用户名: 密码: 验证码:
咪唑啉硼酸酯的合成及其缓蚀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以环烷酸和羟乙基乙二胺经两步缩合脱水反应生成咪唑啉中间体,再以甲苯为携水剂,用硼酸与该中间体制得环烷酸咪唑啉硼酸酯。运用静态挂片失重法和电化学极化曲线法,对合成产物在HCI—H2S—H2O体系和盐酸、硫酸和磷酸体系的缓蚀性能进行了评价。
     在咪唑啉硼酸酯的合成中,为得出最佳的反应条件,采用了单因素多水平的方法,实验得出的最佳反应条件为:咪唑啉和硼酸的投料比为1:1.2(摩尔比)、反应最高温度为190~200℃、反应时间约为5个小时,携水剂甲苯的用量为反应物总质量的30﹪。
     在HCI—H2S—H2O体系中,随着缓蚀剂投加量的增加,缓蚀率逐渐提高;当溶液pH值的降低,缓蚀剂的缓蚀率先增大后有所降低。溶液的pH值为酸性时,缓蚀效果明显比溶液呈碱性时要好;缓蚀剂的缓蚀率随着H2S的浓度增加而减少,当H2S的浓度达到一定数值时,缓蚀率几乎不再变化。
     咪唑啉硼酸酯在盐酸体系中对碳钢、不锈钢、铝挂片都具有良好的缓蚀效果,缓蚀率随着缓蚀剂投加剂量的增大而越高。当缓蚀剂的调节剂量增大到一定量后,缓蚀效率趋于稳定。电化学极化曲线得到的结果与失重法定结果基本一致;磷酸介质中的缓蚀性能评价表明:缓蚀剂的缓蚀率随缓蚀剂投加剂量的增加先升高后有所降低,咪唑啉硼酸酯的投加剂量存在最佳值;硫酸介质中的实验结果表明:投加的缓蚀剂能够较好地抑制碳钢的腐蚀,当投加量达到300g/L时,缓蚀率最高,试片表面光亮且无黑色膜;添加少量缓蚀剂就可以对不锈钢挂片获得较高的缓蚀效率;缓蚀剂的缓蚀率随实验温度的升高先升高后降低,在50℃左右达到最佳;随着实验时间的不同,缓蚀剂的缓蚀率随时间的延长先增大后逐渐减小。
Firstly the mid-pruduct imidazoline was produced by reaction of naphthenic acid and Hydroxyethyl-ethylenediamine.Then with Toluene being the carrying agent, Naphthenate imidazoline borates(NIB) was synthesized from the intermediate and Boric acid. Weight method and electrochemical polarization curves were used to evaluated the corrosion inhibition performance of NIB for metals in HCl and H2S solution and hydrochloric acid,sulfate,phosphate.
     In the process of the synthesis,the method of singer factor of multi-level was used in order to get the optimum reaction condition,and the optimum reaction condition was got through tests:the ratio of imidazoline to Boric acid is 1:1.2,the maximum temperature is about 190-200℃,the reaction time is about 5h.the amount of toluene is 30% of reactant mass.
     The inhibition efficency is increasing as the concentration of NIB increase in the HCl and H2S solution. As the pH of the solution decreased, the inhibition effeet increased at first and then decreased. When the pH value of solution is acidic, the inhibition effect was better obviously than in alkaline solution. Corrosion inhibition rate decreased with the increase of the concentration of H2S, When the concentration of H2S reached a certain value, the corrosion inhibition rate was almost not change.
     the result showed that the corrosion inhibition rate on mild steel、aluminum coupon、stainless steel was high.The inhibition efficency inereased as the concentration of inhibitor increased. When the concentration of inhibitor reached a certain value, the corrosion inhibition rate was almost not change. The results obtained from electrochemical polarization are consistent with the results obtained form weight loss. Experiments in the phosphate shows that when the concentration of inhibitor increased, the corrosion inhibition rate increased in first and then decreased. There was an optimal dose of inhibitors;The experiments in sulfate show that: The inhibitor can inhibit the corrosion of carbon steel greatly, when the dosage is 300g / L, the corrosion inhibition rate was highest, and the surface was bright . Higher inhibition efficiency can be obtained with a small dose of inhibitor in exprements of stainless steel. The corrosion inhibition performance of NIB became better in first and then worse as the exprement tempreture rised, the corrosion inhibition rate inereased and then decreased when the experiment time extended.
