玻璃管中的水凝胶夹层。并通过荧光标记的水体系监测了表面改性对于水凝胶界面的水扩散动力学影响。通过实验我们发现,一方面疏水层的存在能够延迟水向水凝胶材料内部扩散的进程,另一方面从较长时间尺度上观察,疏水层的存在能够维持水凝胶材料内外部分的浓度差,这为水凝胶材料内部水的均匀扩散赢得了时间。
     水凝胶材料的表面改性研究,为指导我们将这类常规材料在油/水分离和生物医药控释等方面的应用打下坚实的基础。
Nature is a necessary path that promotes the developing of modern technology and thequality of life. Through insightful observation into the natural organisms, researchers havebeen able to explain the mysterious ways of living organisms adapting their respectiveecological environments. Inspired by these amazing surviving skills, researchers haveinvented many bio-mimicking materials which have been implemented in industrial areas anddaily life. As for the vast developing area of gel materials, a great deal has been achievedsince the last century. Inspired by fish scales, coating technology targeting at anti-oil andanti-biofouling functions has found broad market in the past. Besides, researchers havelearned the biological hydrogel environments for the differentiation of stem cells in livingbodies and base on which developed versatile tools to make artificial hydrogel environment inspecial patterns and arrangements to greatly benefit both the surviving and differentiation ofstem cells in desirable ways in vitro conditions. However to date, the research on organogel,which mainly contains a big amount of oil phase in its constitution, The consideration of the special interfacial wettability is only beginning. And unlike a ubiquitous wettability renderingmethod for common solid surfaces, there is in lack of a general idea in how to render analready made hydrogel material surface. In other words, it is still a challenge to invent aubiquitous methodology in post modulation of the surface wettability on a regular hydrogelsurface. In this thesis, learning from fish scale and hydrophobic lipid bilayer in cells, weprepared smart-responsive gel materials with special wettability. Especially, we investigatethe feasibility of smart-responsive gel materials in application in reversible manipulation ofsessile drops, oil/water separation and prevention of wax deposition in crude oil pipeline, etc.The main contents are as follows:
     (1) Inspired by fish scales, we prepared n-paraffin swollen organogel material withthermally switchable water adhesion property on its surface. The organogel materials wasprepared by swelling n-paraffin with different carbon numbers at high temperature into thecross-linking network of poly(dimethyl siloxane)(PDMS). The organogel exhibitsmelting-point feature, which is at temperature lower than melting point of the n-paraffin used,organogel exhibits solid property, opaque in milky-white; whereas at temperature higher thanmelting point, organogel is complete transparent. At temperature lower than the melting pointof the n-paraffin, the gel surface exhibits Wenzel high-adhesion state towards water drops;whereas at temperature higher than melting point, water drops are lubricated and inlow-adhesion state. Moreover, this wetting state transition is in-situ reversible. And the alsoreversible switching of transparency on organogel might provide new ideas in thermallycontrollable optical switches and windows.
     (2) Originated from the organogel in (1), we extend the types of solvent used forpreparing organogel. It is found that gasoline, diesel oil and even crude oil could impartorganogel with extremely low adhesion towards paraffin wax. We first investigated the factorsthat pose influence to the swelling ratio of organogel, such as the composition of solvents,temperature, cross-linking density, etc. Then we proposed a possible mechanism of theformation of ultra-low adhesion of solidifying paraffin wax to organogel surface, which isrelated to the free crystallization of paraffin wax at a miscible liquid layer, which largely prevents the direct contact of paraffin wax to the solid surface of organogel material. Furtherexperiment showed that the special organogel material is able to prevent wax deposition eventin crude oil pipeline at low temperature. From the experiment we verified that the ability ofanti-waxing on organogel surface is two orders higher than conventional pipeline materials.
     (3) Inspired by the selective permeability of the hydrophobic lipid bilayer on cellmembrane, we developed a general method of post-modifying hydrogel surface viaquarternization reaction at water/oil interface. We conduct this strategy by introducingfunctional groups including dimethylamino groups into the cross-linking gelation of regularhydrogel system. We successfully grafted short alkyl chains with different carbon numbers aswell as polymer chains onto hydrogel surface and found that the surface was renderedhydrophobic. We also found that the wettability of normal hydrogel under liquids wascompletely reversed. That is, the modified hydrogel exhibited both oleophilicity underwaterand superhydrophobicity underoil. Based on the aforementioned results, we successfullyobtained superhydrophobic hydrogel surface by combining the punching hole and modelscarification techniques in preparing cone arrays on hydrogel surface. Later, we investigatedthe influence of surface modification on water diffusion dynamics to the hydrogel interface.In the experiment, we fabricated the hydrogel section in a glass tube through the so called“sandwich” technique. From the experiment, we found that the existence of hydrophobic layeron hydrogel surface delayed the diffusion process from water to hydrogel. And we also foundthat in a longer time span, the hydrophobic layer could keep a difference in waterconcentration between inside and outside of hydrogel interface, which enable the inside ofhydrogel to have time to reach distribution equilibrium of the out coming solvents. Theresearch of hydrogel post-modulation strategy will benefit the potential application in areas ofoil/water separation and bio-medicine control release.
引文
[1] K. Haraguchi, T. Takehisa, Nanocomposite hydrogels a unique organic inorganicnetwork structure with extraodinary mechanical optical and swelling de-swellingproperties[J], Advanced Materials,2002,14,1120-1124.
    [2] K. Haraguchi, H. J. Li, Control of the coil-to-globule transition and ultrahighmechanical properties of PNIPA in nanocomposite hydrogels[J], AngewandteChemie-International Edition,2005,44,6500-6504.
    [3] M. Liu, S. Wang, Z. Wei, Y. Song, L. Jiang, Bioinspired Design of a Superoleophobicand Low Adhesive Water/Solid Interface[J], Advanced Materials,2009,21,665-+.
    [4] M. Liu, Y. Zheng, J. Zhai, L. Jiang, Bioinspired super-antiwetting interfaces with specialliquid-solid adhesion[J], Acc. Chem. Res.,2010,43,368-377.
    [5] H. G. Schild, Poly(N-isopropylacrylamide): experiment, theory and application[J], ProgPolym Sci,1992,17,163-249.
    [6] Fiaz A. F., Kanazawa K. K., Gardini G. P., Electrochemical polymerization of pyrrole[J],Journal of the Chemical Society, Chemical Communications,1979,635-636.
    [7] Orwoll, Robert A., S. Yong Chong, Poly(acrylic acid), Oxford University Press, Inc.,1999.
    [8] J. S. Long, E. K. Zimmermann, S. C. Nevins, Studies in the drying oils VIII-Adsorption of liquids by oil gels[J], Industrial and Engineering Chemistry,1928,20,806-809.
    [9] T. F. Bradley, H. F. Pfann, Drying oils and resins-Constitution of a drying oil gel[J],Industrial and Engineering Chemistry,1940,32,694-697.
    [10] F. T. Walker, T. Mackay, LOW-TEMPERATURE PRODUCTION OF OXIDIZED OILGELS[J], Journal of Applied Chemistry,1952,2,344-352.
    [11] V. R. Damerell, FORMATION OF ORGANOPHILIC MONTMORILLONITE-OILGELS BY USE OF A MAGNETOSTRICTIVE OSCILLATOR[J], Industrial andEngineering Chemistry,1956,48,321-323.
    [12] S. Kiatkamjornwong, S. Traisaranapong, P. Prasassarakich, Styrene-DivinylbenzeneCopolymers: Influence of the Diluents on Absorption and Desorption Properties[J],Journal of Porous Materials,1999,6,205-215.
    [13] Seung-Hyun Kim, Il-Doo Chung, Chang-Sik Ha, Kyu-Jin Kim, W.-J. Cho, Preparationsand Oil Absorptivities of Poly(stearyl methacrylate--cinnamoyloxyethyl methacrylate)and PET Nonwoven Fiber Photocrosslinked with It[J], Journal of Applied PolymerScience,1999,73,2349-2357.
    [14] T. Wong, S. Kang, S. K. Y. Tang, E. J. Smythe, B. D. Hatton, A. Grinthal, J. Aizenberg,Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J],Nature,2011,477,443-447.
    [15] E. Hueger, H. Rothe, M. Frant, S. Grohmann, G. Hildebrand, K. Liefeith, Atomic forcemicroscopy and thermodynamics on taro, a self-cleaning plant leaf[J], Applied PhysicsLetters,2009,95.
