用户名: 密码: 验证码:
川西坳陷中段须家河组天然气地化特征与气源追踪
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
川西坳陷是发育在中三叠世海相褶皱盖层基底之上、自晚三叠世至今呈NE-SW向展布的前陆盆地。川西坳陷中段为川西前陆盆地的主体部分,包括孝泉-新场-丰谷近东西向隆起带,上三叠统从下而上可以分为马鞍塘-小塘子组、须家河组(须二段、须三段、须四段、须五段)地层。
     川西坳陷中段深层须家河组具备良好的生、储、盖条件:充足的气源条件和较高的生烃强度为天然气的生成提供了有利的物质基础;良好的油气输导体系为天然气的运移提供了有利的运移条件;适时的古隆起、古斜坡和圈闭的发育以及大面积分布的巨厚储层为天然气的聚集提供了有利的场所;大面积分布的区域性盖层为天然气的保存提供了有利的封盖条件。
     川西坳陷中段储集岩厚度大、分布广,源储共生,是川西坳陷的主力烃源岩。尽管前人在构造、储层、成藏等各方面进行了大量的探索,目前所获天然气探明储量仅占总资源量的7.7%左右,且主要集中在侏罗系浅、中层领域,除了由于源岩超致密、超高压、埋深一般大于3000米,加之构造运动导致的多期成藏等客观因素勘探开发难度极高外,在流体成因、分布、油气成藏期以及其动态成藏过程等方面研究的相对薄弱所造成的油气勘探思路不够明确是研究区天然气探明储量偏低的更深层次的原因。
     本文以沉积学、油气地球化学理论为指导,实际钻井资料地球化学分析为手段,结合川西坳陷中段的构造演化特征及沉积特征,完成了川西坳陷中段须家河组地球化学特征的研究及气源的追踪工作。具体内容有:
     (1)有效生油气层系评价:收集川西坳陷中段须家河组烃源岩有机碳、有机硫、氯仿沥青“A”、氯仿沥青族组分、干酪根显微组分、饱和烃色谱、饱和烃碳同位素、岩石热解、镜质体反射率、C、H、O元素、砂体划分、储层物性以及盖层等相关资料,明确研究区须家河组烃源岩基本地化特征,对烃源岩有机质丰度、有机质类型、热演化程度等方面进行研究,确定了有效生油层系。
     对川西坳陷碎屑岩含气领域进行了系统的成藏系统划分:即马鞍塘组、小塘子组-须二段-须三段,须三段-须四段-须五段和须五段-侏罗系、白垩系三个主要成藏系统,在此基础上对两个储层段——须四段、须二段的烃源岩也进行了系统研究,指出须家河组内部发育成藏子系统。
     (2)对须家河组各段烃源岩的地球化学特征进行了深入研究,为分析各成藏系统特征奠定了有利基础。须家河组源岩有机碳含量高,成熟度较高,绝大多数源岩进入了高成熟阶段,少量进入过成熟阶段,有机质类型以Ⅲ型为主,含少量Ⅱ型有机质。
     (3)采集、收集了研究区天然气组分、同位素及轻烃等数据,系统分析了研究区天然气基本特征并对研究区天然气进行了精细对比(包括区内对比与区内区外对比),利用天然气碳同位素特征、氢同位素特征、轻烃特征及稀有气体特征划分了天然气成因类型,证明川西坳陷中段天然气来源相对单一,主要为高演化程度的煤型气;另外通过大量的天然气地化数据统计,对研究区原、次生气藏天然气的基本特征进行了系统对比,结果表明研究区须家河组气藏属于原生气藏。
     (4)对主要气藏气源进行了深入分析,特别是针对天然气分异程度低的特征,开展了源岩与天然气轻烃指纹分析、同位素分析等多种手段进行气源追踪,结果表明川西坳陷各层天然气来源整体表现为须二天然气以自生自储为主,不排除下部T3t+m源岩对其有一定贡献;须四上亚段天然气也以自生自储为主,在有断达深部的断裂发育地区可能有下部(如须二)天然气窜层运移至该层,下亚段天然气主要来自须三段。
     (5)在对典型地区须家河组气藏成藏分析总结的基础上,建立了成藏系统、典型气藏的成藏模式,预测了须家河组勘探有利区带,指出须二段在川西坳陷具有较好的勘探潜力,其一类区主要分布在龙门山前缘的大邑-金马-鸭子河-绵竹一带,东西向的孝泉-新场-合兴场-高庙子-丰谷构造带,以及南北向构造带的洛带地区。二类区主要分布在坳陷中的马井地区和南北向构造带上的中江地区;须四下亚段有利区主要分布在龙门山前缘的金马-鸭子河-绵竹一带,东西向上主要分布在孝泉-新场-合兴场-高庙子地区。上亚段有利区主要在龙门山前缘的金马-鸭子河-绵竹一带具有较好的勘探前景,东西向上主要分布在孝泉-新场-合兴场-高庙子地区,其中的西部的孝泉-新场构造带相对更好。
Western Sichuan Depression is a foreland basin which develops on the Triassic basement fold cover and NE-SW direction since the Late Triassic. The middle section of western Sichuan depression is the main part of foreland basin, including Xiaoquan-Xinchang-Fenggu welt of east-west direction. The upper Triassic can be divided into T3t+m, T3x (T3x2, T3x3, T3x4, T3x5) formations.
     There is source-reservoir-cap rock in deep T3x in mid-west Sichuan depression: abundant gas source and higher hydrocarbon generation intensity provide a favorable material base; oil and gas transporting system provide favorable conditions for migration; timely ancient uplift, the development of ancient slopes and traps and thick large area distribution of the reservoir for the accumulation of gas; Widespread regional cap provide favorable capping conditions.