引文
[1]吴荫顺,郑家燊.电化学保护和缓蚀剂应用技术[M].北京:化学工业出版社,2006,472
    [2]黄魁元,郑家炎.缓蚀剂科技发掌历程的回顾与展望[M].北学工业出版社,1999,279~380
    [3] Soeda, Koichi, Ichimura, Takao.Present state of corrosion inhibitors in Japan .Cement and Concret Conposite 2009, 25(l):117~122.
    [4]周欣,何晓英,伍远辉等.肉桂醛对X-60碳钢的缓蚀行为的电化学研究[J].西华师范大学学报(自然科学版).2003,24(4):434-436
    [5] Cicileo G P,Rosales B M,Varela F E et al.Inhibitory action of8-hydroxyquinoline on the copper corrosion process[J].Corrosion Science.1998,40(11):1915~1926
    [6] C. L. J. Frid,O. A. L. Paramor, S. Brockington,J. Bremner. Incorporating ecological functioning into the designation and management of marine protected areas[J]. Hydrobiologia,2008, (1):69~79
    [7]张天胜.缓蚀剂[M]北京:化学工业出版社,2001,1~3
    [8]方云.两性表面活性剂[M]北京:中国轻工业出版社,2001,242
    [9]方茹苕.咪唑啉膦酰胺盐酸盐的合成及缓蚀性能研究[D] .湘潭,湖南科技大学,2008
    [10]颜红侠,张秋禹,马晓燕,等.盐酸酸洗咪唑啉型缓蚀剂IM的研究[J].应用化工,2001.23(3):21~22
    [11]张林,邓春光.水溶性缓蚀剂HS-2000研究开发[J].石油化工腐蚀与防护,2001,18(3):30~35
    [12]中明周.ERI-1.缓蚀剂的合成及性能评价[J].石油化工腐蚀与防护,2002,19(3):42-45
    [13]李和平,裴丽英,廖建国.水溶性咪哩琳酮类缓蚀剂的合成及性能研究[J].长沙电力学院学报2000,15(2):74~75
    [14]李忆平,新型双烷基纸张柔软剂的制备及应用[J].上海应用技术学院学报(自然科学版) ,2009,9(3):9
    [15]吴宇峰,周坤坪,梁劲翌.咪唑啉季胺盐水溶性缓蚀剂NH-1的合成及其性能研究[J],精细石油化工2001,5:39~42
    [16]李家俊,王素芳,吴涛等.双咪唑啉缓蚀剂的合成与性能研究[J].工业水处理.2009,29(3): 23~25
    [17] SuzukiK.The studyof inhibitor for sour gas sevrice.NACECorrosion.1982,7:384~389
    [18]郑平.线性烯基咪唑啉的合成及应用研究[D].济南,山东师范大学,2009
    [19] Hansbeger BG,Riebsomer J L.Kineties of the hydrolysis of some 2-imidazolines [J].Heteroeyelic Chem., 2007 , l(5):229~232
    [20]郑家燊.金属电化学和缓蚀剂保护技术[M].上海科学技术出版社.1984,7:120~121
    [21]虞精明,谢勤美.水中表面活性剂测定方法的研究进展[J].中国预防医学杂志.2008, (l1):1008~1011.