    [16] R. N. Wenzel, Resistance of solid surfaces to wetting by water[J], Industrial andEngineering Chemistry,1936,28,988-994.
    [17] F. Xia, L. Jiang, Bio-inspired, smart, multiscale interfacial materials[J], AdvancedMaterials,2008,20,2842-2858.
    [18] R. Wang, Kazuhito Hashimoto, A. Fujishima, Light-induced amphiphilic surfaces[J],Nature,1997,388,431-432.
    [19] Ruize Sun, Hao Bai, Jie Ju, L. Jiang, Droplet emission induced by ultrafast spreading ona superhydrophilic surface[J], Soft Matter,2013,9,9285-9289.
    [20] M. K. Chaudhury, G. M. Whitesides, How to make water run uphill[J], Science,1992,256,1539-1541.
    [21] D. Oner, T. J. McCarthy, Langmuir,2000,16,7777.
    [22]江雷,冯琳,仿生智能纳米界面材料,化学工业出版社,2007年.
    [23] P. G. de Gennes, F. Brochard-Wyart, D. Quéré, Capillarity and wetting phenomena:drops, bubbles, pearls, waves, Springer, New York2004.
    [24] T. Young, Philosophical Transactions of the Royal Society of London,1805,95,65.
    [25] E. A. Vogler, Adv. Colloid Interface,1998,74,69.
    [26] F. Brochard, Motions of droplets on solid surfaces induced by chemical or thermalgradients[J], Langmuir,1989,5,432-438.
    [27] C. G. Furmidge, Journal of Colloid Science,1962,17,309.
    [28] W. Chen, A. Y. Fadeev, M. C. Hsieh, D. Oner, T. J. J. Youngblood, McCarthy, Langmuir,1999,15,3395.
    [29] D. Quéré, Wetting and Roughness[J],2008.
    [30] A. B. D. Cassie, S. Baxter, Wettability of porous surfaces[J], Transactions of theFaraday Society,1944,40,0546-0550.
    [31] M. Nishino, J. Gong, Y. Osada, Polymer gels as a chemical valve[J], Bioseparation,1999,7,269-280.
    [32] K. Haraguchi, R. Farnworth, A. Ohbayashi, T. Takehisa, Compositional effects onmechanical properties of nanocomposite hydrogels composed ofpoly(N,N-dimethylacrylamide) and clay[J], Macromolecules,2003,36,5732-5741.
    [33] L. Lin, M. Liu, L. Chen, P. Chen, J. Ma, D. Han, L. Jiang, Bio-inspired hierarchicalmacromolecule-nanoclay hydrogels for robust underwater superoleophobicity[J],Advanced Materials,2010,22,4826-4830.
    [34] J. P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Double-network hydrogels withextremely high mechanical strength[J], Advanced Materials,2003,15,1155-+.
    [35] Y. H. Na, T. Kurokawa, Y. Katsuyama, H. Tsukeshiba, J. P. Gong, Y. Osada, S. Okabe, T.Karino, M. Shibayama, Structural characteristics of double network gels with extremelyhigh mechanical strength[J], Macromolecules,2004,37,5370-5374.
    [36] A. Kakugo, K. Shikinaka, J. P. Gong, Y. Osada, Gel machines constructed fromchemically cross-linked actins and myosins[J], Polymer,2005,46,7759-7770.
    [37] A. Kakugo, S. Sugimoto, K. Shikinaka, J. P. Gong, Y. Osada, Characteristics ofchemically cross-linked myosin gels[J], Journal of Biomaterials Science-PolymerEdition,2005,16,203-218.
    [38] D. Kaneko, T. Tada, T. Kurokawa, J. P. Gong, Y. Osada, Mechanically strong hydrogelswith ultra-low frictional coefficients[J], Advanced Materials,2005,17,535-+.
    [39] K. Yasuda, J. P. Gong, Y. Katsuyama, A. Nakayama, Y. Tanabe, E. Kondo, M. Ueno, Y.Osada, Biomechanical properties of high-toughness double network hydrogels[J],Biomaterials,2005,26,4468-4475.
    [40] J. P. Gong, Superlow friction of polymer gel[J], Journal of Japanese Society ofTribologists,2006,51,867-872.
    [41] J. P. Gong, Friction and lubrication of hydrogels-its richness and complexity[J], SoftMatter,2006,2,544-552.
    [42] Z. Jiang, T. Tominaga, K. Kamata, Y. Osada, J. P. Gong, Surface friction of gellangels[J], Colloids and Surfaces a-Physicochemical and Engineering Aspects,2006,284,56-60.
    [43] Y. Tanaka, R. Kuwabara, Y. H. Na, T. Kurokawa, J. P. Gong, Y. Osada, Determination offracture energy of high strength double network hydrogels[J], J Phys Chem B,2005,109,11559-11562.
    [44] H. Tsukeshiba, M. Huang, Y. H. Na, T. Kurokawa, R. Kuwabara, Y. Tanaka, H.Furukawa, Y. Osada, J. P. Gong, Effect of polymer entanglement on the toughening ofdouble network hydrogels[J], J Phys Chem B,2005,109,16304-16309.
    [45] H. J. Kwon, J. P. Gong, Negatively charged polyelectrolyte gels as bio-tissue modelsystem and for biomedical application[J], Current Opinion in Colloid&InterfaceScience,2006,11,345-350.
    [46] C. Azuma, K. Yasuda, Y. Tanabe, H. Taniguro, F. Kanaya, A. Nakayama, Y. M. Chen, J.P. Gong, Y. Osada, Biodegradation of high-toughness double network hydrogels aspotential materials for artificial cartilage[J], Journal of Biomedical Materials ResearchPart A,2007,81A,373-380.
    [47] Y. M. Chen, M. Tanaka, J. P. Gong, K. Yasuda, S. Yamamoto, M. Shimomura, Y. Osada,Platelet adhesion to human umbilical vein endothelial cells cultured on anionic hydrogelscaffolds[J], Biomaterials,2007,28,1752-1760.
    [48] M. Du, Y. Maki, T. Tominaga, H. Furukawa, J. P. Gong, Y. Osada, Q. Zheng, Friction ofsoft gel in dilute polymer solution[J], Macromolecules,2007,40,4313-4321.
    [49] M. Huang, H. Furukawa, Y. Tanaka, T. Nakajima, Y. Osada, J. P. Gong, Importance ofentanglement between first and second components in high-strength double networkgels[J], Macromolecules,2007,40,6658-6664.
    [50] H. J. Kwon, K. Shikinaka, A. Kakugo, J. P. Gong, Y. Osada, Gel biomachine based onmuscle proteins[J], Polymer Bulletin,2007,58,43-52.
    [51] T. Nakajima, Y. Tanaka, H. Furukawa, T. Kurokawa, J. P. Gong, Creation of DoubleNetwork Hydrogels with Extremely High Strength and Its Anomalous FractureMechanism[J], Kobunshi Ronbunshu,2008,65,707-715.
    [52] H. Furukawa, J. P. Gong, in Artificial Muscle Actuators Using Electroactive Polymers,Vol.61(Ed: P. B. Y. C. F. Vincenzini),2009,40-45.
    [53] T. Nakajima, T. Kurokawa, H. Furukawa, Q. M. Yu, Y. Tanaka, Y. Osada, J. P. Gong,SUPER TOUGH GELS WITH A DOUBLE NETWORK STRUCTURE[J], ChineseJournal of Polymer Science,2009,27,1-9.
    [54] J. P. Gong, Why are double network hydrogels so tough?[J], Soft Matter,2010,6,2583-2590.
    [55] T. L. Sun, T. Kurokawa, S. Kuroda, A. B. Ihsan, T. Akasaki, K. Sato, M. A. Haque, T.Nakajima, J. P. Gong, Physical hydrogels composed of polyampholytes demonstratehigh toughness and viscoelasticity[J], Nat Mater,2013.
    [56] M. Liu, Y. Ishida, Y. Ebina, T. Sasaki, T. Aida, Photolatently modulable hydrogels usingunilamellar titania nanosheets as photocatalytic crosslinkers[J], Nat Commun,2013,4,2029.
    [57] Kazuhito Hashimoto, Hiroshi Irie, A. Fujishima, TiO2Photocatalysis: A HistoricalOverview and Future Prospects[J], AAPPS Bulletin,2007,6.