     Reservoir rock in this depression, thick, widely distributed and source storage symbiotic, is main source rock. Natural gas prospective reserves currently are only about 7.7% of total resource, which is mainly in shallow and middle of the Jurassic, although predecessors carried out a large number of explorations in structure, reservoir, accumulation, and other aspects. Apart from super-dense, high pressure of the source rock, usually greater than 3,000 meters depth, and multi-stage forming caused by tectonic movement, petroleum exploration not clear enough are the deeper reasons for low natural gas proved reserves. The reasons for indefinite clue are relatively weakness of the study in fluid causes, distribution, oil and gas accumulation period and its dynamic accumulation process.
     This paper, guided by sediment logy, petroleum geochemistry theory, resorted to geochemical analysis of drilling data, and combined with the tectonic evolution and sedimentary characteristics in mid-west Sichuan depression, completed geochemical analysis of T3x in mid-western Sichuan depression and gas source tracking work:
     (1) Collect the related information of organic carbon, organic sulfur, chloroform bitumen "A", chloroform bitumen ethnic composition, kerosene maceral, saturated Hydrocarbons, saturated hydrocarbons, carbon isotopes, pyrolysis, virginities reflectance, C, H, O elements, sand classification, reservoir properties and cover of T3x in mid-western Sichuan depression, definite the geochemical characteristics of basic source rocks in study area T3x and study the organic matter abundance, organic matter type, thermal evolution extent of hydrocarbon source rocks in research areas, and determined the effective source rock system.
     Systematic division of clastic rock in gas field in the mid-western Sichuan depression: T3t+m -T3x2-T3x3, T3x3-T3x4-T3x5, T3x5-Jurassic, Cretaceous, three main reservoir systems. Based on this division, two reservoirs-T3x4 and T3x2-have been systematically studied and pointed out that T3x develop internal subsystems.
     (2) Deeply researched geochemistry of T3x source rock, laid a foundation for analysis of the characteristics of the reservoir system. Organic carbon of source rock of T3x has the characteristic of the high organic carbon content, high maturity, high mature stage of most of the, over mature of little source rocks, typeⅢof the main type of organic matter,Ⅱtype with a small amount of organic matter.
