用户名: 密码: 验证码:
LNG储罐用9Ni钢的焊接性及其模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着全球液化天然气(Liquefied natural gas,简称LNG)消耗量持续增长,国内外建造新的大型LNG设施的需求不断增加,目前,在大型低温储罐和压力容器中,低温韧性优良的9%Ni钢基本上取代了Ni-Cr不锈钢,成为建造LNG低温储罐的主要用材。本课题以9Ni钢为研究对象,应用相变热力学、动力学、金属物理学和弹塑性力学等基本理论,采用物理模拟和数值模拟相结合的手段,研究了这种低温钢在不同焊接工艺参数下焊接接头的强韧化规律以及冷裂纹倾向,并计算了9Ni钢的焊接温度场、应力场和组织转变场,得出保证9Ni钢焊接接头低温强韧化的焊接工艺参数,实现了对焊接接头的组织和性能的预测。
     采用一次回归正交试验方法,并利用焊接热模拟技术,考察焊接热输入和层间温度两个因素对9Ni钢焊接热影响区的组织和性能的影响。结果表明,9Ni钢焊接热影响区的组织主要为板条马氏体,并可能存在少量的残余奥氏体。在较大冷却速度范围内,9Ni钢的焊接粗晶区的硬度没有出现太大的下降,在试验的焊接工艺条件下没有出现明显的软化现象;在粗晶热影响区中,热输入是影响过临界粗晶热影响区(SRCGHAZ)和临界粗晶热影响区(IRCGHAZ)低温韧性的主要工艺参数;临界粗晶热影响区(IRCGHAZ)是9Ni钢焊接热影响区中韧性最差的部分。对焊接热影响区的硬度和韧性分别建立了预测模型,预测值与实测值吻合较好。
     基于焊接传热学、热弹塑性理论以及相变热力学、动力学理论,考虑了材料的物理性能与温度之间的非线性关系,以及温度场、组织转变场和应力应变场之间的作用,利用SYSWELD工程有限元计算软件对9Ni钢焊接温度场、组织转变场和应力应变场进行了计算。
     采用斜Y型坡口焊接裂纹试验,并结合焊接数值模拟技术,对9Ni钢焊接冷裂纹敏感性进行了研究。结果表明,9Ni钢焊接冷裂敏感性不是很大,在不同的预热温度、环境温度和环境湿度下,采用Ni基焊条进行焊接时,断面裂纹率都较低,焊接条件较苛刻时,可以采用75℃左右的预热温度进行焊前预热。
As global liquefied natural gas (LNG) consumpution incereases fast in recent years, demands to build more large LNG equipments are becoming strong in many countries. Presently, 9% Ni steel has replaced Ni-Cr stainless steel in building large storage tanks and pressure vessels for its excellent cryogenic toughness, becoming the mostly-used material for large LNG storage tanks construction. In this paper, 9% Ni steel was studied based on fundamental theories like phase transformation kinetics and thermodynamics theory, metal physics theory, elasto-plasto mechanics theory, and so on. Using physical simulation and numerical simulation, mechanical properties and cold crack susceptibility of 9% Ni steel for different welding conditions were investigated. Welding temperature field, stress-strain field and phase transformation field were simulated using SYSWELD simulation software to optimize welding parameters and predict microstructures and mechanical properties.
     Orthogonal regression and thermal simulation technology were used to investigate the influences of heat input and interlayer temperature on the microstructure and mechanical properties of heat affected zone (HAZ) of 9% Ni steel. Results showed that 9%Ni steel HAZ is mainly constructed of martensite, with very little retained austenite at low cooling rate. No considerable decrease in HAZ hardness was observed for a large range of cooling rates. No softening happened in HAZ for field welding. The predominant factor influencing cryogenic toughness of super-critically reheated coarse-grained HAZ (SRCGHAZ) and inter-critically reheated coarse-grained HAZ (IRCGHAZ) is heat input, which should be kept low with a little higher interlayer temperature to achieve high cryogenic toughness of the welding joint. IRCGHAZ is the primary local brittle zone within the HAZs. HAZ mechanical property (mainly HAZ hardness and toughness prediction) models which were coincident with actual experimental values were presented.
     Based on welding heat transfer theory, heat elastoplastticity theory and phase transformation theory, the three fields (temperature field, microstructure field and stress-strain field) were simulated using SYSWELD software taking into mutual influences and nonlinear relationships between temperature and mechanical properties.
     Assisted by numerical simulation, slit-Y cracking test was conducted to investigate the cold cracking susceptibility of 9% Ni steel. Results showed that cold cracking susceptibility of 9%Ni steel HAZ was generally low. Using nickel-based welding material, low section fracture ratio can be achieved for different preheat temperatures, ambient temperatures and ambient humidities. A preheat temperature of 75℃is recommended for welding in severe environment.
引文
[1]张抗.世界液化天然气发展现状与展望[J].当代石油石化,2006,14(4):31-34.