    [58] Akira Fujishima, K. Honda, Electrochemical Photolysis of Water at a SemiconductorElectrode[J], Nature,1972,238,37-38.
    [59] Xue Z., Liu M., J. L., Recent Developments in Polymeric Superoleophobic Surfaces[J],Journal of Polymer Science: Polymer Physics,2012,50,1209-1224.
    [60]薛众鑫,江雷,仿生水下超疏油表面[J],高分子学报,2012,10,1091-1101.
    [61] Kajitvichyanukul P., Hung Y.-T., W. L. K., Handbook of Enviromental Engineering,2006,4,521.
    [62] M. A. Shannon, P. W. Bohn, J. G. Elimelech, B. J. Georgiadis, Science and technologyfor water purification in the coming decades[J], Nature,2008,452,301-310.
    [63] J. W. Patterson, Industrial wastewatewr treatment Technology,2nd[J], ButterworthPublishers, Stoneham, MA,1985.
    [64] L. P. Chen, Mou. H., Wang L. K., T. Matsura, Membrane filtration advancedphysicochemical treatment processes[J], Handbook of Environmental Engineering,2006,4,203-259.
    [65] B. Van der Bruggen, C. Vandecasteele, T. Van Gestel, W. Doyen, R. Leysen, A review ofpressure-driven menbrane processes in wastewater treatment and drinking waterproduction[J], Environmental Process,2003,22,46-56.
    [66] M. Cheryan, N. Rajagopalan, Membrane processing if oily streams. Wastewatertreatment and waste reduction[J], Journal of Membrane Science,1998,151,13-28.
    [67] K. K. Sirkar, Membrane separation technologies: Current developments[J], ChemicalEngineering and Communications,1997,157,145-184.
    [68] G. M. Geise, H. S. Lee, D. J. Miller, B. D. Freeman, J. E. McGrath, D. R. Paul, WaterPurification by Membranes: The Role of Polymer Science[J], J Polym Sci Pol Phys,2010,48,1685-1718.
    [69] E. Park, S. M. Barnett, Oil/water separation using nanofiltration membranetechnology[J], Separation Science and Technology,2001,32,1527-1542.
    [70] S. H. Hyun, G. T. Kim, Synthesis of ceramic microfiltration membranes for oil/waterseparation[J], Separation Science and Technology,1997,32,2927-2943.
    [71] Y. Chang, Y. J. Shih, R. C. Ruan, A. Higuchi, W. Y. Chen, J. Y. Lai, Preparation ofpoly(vinyldiene fluoride) microfiltration membrane with uniformsurface-copolymerized poly(ethylene glycol) methacrylate and improvement of bloodcompatibility[J], Journal of Membrane Science,2008,309,165-174.
    [72] A. Ullah, V. M. Starov, M. Naeem, R. G. Holdich, Microfiltration of deforming oildroplets on a slotted pore membrane and sustainable flux rates[J], Journal of MembraneScience,2011,382,271-277.
    [73] T. Zhaohui, W. Jie, L. YUng, J. Bowei, M. Hongyang, Q. Changquan, Y. Kyunghwan,W. Fen, F. Dufei, B. S. Hsiao, B. Chu, UV-cured poly(vinyl alcohol) ultrafiltrationnanofibrous membrane based on electrospun nanofiber scaffolds[J], Journal ofMembrane Science,2009,1-5.
    [74] H. Susanto, H. Arafat, E. M. L. Janssen, M. Ulbricht, Ultrafiltration ofpolysaccharide-protein mixtures: Elucidation of fouling mechanisms and fouling controlby membrane surface modification[J], Separation and Purification Technology,2008,63,558-565.
    [75] A. Adout, S. Kang, A. Asatekin, A. M. Mayes, M. Elimelech, Ultrafiltration membranesincorporating amphiphilic comb copolymer additives prevent irreversible adhesion ofbacteria[J], Environ Sci Technol,2010,44,2406-2411.
    [76] Y. J. Song, F. Liu, B. H. Sun, Preparation, characterization and application of thin filmcompoite nanofiltration menbranes[J], Journal of Applied Polymer Science,2005,95,1251-1261.
    [77] Z. Xue, S. Wang, L. Lin, L. Chen, M. Liu, L. Feng, L. Jiang, A novel superhydrophilicand underwater superoleophobic hydrogel-coated mesh for oil/water separation[J], Adv.Mater.,2011,23,4270-4273.
    [78] T. Sun, G. Wang, L. Feng, B. Liu, Y. Ma, L. Jiang, D. Zhu, Reversible Switchingbetween Superhydrophilicity and Superhydrophobicity[J], Angewandte Chemie,2004,116,361-364.
    [79] L. Chen, M. Liu, L. Lin, T. Zhang, J. Ma, Y. Song, L. Jiang, Thermal-responsivehydrogel surface: tunable wettability and adhesion to oil at the water/solid interface[J],Soft Matter,2010,6,2708-2712.
    [80] L. Chen, M. Liu, H. Bai, P. Chen, F. Xia, D. Han, L. Jiang, Antiplatelet and thermallyresponsive poly(N-isopropylacrylamide) surface with nanoscale topography[J], J AmChem Soc,2009,131,10467-10472.
    [81] Q. Cheng, M. Li, F. Yang, M. Liu, L. Li, S. Wang, L. Jiang, An underwaterpH-responsive superoleophobic surface with reversibly switchable oil-adhesion[J], SoftMatter,2012,8,6740-6743.
    [82] C. Ding, Y. Zhu, M. Liu, L. Feng, M. Wan, L. Jiang, PANI nanowire film withunderwater superoleophobicity and potential-modulated tunable adhesion for no loss oildroplet transport[J], Soft Matter,2012,8,9064.
    [83] M. Liu, F. Q. Nie, Z. Wei, Y. Song, L. Jiang, In situ electrochemical switching ofwetting state of oil droplet on conducting polymer films[J], Langmuir,2010,26,3993-3997.
    [84] B. M. A. Rao, S. P. Mahajan, K. C. Khilar, A MODEL ON THE BREAKDOWN OFCRUDE-OIL GEL[J], Canadian Journal of Chemical Engineering,1985,63,170-172.
    [85] P. Singh, H. S. Fogler, N. Nagarajan, Prediction of the wax content of the incipientwax-oil gel in a pipeline: An application of the controlled-stress rheometer[J], Journal ofRheology,1999,43,1437-1459.
    [86] K. Yoshida, T. Sekine, F. Matsuzaki, T. Yanaki, M. Yamaguchi, Stability of vitamin A inoil-in-water-in-oil-type multiple emulsions[J], Journal of the American Oil ChemistsSociety,1999,76,195-200.
    [87] P. Singh, R. Venkatesan, H. S. Fogler, N. Nagarajan, Formation and aging of incipientthin film wax-oil gels[J], Aiche Journal,2000,46,1059-1074.
    [88] H. S. Lee, P. Singh, W. H. Thomason, H. S. Fogler, Waxy oil gel breaking mechanisms:Adhesive versus cohesive failure[J], Energy&Fuels,2008,22,480-487.
    [89] A. B. Nordvik, J. L. Simmons, K. R. Bitting, A. Lewis, S. T. Kristiansen, Oil and waterseparation in marine oil spill cleanup operations[J], Spill Science&TechnologyBulletin,1996,3,107-122
    [90] K. Gaaseidnes, J. Turbeville, Separation of oil and water in oil spill recoveryoperations[J], Pure and Applied Chemistry,1999,71,95-101.
    [91] Q. X. Lin, I. A. Mendelssohn, K. Carney, S. M. Miles, N. P. Bryner, W. D. Walton,In-situ burning of oil in coastal marshes.2. Oil spill cleanup efficiency as a function ofoil type, marsh type and water depth.[J], Environ Sci Technol,2005,39,1855-1860.
    [92] M. O. Adebajo, R. L. Frost, J. T. Kloprogge, O. Carmody, S. Kokot, Porpus materialsfor oil spill cleanup: A review of sytnthesis and absorbing properties[J], Journal ofPorous Materials,2003,10,159-170.
    [93] A. Bayat, S. F. Agnhamiri, A. Moheb, G. R. WVakili-Nezhaad, Oil spill cleanup fromsea water by sorbent materials[J], Chemical Engineering&Technology,2005,28,1525-1528.