     (3) Collected gas composition, isotopes and hydrocarbon and other data, analyzed the basic characteristics of natural gas in the study area and fined contrast basic characteristics of natural gas (including the contrast in and outside the region). Divide genetic type of natural gas according to carbon isotope characteristics, hydrogen isotopes, light hydrocarbon features and noble gas characteristics. The result showed that the natural gas in the mid-western Sichuan depression was of relatively homogeneous and was mainly high evolution levels coal-type gas; A systematic comparison between primary gas pool and secondary gas pool was carried out according to Satiating a large number geochemistry data of natural gas, and the results showed that the natural gas in T3x in study area belonged to the original reservoir gas pools.
     (4) Analyze the gas source of main gas reservoir deeply, especially for the natural gas of low degree of differentiation characteristics. Carry out fingerprint analysis of light hydrocarbon, isotope analysis and other means within and source rocks to track the original rock. Results show that the natural gas in T3x2 is mainly of self-generating and self-preserving shall not exclusive of the contribution of subjacent T3t+m original rock; the natural gas in sub-section T3x4 is also mainly of self-generating and self-preserving, while under sub-section of natural gas mainly from T3x3.
     (5) Established of a reservoir system and gas accumulation in the typical pattern and forecasted exploration area of T3x based on analysis of summary of reservoir in T3x in the typical regions. Pointed out T3x2 has exploration potential, Type I mainly in Dayi-Jinma-Yazihe-Mianzhu,Xiaoquan-Xinchang-Hexingchang-Gaomiaozi-Fenggu structural belt, and north-south tectonic zone Luodai. Type II areas mainly in Majing and Zhongjiang, Which of T3x4 mainly in Jinma-Yazihe-Mianzhu area, Xiaoquan-Xinchang-Hexingchang-Gaomiaozi, including the western Xiaoquan-Xinchang a better structure relatively.
引文
[1]罗志立等,龙门山造山带的崛起和四川盆地的形成与演化[M],成都:成都科技大学出版社,1993.
    [2]王金琪.早聚晚藏-川西坳陷天然气基本特征[J].天然气工业,2001 ,21 (1) :5-12.
    [3]沈忠民,潘中亮等,川西坳陷中段须家河组天然气地球化学特征与气源追踪[J],成都理工大学学报(自然科学版),2009,36(3):225-230.
    [4]曹烈,沈忠民,安凤山.川西坳陷须家河组古圈闭类型及识别技术[J].石油学报,2006,27(4):45-49.
    [5]刘四兵,沈忠民等,川西坳陷中段须二段天然气成藏年代探讨[J],成都理工大学学报(自然科学版),2009,36(5):524-230.
    [6]沈忠民,刘涛,吕正祥等.川西坳陷侏罗系天然气气源对比研究[J] .高校地质学报,2008 ,14 (4) : 577-582.
    [7]鲍典,沈忠民,罗小平,等.川西坳陷天然气C4-C7烃类“指纹”特征及在成藏研究中的意义[J ] .物探化探计算技术,2008 ,30 (2) :113-116.
    [8]刘树根,罗志立,戴苏兰.川西前陆盆地的“四川运动”及与油气的关系[J] .石油与天然气地质,1996,17 (4) :276-281.
    [9]徐国盛,刘树根,李国蓉等,川西前陆盆地碎屑岩天然气跨层运移过程中的相态演变[J],成都理工学院学报,2001,28(4):383-389.
    [10]崔秉荃等,川西坳陷的沉降与龙门山的崛起[J],成都地质学院学报,1991,18(1):21-28.
    [11]高红灿,川东北前陆盆地须家河组沉积相及高分辨率层序地层学特征:[硕士学位论文].成都:成都理工大学沉积地质研究所,2004.
    [12]王玲辉,沈忠民,赵虎.川西坳陷中段天然气碳同位素特征及其成因类型[J] .物探化探计算技术,2008 ,30(4) :326-330.
    [13]陈洪德,刘文均等.层序地层学理论和研究方法[M],四川科学技术出版社,1994.