    [2]王才良.世界石油天然气工业的现状与展望[J].中国石化,2007,(9):51-53.
    [3]罗承先.世界LNG链经营新模式形成[J].油气世界,2007,(8):16-19.
    [4] Jan Kj?rstad, F. Johnsson. Prospects of the European gas market [J]. Energy Policy, 2007, (35): 869-88.
    [5] David Paganie. Increasing demand for natural gas, amended legislation drive US LNG por applicaions[J]. Offshore, 2007, 67(2): 92-96.
    [6]向春.替代能源与中国液化天然气行业的发展[J].中山大学学报论丛,2007,27(2):78-82.
    [7]黄帆.我国液化天然气现状及发展前景分析[J].天然气技术,2007,1(1):68-71.
    [8]孙永祥.液化天然气的使用近况及前景分析[J].能源政策研究,2005,(5):36-38.
    [9]贺宇,杨梅.液化天然气的应用和国际贸易[J].天然气与石油,2005,23(2):1-5.
    [10]赵明华,赵夙铭,钱成文,等.国外LNG接收终端及其发展趋势[J].油气储运,2006,25(1):10-14.
    [11]丁文斌,李凡,曹军,等.LNG低温储罐用镍钢焊接技术研究进展[J].中国造船,2007,48(B11):122-127.
    [12]顾安忠,石玉美,汪荣顺.中国液化天然气的发展[J].石油化工技术经济,2004,20(1): 1-7.
    [13]周远,吴剑峰,公茂琼.关于加快我国具有自主知识产权的液化天然气技术研发的建议[J].中国科学院院刊,2005,20(2):99-100.
    [14]章燕谋.锅炉与压力容器用钢[M].西安:西安交通大学出版社,1997.
    [15]陈国邦.低温工程材料[M].杭州:浙江大学出版社,1998.
    [16]邱正华,张桂红,吴忠宪.低温钢及其应用[J].石油化工设备技术,2004,25(2):43-46.
    [17] Nippes E F, Balaquer J P. A study of the weld heat-affected zone toughness of 9% nickel steel [J]. Welding Journal, 1986, 65(9): 237-243.
    [18] Nippes E F, Balaguer J P. Further studies of the weld heat-affected zone toughness of nine nickel steel[C]//Welding Research: The State of the Art. Toronto, Ontario Canada: American Society for Metals, 1986:77-88.
    [19] Hrivnak I. Welding and weldability of cryogenic steels[C]//Transport and Storage of LPG and LNG. Belgium: Royal Flemish Societyof Engineers, 1984: 219-242.
    [20] Karlsson L, Rigdal S, Stridh L E, et al. Efficient welding of 9% nickel steel for LNG(liquid natural gas) applications[C]// Stainless Steel World 2005. Netherlands: KCI Publishing BV, 2005:428-438.
    [21] Stromberg J, Rigdal S, Andersson L. Welding of stainless and nickel alloyed steels for low-temperature applications[C]// The international conference on the joining of materials. Denmark: JOM Institute, 1997, 41-47.
    [22]周振丰.焊接冶金学:金属焊接性[M].北京:机械工业出版社,1995.
    [23] Hilkes J, Neessen F, Caballero S. Electrodes for welding 9% nickel steel [J]. Welding Journal, 2004, 83(1): 30-37.
    [24] Avery R E, Parsons D. Welding stainless and 9% nickel steel cryogenic vessels[J].Welding Journal, 1995, 74(11):45-50.
    [25] Stromberg J, Andersson S L. Welding in cryogenic applications with stainless and nickel-based consumables[C]// 2nd European Conference on Joining Technology.Italy: Istituto Italiano della Saldatura, 1994:603-609.
    [26]严春妍,李午申,薛振奎,等. LNG储罐用9%Ni钢及其焊接性[J].焊接学报,2008,29(3): 49-52.
    [27]胡长弓.新型焊材焊接9%Ni钢球罐的工艺措施[J].安装,1991,(2): 17-21.
    [28]刘祥儒. 9Ni钢低温储罐焊接施工经验与工艺问题探讨[J].石油工程建设,1997,23(5):14-18.
    [29]韩伟基.中国球形容器建设回顾与展望[J].石油工程建设,1995,25(2): 1-4.
    [30]宋立群.9Ni钢乙烯低温贮罐的焊接[J].江苏机械制造与自动化,1997,(3):19-21,23.
    [31]中石化四建完成国内首个9%镍钢工艺评定[J].化工科技市场,2005,28(11):57-58.
    [32]曹金荣,李国林,常加贵,等.我国LNG发展现状及拟建20万方装置的设想[J].油气田地面工程,2005,24(2): 53-54.
    [33]梁金桂.论中国LNG发展趋势及拓展福建LNG的应用[J].油气世界,2007(3):29-33,44.
    [34]杨凤玲.中国为什么要发展液化天然气[J].城市燃气,2005,365(7):24-27.
    [35]钱成文.国外LNG接收终端简介及发展趋势[J].石油工业技术监督,2005,21(5):65-70.