    [94] S. Biswas, S. K. Chaudhuri, S. Mukherji, Microbial uptake of diesel oil sorbed on soiland oil spill cleanup sorbents[J], Journal of Chemical Technology and Biotechnology,2005,80,587-593.
    [95] C. Teas, S. Kalligeros, F. Zanikos, S. Stournas, E. Lios, G. Anastopoulos, Investigationof the effectiveness of absorbent materials in oil spills clean up[J], Desalination,2001,140,259-264.
    [96]濑尾正雄,海洋油污染处理,人民交通出版社,1979.
    [97]卓诚裕,海洋油污染防治技术,国防工业出版社,1996.
    [98] M. Toyoda, M. Inagaki, Heavy oil sorption using exfoliated graphite-New application ofexfoliated graphite to protext heavy oil pollution[J], Carbon,200,38,199-210.
    [99] M. Toyoda, K. Moria, J. Aizawa, H. Konno, M. Inagaki, Sorption and recovery of heavyoils by using exfoliated graphite Part I: Maximum sorption capacity[J], Desalination,2000,128,205-211.
    [100] M. Toyoda, J. Aizawa, M. Inagaki, Sorption and recovery of heavy oil by usingexfoliated graphite[J], Desalination,1998,115,119-201.
    [101] B. Tryba, R. J. Kalenczuk, F. Y. Kang, M. Inagaki, A. W. Morawski, Studies ofexfoliated graphite (EG) for heavy oil sorption[J], Molecular Crystals and LiquidCrystals,2000,340.
    [102] J. T. Kloprogge, Synthesis of smectites and porous pillared clay catalysts: A review[J],Journal of Porous Materials,1998,5,5-41.
    [103] Z. Ding, J. T. Kloprogge, R. L. Frost, G. Q. Liu, H. Y. Zhu, Porous clays and pillaredclays-based catalysts. Part2: A review of the catalytic and molecular sieveapplications[J], Journal of Porous Materials,2001,8,273-293.
    [104] C. T. Chiou, P. E. Porter, D. W. Schmedding, Partition equilibria of non-ionicorganic-compounds between soil organic-matter and water[J], Environ Sci Technol,1983,17,227-231.
    [105] Q. L. Zhang, K. T. CHuang, Adsorption of organic pollutants from effluents of a kraftpulp mill on activated carbon and polymer resin[J], Acdvances in EnvironmentalResearch,2001,5,251-258.
    [106] M. H. Stenzel, Remove organic by activated carbon adsorption[J], ChemicalEngineering Progress,1993,89,36-43.
    [107] R. D. M., Zeolites as selective adsorbents[J], Chemical Engineering Progress,1988,84,42-50.
    [108] M. J. Ruhl, Recover vocs via adsorption on activated carbom[J], Chemical EngineeringProgress,1993,89,37-41.
    [109] N. Y. CHen, Hydrophogic properties of zeolites[J], Journal of Physical Chemistry,1976,80,60-64.
    [110] C. P. Karan, R. S. Regngasamy, D. Das, Oil spill cleanup by structured fibreassembly[J], Indian Journal of Fibre&Textile Research,2011,36,190-200.
    [111] M. A. Zahid, J. E. Halligan, R. F. Johnson, Oil slick removal using matrices ofpolypropylene filaments[J], Industrial&Engineering Chemistry Process Design andDevelopment,1972,11,550-555.
    [112] R. S. Rengasamy, D. Das, C. P. Karan, Study of oil sorption behavior of filled andstructured fiber assemblies made from polypropylene[J], Journal of HazardousMaterials,2011,186,526-532.
    [113] Q. F. Wei, R. R. Mather, A. F. Fotheringham, R. D. Yang, Evaluation of nonwovenpolyproylene oil sorbents in marine oil-spill recovery[J], Marine Pollution Bulletin,2003,46,780-783.
    [114] W. Jarre, M. Marx, R. Wurmb, Polyurethane foams with high capability of oilabsorption[J], Angewandte Makromolekulare Chemie,1979,78,67-74.
    [115] S. Ohnishi, T. Ishida, V. V. Yaminishy, H. K. Christenson, Characterization offluorocarbon monolayer surfaces for direct force measurements[J], Langmuir,200,16,2722-2730.
    [116] T. SHimizu, S. Koshiro, Y. Yamada, K. Tada, Effect of cell structure on oil absorption ofhighly oil absorptive polyurethane foam for on-site use[J], Journal of Applied PolymerScience,1997,65-1.
    [117] A. A. A. Abdel-Azim, A. M. Abdul-Raheim, A. M. Atta, W. Brostow, T. Datashvili,Swelling and network parameters of crosslinked porous octadecyl acrylate copolymersas oil spill sorbers[J], E-Polymers,2009.
    [118] A. M. Atta, R. A. M. El-Ghazawy, R. K. Farag, A.-A. A. Abdel-Azim, Crosslinkedreactive macromonomers based on polyisobutylene and octadecyl acrylate copolymersas crude oil sorbers[J], Reactive&Functional Polymers,2006,66,931-943.
    [119] A. M. Atta, R. A. El-Ghazawy, R. K. Farag, A. F. El-Kafrawy, A. A. A. Abdel-Azim,Crosslinked cinnamoyloxyethyl methacrylate and isooctyl acrylate copolymers as oilsorbers[J], Polymer International,2005,54,1088-1096.
    [120] Mei-Hua Zhou, Seung-Hyun Kim, Jong-Gu Park, Chang-Sik Ha, W.-J. Cho, Preparationand oil-absorptivity of crosslinked polymers containing stearylmethacrylate,4-t-butylstyrene, and divinylbenzene[J], Polymer Bulletin,2000,44,17-24.
    [121] M. N. Inci, B. Erman, O. Okay, S. Durmaz, Elastic behaviour of solution cross-linkedpoly(isobutylene) gels under large compression[J], Polymer,2001,42,3771-3777.
    [122] T. Ono, T. Sugimoto, S. SHinkai, K. Sada, Lipophilic polyelectrolyte gels assuper-absorbent polymers for non-polar organic solvents[J], Nature Materials,2007,6,429-433.
    [123] H. B. Sonmez, F. Wudl, Cross-linked poly(orthocarbonate) as organic solventsorbents[J], Macromolecules,2005,38,1623-1626.
    [124] A. M. Atta, S. H. El-Hamouly, A. M. AlSabagh, M. M. Gabr, Crosslinkedpoly(octadecene-alt-maleic anhydride) copolymers as crude oil sorbers[J], Journal ofApplied Polymer Science,2007,105,2113-2120.
    [125]李建颖,高吸水与高吸油性树脂,化学工业出版社,2005.
    [126] S. H. Kim, I. D. Chung, C. S. Ha, K. J. Kim, W. J. Cho, Preparations and oil absorptivesof poly(stearyl methacrylate-co-cinnamoyloxyethyl methacrylate) and PET nonwovenfiber photocross-linked with it[J], Journal of Applied Polymer Science,1999,73,2349-2357.
    [127] J. Jang, B. S. Kim, Studies of crosslinked styrene-alkyl acrylate copolymers for oilabsorbency application. I. Synthesis and characterization[J], Journal of Applied PolymerScience,2000,77,903-913.
    [128] J. Jang, B. S. Kim, Studies of crosslinked styrene-alkyl acrylate copolymers for oilabsorbency application. II. Effects of polymerization conditions on oil absorbency[J],Journal of Applied Polymer Science,2000,77,914-920.
    [129] A. M. Atta, K. F. Arndt, Swelling and network parameters of high oil-absorptivenetwork based on1-octene and isodecyl acrylate copolymers[J], Journal of AppliedPolymer Science,2005,97,80-91.
    [130] A. M. Atta, R. A. M. El-Ghazawy, R. K. Farag, A. A.-A. Abdel-Azim, Swelling andnetwork parameters of oil sorbers based on alkyl acrylates and cinnamoyloxy ethylmethacrylate copolymers[J], Journal of Polymer Research,2006,13,257-266.
    [131] E. U. Kulawardana, D. C. Neckers, Photoresponsive Oil Sorbers[J], Journal of PolymerScience Part a-Polymer Chemistry,2010,48,55-62.
    [132] Mei-Hua Zhou, Thai Hoang, Il-Gon Kim, Chang-Sik Ha, W.-J. Cho, Synthesis andProperties of Natural Rubber Modified with Stearyl Methacrylate and Divinylbenzeneby Graft Polymerization[J], Journal of Applied Polymer Science,2001,79,2464-2470.