    [14]何登发,吕修祥登,前陆盆地分析[M],北京:石油工业出版社,1996.
    [15]贾承造等,前陆冲断带油气勘探[M],北京:石油工业出版社,2000.
    [16]姜在兴,沉积学[M],北京:石油工业出版社, 2003.
    [17]李勇等,龙门山前陆盆地沉积及构造演化[M],成都:成都科技大学出版社,1995.
    [18]《沉积构造与环境解释》编著组,沉积构造与环境解释[M],北京:科学出版社,1984.
    [19]林良彪等,川西前陆盆地上三叠统须家河组沉积相及岩相古地理演化[J],成都理工大学学报(自然科学版),待刊。
    [20]杨克明、龚久和等,川西坳陷上三叠统须家河组天然气富集规律及其预测技术研究[R],成都:中国石化新星油气西南分公司勘探开发研究院,内部报告,2003.
    [21]曾允孚等,沉积岩石学[M],北京:地质出版社,1986.
    [22]翟光明等,据中国石油地质志(卷十、四川油气区)[M],北京:石油工业出版社,1989.
    [23]郑荣才,米仓山-大巴山前前陆盆地上三叠统须家河组-侏罗系沉积相及储层研究[R],成都:中国石油西南油气田分公司,内部报告,2003.
    [24]杨克明,叶军,吕正祥.川西坳陷上三叠统须家河组天然气分布及成藏特征,石油与天然气地质.2004,25(5):501-505
    [25]杨克明、叶军、吕正祥,川西坳陷上三叠统成藏年代学特征.石油与天然气地质,2005,Vol.26 No.2 P.208-213.
    [26]吕正祥,川西孝泉构造上二叠统超致密储层演化特征,成都理工大学学报,2005,32(2):22-26.
    [27]辜学达、刘啸虎,四川身岩石地层[M],武汉:中国地质大学出版社,1997.
    [28]刘树根,罗志立.从华南板块构造演化探讨中国南方油气藏分布的规律性[J].石油学报,2001,22(4) :3-31.
    [29]李书兵等,四川盆地晚三叠世以来陆相盆地演化史[J],天然气工业,1999,19(增刊):18~23.
    [30]蔡开平,廖仕孟,川西地区上三叠统轻烃的生成特征[J],石油学报,2002,23(1):35-39
    [31]郭正吾、邓康龄等,四川盆地形成与演化[M],北京:地质出版社,1996.
    [32]纪红,天然气成因类型划分及来源判别[J],中外科技情报,2007,20:4-24
    [33] Schoell,M.Multiple origins of methane in the Earth,Chemical Geology,1988,71:1-10.
    [34] Hoefs,J.Stable Isotope Geochemisrry,Springer-Verleg,Berlin,Heidelberg,NewYork,1980.
    [35]张士亚、郜建军、蒋泰然.利用甲、乙烷碳同位素判识天然气类型的一种新方法[J],石油与天然气地质文集(1),中国煤成气研究,北京:地质出版社,1988.
    [36] Tissot,B.P.and Welte,D.H.Petroleurn Forrnation and Oceurrenee-A New Approach to oi1 and Gas Exploration,Springer-Verleg,Berlln,Heidelberg,NewYork,1978.
    [37]Hunt,J.M.Petroleum Geoehemistry and Geology,W.H.Freemen and Company,San Francisco,1979.
    [38] Tiratisoo,E.N.Natureal Gas-A Study(3rd ed),Scientific Press,Beaconfield,1979.
    [39] MacDonald.G.The many origins of natural gas,Joural of Petroleum Geology,1983,5:341-362.
    [40]徐永昌,沈平.中原、华北油地区《煤型气》地化特征初探[J].沉积学报,1985,3(2):37-46.
    [41]刘文汇,徐永昌.天然气成因类型及判别标志[J].沉积学报,1996,14(1):110-115.
    [42]熊寿生,张文达,卢培德等.试论我国天然气的多种成因作用与多种成气模式[J].石油实验地质,1984,6(3):213-228.