    [22]日彤,李凡,郭晓红.咪唑啉柔软剂中间体的合成研究[J].天津纺织工学院学报.1999,18(l):30
    [23]李振庭.第六届缓蚀剂学术讨论会论文集,1989:263
    [24]丁著明,表面活性剂工业.1985(4):6
    [25]刘忠运,李莉娜,张大椿等.新型咪唑啉类缓蚀剂的合成及其缓蚀性能研究[J].精细化工中间体.2009,11(10):39~43
    [26]颜红侠,张秋禹,马晓燕.盐酸酸洗咪唑啉型缓蚀剂IM的研究[J].应用化工.2001,30(3):21~22
    [27]陈敏,战风涛等.单环咪唑啉衍生物分子结构对其缓蚀性能的影响[J].石油学报.2010,26(1):41~45
    [28]石顺存.酸性黑油咪唑啉的合成[J].精细石油化工.1998,4:34-36
    [29]付薇,梁亮,郑敬生等.Gemini型咪唑啉双季铵盐金属缓蚀剂的合成及其性能[J].应用化学.2009,26(12):1422~1427
    [30]李广仁,冯柏成,李高宁等.咪唑啉型表面活性剂的合成与应用[J].山东师范大学学报(自然科学版).1996,11(2):47-50
    [31]何耀春,王汪,黄步耕等.咪唑啉衍生物MC、MP的合成及在油田回注水中的缓蚀阻垢作用[J].油田化学.1997,14(4):336-339
    [32]唐新德,叶红齐,王敏等.球磨过程中水性咪唑啉类缓蚀剂对铝粉性能的影响[J].粉末冶金技术.2009,27(1): 15~19
    [33]王延,周永红,宋湛谦等.盐酸介质中脱氢松香基咪唑啉缓蚀剂对Q235钢缓蚀性能研究[J].腐蚀与防护.1998,19(6):247~249
    [34]周永红,宋湛谦,何文深等.水溶性松香基咪唑啉的合成及缓蚀性能[J].林产化学与工业.2003,23(4):7~10
    [35]李倩,吕振波等.咪唑啉类缓蚀剂的合成及缓蚀性能研究[J].辽宁石油化工大学学报2008,16(3):4~7
    [36]闫杰;李茜璐;杨洪烈;孙川;田发国;等.油田用咪唑啉季铵盐缓蚀剂的合成及性能评价[J].精细石油化工进展.2009,14(10):9~12
    [37]李新南.咪唑啉型缓蚀剂的合成及其对PANI合成与防腐的影响研究[D].天津,天津大学,2008
    [38]毛满意,夏明桂,孙冶平等.盐酸介质中咪唑啉缓蚀剂的性能[J].材料保护,2009,22(10):20~22
    [39] ZHANG G H,XIE S H,LUFJ.The properties of quatnernary ammonium dialkyl-imidazoline acid pickling solution [J].Journal of Northwest University of Light industry 2001,2(19):29~32
    [40]刘建平,李止奉,周晓湘一种咪唑啉缓蚀剂在碳钢表面成膜的电化学研究[J].腐蚀科学与防护技术,2003 15(5):263~265
    [41] Melissa Joseph and DabidKlenrman.Aseeond-harmonic Generation Studyof a Corrosion Inhibitor ona Mild Steel Electrode.J.Electrianal.Chem.1992,340:301~313.
    [42] Y.J.Tan.Bailey and B.Kinsella.The Moniring of the Formation and Destruction of Corrosion Inhibitor Films Using Electrochemical Noise Analysis(ENA).Corrosion Science,2008,38(10):1681~1695
    [43] AmdrewJ.Swift,Surface Analysis of corrosionInhibitor Films byXPS and Tofsims.Mikrehim.Acta,1995,120:149~158
    [44] Y.Chen,W.P.Jepson.Corrosion Inhibitor Studies in Large FlowLoop at High Temperature and High Pressure. CorrosionSeienee,2007, 43:1839~1849
    [45] Daxi Wang,et al.Theoretical and experimental studies of stureture and inhibition efficieney of imidazoline derivatives[J].CorrosionScience.1999,41(10):1911~1919
    [46] JovaneieevieV,Ramaehandran.Inhibition of carbon dioxide corrosion of mild steel by imidoazlines and their Precursors[J].Corrosion.2009,55(5):449~455
    [47]吴荫顺,郑家燊.电化学保护和缓蚀剂应用技术[M].北京:化学工业出版社,2006,486~487
    [48]吕振波.原油中环烷酸对金属材料的腐蚀与防护研究[D].沈阳:东北大学,2005
    [49] Robbions W K.Clallenges in thecharaecterization of naphthenic acids in petroleum [J] .Prepr Am Chem Soc, 1998,43(1):137~140.