    [133] Mei-Hua Zhou, Chang-Sik Ha, W.-J. Cho, Synthesis and Properties of HighOil-Absorptive Network Polymer4-Butylstyrene–SBR–Divinylbenzene[J], Journal ofApplied Polymer Science,2001,81,1277–1285.
    [134] Mei-Hua Zhou, W.-J. Cho, High oil-absorptive composites based on4-butylstyrene-EPDM-divinylbenzene graft polymer[J], Polymer International,2001,50,1193-1200.
    [135] M. H. Zhou, W. J. Cho, Synthesis and properties of high oil-absorbent4-tert-butylstyrene-EPDM-divinylbenzene graft terpolymer[J], Journal of AppliedPolymer Science,2002,85,2119-2129.
    [136] Mei-Hua Zhou, W.-J. Cho, Oil Absorbents Based on Styrene–Butadiene Rubber[J],Journal of Applied Polymer Science,2003,89,1818–1824
    [137] P. Li, B. Yu, X. Wei, Synthesis and characterization of a high oil-absorbing magneticcomposite material[J], Journal of Applied Polymer Science,2004,93,894-900.
    [138] T. Ono, S. Shinkai, K. Sada, Discontinuous swelling behaviors of lipophilicpolyelectrolyte gels in non-polar media[J], Soft Matter,2008,4,748.
    [139] L. Ding, Y. Li, D. Jia, J. Deng, W. Yang, beta-Cyclodextrin-based oil-absorbents:Preparation, high oil absorbency and reusability[J], Carbohydrate Polymers,2011,83,1990-1996.
    [140] Y. Feng, C. F. Xiao, Research on butyl methacrylate-lauryl methacrylate copolymericfibers for oil absorbency[J], Journal of Applied Polymer Science,2006,101,1248-1251.
    [141] N. Xu, C. Xiao, Y. Feng, Z. Song, Z. Zhang, S. An, Study on Absorptive Property andStructure of Resin Copolymerized by Butyl Methacrylate with HydroxyethylMethacrylate[J], Polymer-Plastics Technology and Engineering,2009,48,716-722.
    [142] N. Xu, C. Xiao, Swelling and crystallization behaviors of absorptive functional fiberbased on butyl methacrylate/hydroxyethyl methacrylate copolymer[J], Journal ofMaterials Science,2010,45,98-105.
    [143] N. Xu, C. Xiao, Property and Structure of Novel Absorptive Fiber Prepared by BlendingButyl Methacrylate-Hydroxyethyl Methacrylate Copolymer with Low DensityPolyethylene[J], Polymer-Plastics Technology and Engineering,2011,50,173-181.
    [144] N. K. XU, C. F. Xiao, The preparation and porperties of absorption functional fiberbased on bytyl methacrylate/hydroxyethyl nethacrylate copolymer and low-densitypolyethylene[J], Polym. Plast. Technol. Eng.,2010,49,1223-1230.
    [145] J. Zhao, C. Xiao, N. Xu, Y. Feng, Preparation and Properties of Oil-Absorptive FiberBased on Polybutyl Methacrylate-inter-polyhydroxyethyl Methacrylate via WetSpinning[J], Polymer-Plastics Technology and Engineering,2011,50,818-824.
    [146] K. F. El-Nemr, A. M. Khalil, Gamma irradiation of treated waste rubber powder and itscomposites with waste polyethylene[J], Journal of Vinyl and Additive Technology,2011,17,58-63.
    [147] B. Wu, M. H. Zhou, Recycling of waste tyre rubber into oil absorbent[J], Wastemanagement,2009,29,355-359.
    [148] H. X. Jin, B. Dong, B. Wu, M. H. Zhou, Oil Absorptive Polymers: Where Is theFuture?[J], Polymer-Plastics Technology and Engineering,2012,51,154-159.
    [149] L. Feng, S. H. Li, Y. S. Li, H. J. Li, L. J. Zhang, J. Zhai, Y. L. Song, B. Q. Liu, L. Jiang,D. B. Zhu, Advanced Materials,2002,14,1857.
    [150] R. Blossey, Nat. Mater.,2003,2,301.
    [151] M. Callies, D. Quéré, Soft Matter,2005.,1,55.
    [152] T. L. Sun, L. Feng, X. F. Gao, L. Jiang, Acc. Chem. Res.,2005,38,664.
    [153] X. J. Feng, L. Jiang, Adv. Mater.,2006,18,3063.
    [154] J. Genzer, K. Efimenko, Biofouling,2006,22,339.
    [155] M. L. Ma, R. M. Hill, Curr. Opin. Colloid,2006,11,193.
    [156] X. Zhang, F. Shi, J. Niu, Y. G. Jiang, Z. Q. Wang, J. Mater. Chem.,2008,18,621.
    [157] V. Hejazi, M. Nosonovsky, Wetting Transitions in Two-, Three-, and Four-PhaseSystems[J], Langmuir,2012,28,2173-2180.
    [158] H. F. Bohn, W. Federle, Insect aquaplaning: Nepenthes pitcher plants capture prey withthe peristome, a fully wettable water-lubricated anisotropic surface[J], Proceedings ofthe National Academy of Sciences of the United States of America,2004,101,14138-14143.
    [159] U. Bauer, W. Federle, The insect-trapping rim of Nepenthes pitchers: surface structureand function[J], Plant signaling&behavior,2009,4,1019-1023.
    [160] A. Lafuma, D. Quere, Slippery pre-suffused surfaces[J], Epl,2011,96.
    [161] P. Kim, M. J. Kreder, J. Alvarenga, J. Aizenberg, Hierarchical or not? Effect of thelength scale and hierarchy of the surface roughness on omniphobicity oflubricant-infused substrates[J], Nano Lett.,2013,13,1793-1799.
    [162] X. Yao, Y. Hu, A. Grinthal, T. Wong, L. Mahadevan, J. Aizenberg, Adaptivefluid-infused porous films with tunable transparency and wettability[J], Nat. Mater.,2013,12,529-534.
    [163] H. Liu, P. Zhang, M. Liu, S. Wang, L. Jiang, Organogel-based Thin Films forSelf-Cleaning on Various Surfaces[J], Adv. Mater.,2013,25,4477-4481.
    [164] M. Nosonovsky, MATERIALS SCIENCE Slippery when wetted[J], Nature,2011,477,412-413.
    [165] P. Zhang, H. Liu, J. Meng, G. Yang, X. Liu, S. Wang, L. Jiang, Grooved OrganogelSurfaces towards Anisotropic Sliding of Water Droplets[J], Adv Mater,2014.
    [166] J. Gao, X. Yao, Y. Zhao, L. Jiang, Lyophilic nonwettable surface based on anoil/water/air/solid four-phase system[J], Small,2013,9,2515-2519.
    [167] P. Singh, R. Venkatesan, N. Nagarajan, Formation and Aging of Incipient Thin FilmWax-Oil Gels[J], Aiche Journal,2000,46,1059.
    [168] P. Singh, R. Venkatesan, Morphological Evolution of Thick Wax Deposits duringAging[J], J. AIChE,2001,47,6.
    [169] V. Ramachandran, R. Venkatesan, G. Tryggvason, Low Reynolds Number Interactionsbetween Colloidal Particles Near the Entrance to a Cylindrical Pore[J], Journal ofColloid and Interface Science,2000,229,311.
    [170] A. D. Nguyen, H.S. Fogler, C. Sumaeth, Fused Chemical Reactions.2. Encapsulation:Application to Remediation of Paraffin Plugged Pipelines[J], Ind. Eng. Chem. Res.,2001,40,5058.
    [171] P. Singh, A. Youyen, The Existence of a Critical Carbon Number in the Aging of aWax-Oil Gel[J], Aiche Journal,2001,9,2111.
    [172] K. G. Paso, Influence of n-paraffin composition on the aging of wax-oil gel deposits[J],Aiche Journal,2003,49,188.
    [173] Ramachandran Venkatesan, Jenny-Ann stlund, Hitesh Chawla, Piyarat Wattana, M.Nydén, The Effect of Asphaltenes on the Gelation of Waxy Oils[J], Energy&Fuels,2003,17,1630-1640.
    [174] K. Paso, Bulk Stabilization in Wax Deposition Systems[J], Energy&Fuels,2004,18,1005.