    [43]包茨.天然气地质学[M].北京:科学出版社,1988.
    [44]张厚福,吕福亮.天然气成因类型及其判识标志[J].天然气地质研究论文集,北京:石油工业出版社,1989,90-100.
    [45]陈书荣.天然气地质学[M].武汉:中国地质大学出版社,1989.
    [46]刘文汇,张殿伟,王晓锋等.天然气气—源对比的地球化学研究[J].沉积学报,2004,22(增刊):27-32.
    [47]戴金星.各类天然气的成因鉴别[J].中国海上油气(地质),1992,6(1):11-19.
    [48]戴金星.天然气碳氢同位素特征和各类天然气鉴别[J].天然气地球科学,1993,2(3):1-40.
    [49]戴金星.我国有机烷烃气的氢同位素的若干特征[J].石油勘探与开发,1990,5:27-32.
    [50]戴金星,邹才能,张水昌等.无机成因和有机成因烷烃气的鉴别[J].中国科学D辑:地球科学,2008,38(11),1329-1341.
    [51]戴金星,宋岩,程坤芳等.中国含油气盆地有机烷烃气碳同位素特征[J].石油学报,1993,14(2):23-31.
    [52]戴金星.中国煤成气研究30年来勘探的重大进展[J].石油勘探与开发,2009,26(3).
    [53]戴金星,胡安平,杨春等.中国天然气勘探及其地学理论的主要新进展[J].天然气工业,2006,26(12):1-5.
    [54]戴金星.利用轻烃鉴别煤成气和油型气[J].石油勘探与开发,1993,20(5):26-32.
    [55]戴金星.利用轻烃鉴别煤成气和油型气[J].石油勘探与开发,1993,20(5):26-32.
    [56]戴金星.天然气碳氢同位素特征和各类天然气鉴别[J].天然气地球科学,1993,2(3):1-40.
    [57]戴金星,邹才能,张水昌等.无机成因和有机成因烷烃气的鉴别[J].中国科学D辑:地球科学,2008,38(11),1329-1341.
    [58]王万春,刘文汇,高波等.我国浅层复合气藏中天然气的成因鉴别[J].天然气工业,2003,23(3):20-23.
    [59]宋岩,徐永昌.天然气成因类型及其鉴别[J].石油勘探与开发,2005,32(4):24-29.
    [60]曹智.天然气成因分类、鉴别标志及分析技术研究现状[J].石油天然气学报(江汉石油学院学报),2009,31(3):199-201.
    [61]王晓锋,刘文汇,徐永昌等.不同成因天然气的氢同位素组成特征研究进展[J].天然气地球科学,2006,17(2):163-169.
    [62]胡国艺,李剑,李谨等.判识天然气成因的轻烃指标探讨[J].中国科学D辑:地球科学,2007,37(增刊Ⅱ):111-117.
    [63]孙秀凤,崔永强,邹胜权.天然气成因碳同位素指标评述[J].化工矿产地质,2006,28(4):225-232.
    [64]王连生,郭占谦,马志红等.无机成因天然气的地球化学特征[J].吉林大学学报(地球科学版),2004,34(4):542-545.
    [65]Stahl W.J.,Carey J.B.B.Source rock identification by isotope analyses of natural gases from fields in the Val Varde Delaware Basins,West Texas[J].Chem Geol,1975,16:257-267.
    [66] Berner U,and Faber E.Empirical carbon isotope maturity relationships for gases from algalkerogens and terrigenous organic matter , based on dry , open-system pyrolysis[J].Org.Ceochem.,1996,24(10):947-955.
    [67] Berner,U.and E.Faber.Maturity related mixing model for methane,ethane and propane,based on carbon isotopes[J].Org.geochem.,1988,13(1-3):67-72.
    [68]沈平,徐永昌,王先彬等.气源岩和天然气地球化学特征及成气机理研究[M].兰州:甘肃科学技术出版社,1991.
    [69]刘文汇,徐永昌.煤型气碳同位素演化二阶段分馏模式及机理[J].地球化学,l999,28(4):359-365.