    [50]武文广,薛莹试.论我厂加工高酸值原油的技术措施[J]化工设备与管道,2008,40(3):52~56
    [51]任晓光,宋永吉,任绍梅,等.高酸值原油环烷酸的结构组成[J].过程工程学报,2003,3(3):218~221
    [52] DerungsWK.Naphthenic acid corrosion-An old enemy of Petroleum industry [Jl. Corrosion, 2007,378~385.
    [53] Laszlo P Field desorption mass spectrometry[M].Marcel Deckker,1990,119~207.
    [54]宁永成.有机化合物结构鉴定与有机波谱学[M].北京:科学出版社,2002,116~117.
    [55]于海霞.环烷酸缓蚀剂的研制及应用[D].北京:中国石油大学,2007
    [56] Zetlemis M J. Naphthenic acid corrosion and its control[J].Corrosion,1996:218
    [57] Kane R D, Cayard M S.lmprove corrosion control in refining processes[ J].Hydrocarbon proeessing, 2008, l(11): 129~142.
    [58]洪山海.光谱解析在有机化学中的应用[M].北京:科学出版社,1980,33.
    [59] Scheppele, S E,Chung,K C.Int.J.Mass spectrom[J].Ion Phys, 2009, (49):143.
    [60] R.Donald,Austin,H.Jffrey,Edwards.Method for,1-2-substuted imidazoline compositions[P] U SP5:214, 155, 1993.
    [61] Tucker,James Robinson.Process for prepering substitute Imidazoline,fabric conditioning compounds [P] EPAO: 375,029,1974.
    [62] Elseter,H..Charles,Gibs,JcabrielProcessformaking1-hydroxyethyl-2-undecyl-2-imidazoline [p]. USP4: 161, 604, 2008.
    [63] EJohn.Fatty imidazoline Crosslinkers for Poilyrethane,Polyurethaneurea and PolyUrea Applications [P]. USP5 : 541,338,2007.
    [64] A.Clarice. Owiti,Abdul,O.khan.Method and compositions for stabilizing fatty acid imidazoline solutions [P]. USP5: 530,137,1994.
    [65] B.Robert Betaine derinatives of bis-imidazoline compounds[P]USP3:893,244,1973
    [66]石顺存,方茹苕,蒋华鹏,唐胜利.环烷酸咪唑啉膦酰胺缓蚀性能的研究[J].材料保护,2008,41(03):62~64
    [67]石顺存,易平贵,周秀林,等.环烷基咪唑啉衍生物多功能水处理剂的研究[J].工业水处理, 2005, 25(1): 29~32.
    [68] WANG.shi-fa,Furuno,Takedshi,CHENG.zhi.Synthsis of l-hydroxyethy-2-alkyl-2-imidazoline andits derivative sulfonate amphoteric surfactant from tall oil fatty acid[J].Jounnal of wood Science,2007,49(4):371~376.
    [69]张浩,涂政文.含氮硼酸酯的合成及其在菜籽油中摩擦学性能研究[J].武汉工程大学学报,2008,30(2):44.
    [70]王兆辉,王大喜咪唑啉化合物生成机理的量子化学研究[J].石油学报(石油加工),1999,15(6):57~62
    [71]杨晓晶,周兵.常减压蒸馏塔顶缓蚀剂的筛选及防腐问题的应对[J].山东化工,2009, 38(6):33~35.
    [72]王慧龙,刘宏芳,等.缓蚀剂在HCI-H2S盐水体系中对碳钢的缓蚀作用[J].存群架护,2002,(35):15~16
    [73]刘瑞斌.咪唑啉类缓蚀剂的合成与缓蚀性能研究[D].大连,大连理工大学,2004
    [74]唐俊.循环冷却水系统缓蚀阻垢剂的开发应用研究[D].上海:华东师范大学硕士学位论文,2005
    [75]黎新等,脂肪族氨基酸对铝缓蚀机理的研究[J]材料保护,2000,33(5) 3-4
    [76] Hackerman N,et al.j.Electrochemistry Society.1950

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700