    [175] Hyun Su Lee, Probjot Singh, W. H. Thomason, Waxy Oil Gel Breaking Mechanisms:Adhesive versus Cohesive Failure[J], Energy&Fuels,2008,22,480-487.
    [176] Shanpeng Han, Zhenyu Huang, Michael Senra, R. Hoffmann, A Method to Determinethe Wax Solubility Curve in Crude Oil from Centrifugation and High Temperature GasChromatography Measurements[J], Energy&Fuels,2010,24,1753-1761.
    [177] Zhenyu Huang, H. S. Lee, M. Senra, A Fundamental Model of Wax Deposition inSubsea Oil Pipelines[J], Aiche Journal,2011,57,2959-2964.
    [178] Zhenyu Huang, Michael Senra, R. Kapoor, Wax Deposition Modeling of Oil/WaterStratified Channel Flow[J], Aiche Journal,2011,57,841-851.
    [179] Zhenyu Huang, Yingda Lu, Rainer Hoffmann, L. Amundsen, The Effect of OperatingTemperatures on Wax Deposition[J], Energy&Fuels,2011,25,5180-5188.
    [180] Rainer Hoffmann, Lene Amundsen, Zhenyu Huang, S. Zheng, Wax Deposition inStratified Oil/Water Flow[J], Aiche Journal,2012,26,3416-3423.
    [181] Yingda Lu, Zhenyu Huang, R. Hoffmann, L. Amundsen, Counterintuitive Effects of theOil Flow Rate on Wax Deposition[J], Energy&Fuels,2012,26,4091-4097.
    [182] S. Zheng, F. Zhang, Z. Huang, Effects of Operating Conditions on Wax Deposit CarbonNumber Distribution: Theory and Experiment[J], Energy&Fuels,2013,27,7379-7388.
    [183] G. Fung, W.P. Backhaus, S. McDaniel, M. Erdogmus, in Offshore TechnologyConference Houston, Texas, USA2006.
    [184] W. H. Thomason, in Offshore Technology Conference, Houston, Texas, USA2000.
    [185]吴良彦, B. J. R.,姚欣伍,结蜡处理:热油和热水循环与应用蜡晶改性剂的比较[J],国外油田工程,2001,17,14-15.
    [186]田军,徐锦芬,薛群基,防止蜡在固液相界面上结晶的化学材料[J],石油钻采工艺,1996,18,90-94.
    [187]张怀文,古丽加瓦尔,周江,国外油井清防蜡工艺最新进展[J],新疆石油科技,2003,13,15-17.
    [188]李勇,欢喜岭油田油井结蜡规律及清防蜡技术[J],中外能源,2009,14,72-75.
    [189]乔晶,张君,海南3井区清防蜡工艺体系的建立与完善[J],特种油气藏,2002,9,55-59.
    [190]宫俊峰,声波防蜡技术的应用现状[J],油气地质与采收率,2004,11,69-71.
    [191] Hunt J., P. Elton B., Laboratory Study of Paraffin Deposition[J], Journal of PetroleumTechnology,1962,14,1259-1269.
    [192] Jessen F. W., James N., H. U., Effect of Flow Rate on Paraffin Accumulation in Plastic,Steel, and Coated Pipe[J], Society of Petroleum Engineers,1958,213,80-84.
    [193] Agrawal K. M., Khan H. U., S. M., Wax deposition of Bombay high crude oil underflowing conditions[J], Fuel,1990,69,794-796.
    [194] R. M. Jorda, Paraffin Deposition and Prevention in Oil Wells[J], Journal of PetroleumTechnology,1966,18,1605-1612.
    [195] J. G. Charles, D. Schlumberger, Paraffin Inhibition Treatments Reduce WellMaintenance Costs[J],1984,13362-13367.
    [196]苏建国,李明远,吴肇亮,玻璃/环氧酚醛烘干漆衬里管道防蜡机理[J],石油大学学报,1998,22,73-78.
    [197]张学俊,王丽娟,田军,树脂涂层对原油输送管道的壁面减阻作用[J],石油炼制与化工,2001,32,57-61.
    [198]韩振华,郑银强,内涂层油管在防蜡井中的应用[J],石油钻采工艺,1994,16,98-99.
    [199]夏志,梁静华,赵丽英,原油输送管道内涂层防结蜡问题研究[J],24,2005,6.
    [200]李建平,张帆,郝士明, LN209井PC400内涂层油管应用研究[J],腐蚀科学与防护技术,2004,16,166-168.
    [201] Zhang X. J., Tian J., W. L. J., Wettability effect of coatings on drag reduction andparaffin deposition prevention in oil[J], Journal of Petroleum Science and Engineering,2002,36,87-95.
    [202] Aspenes G., Sylvi H., A. E. B., Wettability of Petroleum Pipelines: Influence of CrudeOil and Pipeline Material in Relation to Hydrate Deposition[J], Energy&Fuels,2009,24,483-491.
    [1] N. Young, J. Goldstein, M. Block, The motion of bubbles in a vertical temperaturegradient[J], Journal of Fluid Mechanics,1959,6.
    [2] V. Levich, V. Krylov, Surface-tension-driven phenomena[J], Annual Review of FluidMechanics,1969,1,293-316.
    [3] D. Quéré, J.-M. D. Meglio, F. Brochard-Wyart, Spreading of liquids on highly curvedsurfaces[J], Science,1990,249,1256-1260.
    [4] J. A. M. H. a. J. Marra, Motion of Marangoni-Contracted Water Drops acrossInclined Hydrophilic Surfaces[J], Langmuir,1991,7,2756-2763.
    [5] M. K. Chaudhury, G. M. Whitesides, How to make water run uphill[J], Science,1992,256,1539-1541.
    [6] C. D. Bain, G. D. Burnett-Hall, R. R. Montgomerie, Rapid motion of liquid drops[J],Nature,1994,372,414-415.
    [7] F. Domingues dos Santos, T. Ondar uhu, Free-running droplets[J], Phys. Rev. Lett.,1995,75,2972-2975.
    [8] M. Grunze, Driven liquids[J], Science,1999,283,41-42.
    [9] S. K. Oh, M. Nakagawa, K. Ichimura,"Light-guided movement of a liquid droplet",presented at3rd International Symposium on Organic Photochromism (ISOP99),Fukuoka, Japan, Nov14-18,1999.
    [10]S. Nakata, H. Komoto, K. Hayashi, M. Menzinger, Mercury drop "attacks" an oxidantcrystal[J], J. Phys. Chem. B,2000,104,3589-3593.
    [11] J. Walker, Boiling and the Leidenfrost Effect[J], Fundamentals of Physics (Wiley, NewYork,1988,3rd ed.), pp. E,2000,10,1–10.
    [12]J. Bico, D. Quéré, Self-propelling slugs[J], Journal of Fluid Mechanics,2002,467,101-127.
    [13]S. Daniel, S. Sircar, J. Gliem, M. K. Chaudhury, Ratcheting motion of liquid drops ongradient surfaces[J], Langmuir,2004,20,4085-4092.
    [14]M. G. Pollack, R. B. Fair, A. D. Shenderov, Electrowetting-based actuation of liquiddroplets for microfluidic applications[J], Appl Phys Lett,2000,77,1725-1726.
    [15]J. Bico, D. Quere, Liquid trains in a tube[J], Europhysics Letters,2000,51,546-550.
    [16]D. K. N. Sinz, A. A. Darhuber, Self-propelling surfactant droplets in chemically-confinedmicrofluidics-cargo transport, drop-splitting and trajectory control[J], Lab on a Chip,2012,12,705-707.
    [17]D. L. Tian, Q. W. Chen, F. Q. Nie, J. J. Xu, Y. L. Song, L. Jiang, Patterned WettabilityTransition by Photoelectric Cooperative and Anisotropic Wetting for LiquidReprography[J], Advanced Materials,2009,21,3744-3749.
    [18]A. N. Banerjee, S. Qian, S. W. Joo, High-speed droplet actuation on single-plate electrodearrays[J], J Colloid Interface Sci,2011,362,567-574.
    [19]J. Hong, S. J. Lee, B. C. Koo, Y. K. Suh, K. H. Kang, Size-Selective Sliding of SessileDrops on a Slightly Inclined Plane Using Low-Frequency AC Electrowetting[J],Langmuir,2012,28,6307-6312.