    [70] Faber,E.,Gerling,P.,and Dumke,I.Gaseous hydrocarbon of unknown origin found while drilling[J].Organic Geochemistry,1987,13:875-879.
    [71]沈平,徐永昌,刘文汇等.天然气研究中的稀有气体地球化学应用模式[J].沉积学报,1995,13(2):8-57.
    [72]刘文汇,徐永昌.天然气中氦、氩同位素组成的意义[J].科学通报,1993,38(9):818-821.
    [73]徐永昌,刘文汇,沈平等.天然气地球化学的重要分支—稀有气体地球化学[J].天然气地球科学,2003,14(3):157.
    [74]徐永昌,沈平,刘文汇等.天然气中稀有气体地球化学[M].北京:科学出版社,1998.55-69.
    [75]朱如凯,邹才能等.致密砂岩气藏储层成岩流体演化与致密成因机理—以四川盆地上三叠统须家河组为例[J] .中国科学,2009,39(3) :327-339.
    [76]罗啸泉,陈兰.川西坳陷形成演化及其与油气的关系[J].油气地质与采收率,2004,11(1) :16-19.
    [77]刘金华,张世奇等.川西前陆盆地上三叠统须家河组地层的划分对比及沉积演化[J].地层学杂质,2007,31(2) :190–196.
    [78]刘树根,赵锡奎等.龙门山造山带-川西前陆盆地系统构造事件研究[J].成都理工学院学报,2001,28(3) :221-230.
    [79]王道永.龙门山中段中生代前陆盆地的构造演化史[J].成都理工学院学报,1994,21(3) :20-28.
    [80]王世谦.四川盆地侏罗系—震旦系天然气的地球化学特征[J].天然气工业,1994,14(6) :1-6.
    [81]王世谦,罗启厚.烃类早期形成与聚集的一些地质—地球化学证据[J].天然气勘探与开发,1994,16(3) :1-10.
    [82]罗启厚等,四川盆地中西部三叠系重点含气层天然气富集条件研究[J].天然气工业,1996.15(6):1-8.
    [83]邓康龄等,四川盆地上三叠统沉积岩相与油气分布关系研究报告[R],地质矿产部第一石油普查勘探指挥部地质综合研究大队,内部报告,1982.
    [84]邓康龄,四川盆地形成演化与油气勘探领域[J],天然气工业,1992,12(3):118-128.
    [85]郭正吾,邓康龄,韩永辉等.四川盆地形成与演化[M].北京:地质出版社,1996.113-138.
    [86]李勇,曾允孚,伊海生.龙门山前陆盆地沉积及构造演化[M].四川成都:成都科学技术出版社,1995.25-37.
    [87]刘树根,龙门山冲断带与川西前陆盆地的形成与演化[M],成都:成都科技大学出版社.
    [88]刘四兵,川西坳陷中段须家河组流体成因与天然气动态成藏特征研究:[博士学位论文].成都:成都理工大学能源学院,2010.
    [89]胡见义,徐树宝等,烃类气成因类型及其富气区的分布模式[J].天然气地球化学,1991,01(3) :120-128.
    [90]胡见义,徐树宝等,烃类气成因类型及其富气区的分布模式[J].天然气地球化学,1991,01(3) :120-128.
    [91]唐艳,叶军,轻烃指纹参数在川西坳陷天然气成藏研究中的应用[J],油气地质与采收率,2001,8(6):17-21
    [92]张义纲,天然气地质的若干认识[J].地球科学进展, 1990(02):53-58.
    [93] A.D.迈尔,沉积盆地分析原理[M](中译本),北京:石油工业出版社,1985.
    [94] H.G.Reading,沉积环境和相(中译本)[M],北京:科学出版社,1985。
    [95]王大锐,油气稳定同位素地球化学,北京:石油工业出版社,2002.
    [96]戴金星等,中国天然气地质学[M],北京:石油工业出版社,1992
    [97] J.M.亨特.石油地球化学和地质学[M].北京:石油工业出版社,1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700