    [20]R. Baviere, J. Boutet, Y. Fouillet, Dynamics of droplet transport induced byelectrowetting actuation[J], Microfluid Nanofluid,2008,4,287-294.
    [21]J. M. Oh, S. H. Ko, K. H. Kang, Analysis of electrowetting-driven spreading of a drop inair-art. no.032002[J], Physics of Fluids,2010,22,32002-32002.
    [22]U. C. Yi, C. J. Kim, Soft printing of droplets pre-metered by electrowetting[J], Sens.Actuators A,2004,114,347-354.
    [23]Y. Wang, Y.-P. Zhao, Electrowetting on curved surfaces[J], Soft Matter,2012,8,2599.
    [24]Z. G. Guo, F. Zhou, J. C. Hao, Y. M. Liang, W. M. Liu, W. T. S. Huck,"Stick and slide"ferrofluidic droplets on superhydrophobic surfaces[J], Applied Physics Letters,2006,89.
    [25]S. Afkhami, Y. Renardy, M. Renardy, J. S. Riffle, T. St Pierre, Field-induced motion offerrofluid droplets through immiscible viscous media[J], Journal of Fluid Mechanics,2008,610,363-380.
    [26]N. T. Nguyen, G. P. Zhu, Y. C. Chua, V. N. Phan, S. H. Tan, Magnetowetting and SlidingMotion of a Sessile Ferrofluid Droplet in the Presence of a Permanent Magnet[J],Langmuir,2010,26,12553-12559.
    [27]A. V. Lebedev, A. Engel, K. I. Morozov, H. Bauke, Ferrofluid drops in rotating magneticfields-art. no.57[J], New Journal of Physics,2003,5,57-57.
    [28]S. Namkung, C. C. Chu, Partially biodegradable temperature-and pH-responsivepoly(N-isopropylacrylamide)/dextran-maleic acid hydrogels: formulation and controlleddrug delivery of doxorubicin[J], Journal of Biomaterials Science-Polymer Edition,2007,18,901-924.
    [29]X.-W. Peng, J.-L. Ren, L.-X. Zhong, F. Peng, R.-C. Sun, Xylan-richHemicelluloses-graft-Acrylic Acid Ionic Hydrogels with Rapid Responses to pH, Salt,and Organic Solvents[J], Journal of Agricultural and Food Chemistry,2011,59,8208-8215.
    [30]M. L. Ford, A. Nadim, Thermocapillary migration of an attached drop on a solidsurface[J], Physics of Fluids,1994,6,3183-3185.
    [31]L. Zhang, R. S. Subramanian, R. Balasubramaniam, Motion of a drop in a verticaltemperature gradient at small Marangoni number-the critical role of inertia[J], Journalof Fluid Mechanics,2001,448,197-211.
    [32]C. Song, K. Kim, K. Lee, H. Pak, Thermochemical control of oil droplet motion on asolid substrate[J], Appl. Phys. Lett.,2008,93,084102.
    [33]E. Yakhshi-Tafti, H. J. Cho, R. Kumar, Droplet actuation on a liquid layer due tothermocapillary motion: Shape effect[J], Applied Physics Letters,2010,96,264101.
    [34]C. H. Chen, Q. J. Cai, C. L. Tsai, C. L. Chen, G. Y. Xiong, Y. Yu, Z. F. Ren, Dropwisecondensation on superhydrophobic surfaces with two-tier roughness[J], Applied PhysicsLetters,2007,90.
    [35]Y. T. Cheng, D. E. Rodak, Is the lotus leaf superhydrophobic?[J], Applied Physics Letters,2005,86.
    [36]J. T. Feng, F. C. Wang, Y. P. Zhao, Electrowetting on a lotus leaf[J], Biomicrofluidics,2009,3,22406.
    [37]Ramo′n Pericet-Ca′mara, Andreas Best, Hans-Ju¨rgen Butt, E. Bonaccurso, Effect ofCapillary Pressure and Surface Tension on the Deformation of Elastic Surfaces by SessileLiquid Microdrops An Experimental Investigation[J], Langmuir,2008,24,10565-10568.
    [38]M. Sokuler, G. K. Auernhammer, M. Roth, C. Liu, E. Bonacurrso, H. J. Butt, The softerthe better: fast condensation on soft surfaces[J], Langmuir,2010,26,1544-1547.
    [39]Y. Kalinin, V. Berejnov, R. E. Thorne, Controlling microdrop shape and position forbiotechnology using micropatterned rings[J], Microfluid Nanofluid,2008,5,449-454.
    [1] Agrawal K. M., Khan H. U., S. M., Wax deposition of Bombay high crude oil underflowing conditions[J], Fuel,1990,69,794-796.
    [2] F. S. Ribeiro, P. R. S. Mendes, S. L. Braga, Obstruction of pipelines due to paraffindeposition during the flow of crude oils[J], International Journal of Heat and MassTransfer,1997,40,4319-4328.
    [3] P. Singh, H. S. Fogler, N. Nagarajan, Prediction of the wax content of the incipientwax-oil gel in a pipeline: An application of the controlled-stress rheometer[J], Journal ofRheology,1999,43,1437-1459.
    [4] P. Singh, R. Venkatesan, H. S. Fogler, N. Nagarajan, Formation and aging of incipientthin film wax-oil gels[J], Aiche Journal,2000,46,1059-1074.
    [5] P. Singh, R. Venkatesan, Morphological Evolution of Thick Wax Deposits duringAging[J], J. AIChE,2001,47,6.
    [6] P. Singh, A. Youyen, H. S. Fogler, Existence of a critical carbon number in the aging of awax-oil gel[J], Aiche Journal,2001,47,2111-2124.
    [7] C. H. Wu, K. S. Wang, P. J. Shuler, Y. C. Tang, J. L. Creek, R. M. Carlson, S. Cheung,Measurement of wax deposition in paraffin solutions[J], Aiche Journal,2002,48,2107-2110.
    [8] K. G. Paso, Influence of n-paraffin composition on the aging of wax-oil gel deposits[J],Aiche Journal,2003,49,188.
    [9] K. G. Paso, H. S. Fogler, Influence of n-paraffin composition on the aging of wax-oil geldeposits[J], Aiche Journal,2003,49,3241-3252.
    [10]N. P. Tung, N. Q. Vinh, N. T. P. Phong, B. Q. K. Long, P. V. Hung, Physica B,2003,327,443-447.
    [11] A. Etoumi, J. Pet. Sci. Eng.,2007,55,111-121.
    [12]韩振华,郑银强,内涂层油管在防蜡井中的应用[J],石油钻采工艺,1994,16,98-99.
    [13]苏建国,李明远,吴肇亮,玻璃/环氧酚醛烘干漆衬里管道防蜡机理[J],石油大学学报,1998,22,73-78.
    [14]张学俊,王丽娟,田军,树脂涂层对原油输送管道的壁面减阻作用[J],石油炼制与化工,2001,32,57-61.
    [15]Zhang X. J., Tian J., W. L. J., Wettability effect of coatings on drag reduction and paraffindeposition prevention in oil[J], Journal of Petroleum Science and Engineering,2002,36,87-95.
    [16]夏志,梁静华,赵丽英,原油输送管道内涂层防结蜡问题研究[J],24,2005,6.
    [17]Aspenes G., Sylvi H., A. E. B., Wettability of Petroleum Pipelines: Influence of Crude Oiland Pipeline Material in Relation to Hydrate Deposition[J], Energy&Fuels,2009,24,483-491.
    [18]Y. Guo, W. Li, L. Zhu, Z. Wang, H. Liu, Phosphoric chemical conversion coating withexcellent wax-repellent performance[J], Applied Surface Science,2012,259,356-361.
    [19]Y. Guo, W. Li, L. Zhu, H. Liu, An excellent non-wax-stick coating prepared by chemicalconversion treatment[J], Mater Lett,2012,72,125-127.
    [20]P. Zhang, H. Liu, J. Meng, G. Yang, X. Liu, S. Wang, L. Jiang, Grooved OrganogelSurfaces towards Anisotropic Sliding of Water Droplets[J], Adv Mater,2014.
    [21]X. Yao, J. Ju, S. Yang, J. Wang, L. Jiang, Temperature-driven switching of water adhesionon organogel surface[J], Adv Mater,2014,26,1895-1900.
    [22]H. Liu, P. Zhang, M. Liu, S. Wang, L. Jiang, Organogel-based Thin Films forSelf-Cleaning on Various Surfaces[J], Adv. Mater.,2013,25,4477-4481.
    [23]Hyun Su Lee, Probjot Singh, W. H. Thomason, Waxy Oil Gel Breaking Mechanisms:Adhesive versus Cohesive Failure[J], Energy&Fuels,2008,22,480-487.
    [1] L. Chen, M. Liu, H. Bai, P. Chen, F. Xia, D. Han, L. Jiang, Antiplatelet and thermallyresponsive poly(N-isopropylacrylamide) surface with nanoscale topography[J], J AmChem Soc,2009,131,10467-10472.
    [2] M. Liu, S. Wang, Z. Wei, Y. Song, L. Jiang, Bioinspired Design of a Superoleophobic andLow Adhesive Water/Solid Interface[J], Advanced Materials,2009,21,665-+.
    [3] L. Lin, M. Liu, L. Chen, P. Chen, J. Ma, D. Han, L. Jiang, Bio-inspired hierarchicalmacromolecule-nanoclay hydrogels for robust underwater superoleophobicity[J],Advanced Materials,2010,22,4826-4830.
    [4] M. Liu, Y. Zheng, J. Zhai, L. Jiang, Bioinspired super-antiwetting interfaces with specialliquid-solid adhesion[J], Acc. Chem. Res.,2010,43,368-377.
    [5] Z. Xue, S. Wang, L. Lin, L. Chen, M. Liu, L. Feng, L. Jiang, A novel superhydrophilicand underwater superoleophobic hydrogel-coated mesh for oil/water separation[J], Adv.Mater.,2011,23,4270-4273.
    [6] M. Liu, Y. Ishida, Y. Ebina, T. Sasaki, T. Aida, Photolatently modulable hydrogels usingunilamellar titania nanosheets as photocatalytic crosslinkers[J], Nat Commun,2013,4,2029.
    [7] R. S. Ashton, A. Banerjee, S. Punyani, D. V. Schaffer, R. S. Kane, Scaffolds based ondegradable alginate hydrogels and poly (lactide- co-glycolide) microspheres forstem cell culture[J], Biomaterials,2007,28,5518-5525.
    [8] H. Park, J. S. Temenoff, Y. Tabata, A. I. Caplan, A. G. Mikos, Injectable biodegradablehydrogel composites for rabbit marrow mesenchymal stem cell and growth factordelivery for cartilage tissue engineering[J], Biomaterials,2007,28,3217-3227.
    [9] M. W. Tibbitt, K. S. Anseth, Hydrogels as extracellular matrix mimics for3D cellculture[J], Biotechnology and bioengineering,2009,103,655-663.
    [10]M. P. Lutolf, P. M. Gilbert, H. M. Blau, Designing materials to direct stem-cell fate[J],Nature,2009,462,433-441.
    [11] D. S. Benoit, M. P. Schwartz, A. R. Durney, K. S. Anseth, Small functional groups forcontrolled differentiation of hydrogel-encapsulated human mesenchymal stem cells[J],Nature materials,2008,7,816-823.
    [12]P. M. Gilbert, K. L. Havenstrite, K. E. Magnusson, A. Sacco, N. A. Leonardi, P. Kraft, N.K. Nguyen, S. Thrun, M. P. Lutolf, H. M. Blau, Substrate elasticity regulates skeletalmuscle stem cell self-renewal in culture[J], Science,2010,329,1078-1081.
    [13]F. Awad, L. Kahl, R. Kluge, in Iron Nutrition in Soils and Plants, Springer,1995,91-97.
    [14]J. Chen, H. Park, K. Park, Synthesis of superporous hydrogels: hydrogels with fastswelling and superabsorbent properties[J], Journal of biomedical materials research,1999,44,53-62.
    [15]D. Dhara, C. Nisha, P. Chatterji, SUPER ABSORBENT HYDROGELS:INTERPENETRATING NETWORKS OF POLY (ACRYLAMIDE-co-ACRYLIC ACID)AND POLY (VINYL ALCOHOL): SWELLING BEHAVIOR AND STRUCTURALPARAMETERS*[J], Journal of Macromolecular Science, Part A,1999,36,197-210.
    [16]G. Mahdavinia, A. Pourjavadi, H. Hosseinzadeh, M. Zohuriaan, Modified chitosan4.Superabsorbent hydrogels from poly (acrylic acid-co-acrylamide) grafted chitosan withsalt-and pH-responsiveness properties[J], European Polymer Journal,2004,40,1399-1407.
    [17]Y. Zhao, H. Su, L. Fang, T. Tan, Superabsorbent hydrogels from poly (aspartic acid) withsalt-, temperature-and pH-responsiveness properties[J], Polymer,2005,46,5368-5376.
    [18]M. J. Zohuriaan-Mehr, K. Kabiri, Superabsorbent polymer materials: a review[J], IranianPolymer Journal,2008,17,451.
    [19]W. Bai, J. Song, H. Zhang, Repeated water absorbency of super-absorbent polymers inagricultural field applications: a simulation study[J], Acta Agriculturae Scandinavica,Section B–Soil&Plant Science,2013,63,433-441.
    [20]R. Dabhi, N. Bhatt, B. Pandit,"Effect on the Absorption Rate of Agricultural SuperAbsorbent Polymers under the Mixer of Soil and Different Quality of Irrigation Water",presented at International Journal of Engineering Research and Technology,2014.
    [21]M. S. BRETSCHER, Asymmetrical lipid bilayer structure for biological membranes[J],Nature,1972,236,11-12.
    [22]J. Gutknecht, M. Bisson, F. Tosteson, Diffusion of carbon dioxide through lipid bilayermembranes. Effects of carbonic anhydrase, bicarbonate, and unstirred layers[J], TheJournal of general physiology,1977,69,779.
    [23]K. Simons, E. Ikonen, Functional rafts in cell membranes[J], Nature,1997,387,569-572.
    [24]Y. Shai, Mechanism of the binding, insertion and destabilization of phospholipid bilayermembranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides[J],Biochimica et Biophysica Acta (BBA)-Biomembranes,1999,1462,55-70.
    [25]M. Edidin, Lipids on the frontier: a century of cell-membrane bilayers[J], Nature ReviewsMolecular Cell Biology,2003,4,414-418.
    [26]M. Edidin, The state of lipid rafts: from model membranes to cells[J], Annual review ofbiophysics and biomolecular structure,2003,32,257-283.
    [27]K. Simons, W. L. Vaz, Model systems, lipid rafts, and cell membranes1[J], Annu. Rev.Biophys. Biomol. Struct.,2004,33,269-295.
    [28]K. Haraguchi, H.-J. Li, L. Song, Unusually high hydrophobicity and its changes observedon the newly-created surfaces of PNIPA/clay nanocomposite hydrogels[J], Journal ofColloid and Interface Science,2008,326,41-50.
    [29]K. Haraguchi, H.-J. Li, N. Okumura, Hydrogels with hydrophobic surfaces: Abnormallyhigh contact angles for water on PNIPA nanocomposite hydrogels[J], Macromolecules,2007,40,2299-2302.
    [30]F. Seebacher, S. A. Murray, Materials science: Love-hate relationship[J], Nature,2007,446,350-351.
    [31]R. Karnik, C. Duan, K. Castelino, H. Daiguji, A. Majumdar, Anti-water hydrogel[J],Nature Materials,2007,6,254.
    [32]K. Ku a, M. Kivala, V. Dohnal, A general method for the quaternization of N,N-dimethylbenzylamines with long chain n-alkylbromides[J], Journal of Applied Biomedicine,2004,2,195-198.
    [33]R. Mirza, R. Robinson, Conversion of hydrastine into berberine and an instance of theasymetrical quarternization of a tertiary base[J], Nature,1950,166,271-272.
    [34]Y. Liu, M. Zhu, X. Liu, W. Zhang, B. Sun, Y. Chen, H.-J. P. Adler, High clay contentnanocomposite hydrogels with surprising mechanical strength and interesting deswellingkinetics[J], Polymer,2006,47,1-5.
    [35]C.-W. Chang, A. van Spreeuwel, C. Zhang, S. Varghese, PEG/clay nanocompositehydrogel: a mechanically robust tissue engineering scaffold[J], Soft Matter,2010,6,5157-5164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700