    [36]黄洪涛,丁蓉,孙凯.世界LNG海运市场现状及展望[J].世界海运,2005,28(1):17-18.
    [37]中国机械工程学会焊接学会.焊接手册:材料的焊接[M].2版.北京:机械工业出版社,2001.
    [38]李亚江.焊接冶金学:材料焊接性[M].北京:机械工业出版社,2006.
    [39]刘会杰.焊接冶金与焊接性[M].北京:机械工业出版社,2007.
    [40]牛济泰.材料和热加工领域的物理模拟技术[M].北京:国防工业出版社,1999.
    [41]陈楚,张月嫦.焊接热模拟技术[M].北京:机械工业出版社,1985.
    [42]李萌蘖,侯玉年.热模拟技术在研究焊接热裂纹方面的应用[J].航空材料,1989,9(3):52-59.
    [43]赵敏,孙长伟,杜则裕.焊接热模拟技术及其应用[J].焊接技术,1999,(4):41-42.
    [44]骆宗安,苏海龙,张殿华,等.多功能热力模拟实验机的研制与应用[C]//第五届全国材料与热加工物理模拟机数值模拟学术会议论文集.洛阳:中国机械工程学会,2006:321-326.
    [45]陈丙森.计算机辅助焊接技术[M].北京:机械工业出版社,1999.
    [46]汪建华.焊接数值模拟技术及其应用[M].上海:上海交通大学出版社,2003.
    [47]吴言高,李午申,邹宏军,等.焊接数值模拟技术发展现状[J].焊接学报,2002,23(3):89-92.
    [48]陈楚.数值分析在焊接中的应用[M].上海:上海交通大学出版社,1985.
    [49] Ushio M, Fan D, Tanaka M. A method of estimating the space-charge voltage drop for thermionic arc cathodes [J]. Journal of Physics D: Applied Physics, 1994, 27(3):561-566.
    [50] Inoue T. Metallo-thermo-mechanics application to phase transformation incorporated processes [J]. Transactions of the Japan Welding Research Institute, 1996, 25(2):69-87.
    [51] David S A, Babu S S. Microstructure modeling in weld metal[C]//Numeric Analysis of Weldability. Graz-Seggau Austria, 1995.
    [52] Watt D F, Coon L, Bibby M, et al. An algorithm for modeling microstructure development in weld heat-affected zones (Part A) [J]. Acta Metallurgy, 1988, 36(11):3029-3035.
    [53] Henwood C, Bibby M, Goldak J, et al. Coupled transient heat transfer- microstructure weld computations (Part B)[J]. Acta Metallurgy, 1988, 36(11):3037-3046.
    [54] Ueda Y, Yamakawa T. Analysis of thermal elastic-plastic stress and strain during welding by finite element method [J]. Transactions of the Japan Welding Society, 1971, 2(2):186-196.
    [55] Ueda Y, Kim Y C, Yuan M G. A predicting model of welding residual stress using source of residual stress (Report I) characteristics of inherent strain(source of residual stress)[J]. Trans. JWRI. , 1989, 18(1): 135-141.
    [56] Masubuchi K. Applications of numerical analysis in welding[J]. Welding in the world, 1979, 17(11-12):268-291.
    [57] Goldak J. Modeling thermal stress and distortions in welds [J]. ASM International, 1990:71-82.
    [58] Goldak J, Charkravati A, Bibby M. A new finite element model for welding heat sources [J]. Metallurgical and Materials Transactions B, 1984, 15(2): 299-305.
    [59] Andersson B, Karlsson L. Thermal stresses in large butt-welded plates[J]. Journal of Thermal Stresses, 1981, 4(3-4):491-500.
    [60] Karlsson L. Thermomechanical finite element models for modeling for calculation of residual stresses due to welding[C]// 3rd European Conference on Residual Stresses. Germany, DGM Informationsgesellschaft mbH, 1993:33-48.
    [61] Ikawa H, Oshige H, Tanoue T. Study on the Martensite-Austenite Constituent in Weld-Heat Affected Zone of High Strength Steel[J]. Journal of the Japan Welding Society, 1980, 49(7):467-472.
    [62] Degenkolbe J, Musgen B, Uwer D. Progress in the production and fabrication of 9% Ni steel[C]//Transport and storage of LPG and LNG. Belgium: Royal Flemish Society of Engineers, 1984: 49-57.
    [63]顾钰熹.焊接连续冷却转变图及其应用[M].北京:机械工业出版社,1990.
    [64]陈铭谟.贝氏体的转变机制和高强度贝氏体钢设计[M].北京:国防工业出版社,1989.
    [65]翁志刚,关丽君.微合金高强钢焊接热影响区中粒状贝氏体微观结构的实验研究[J].金属学报,2000,36(2): 181-186.
    [66] Matsuda F, Fukada Y, Okada H, et al. Review of mechanical and metallurgical investigations of martensite-austenite constituent in welded joints in Japan [J]. Welding in the World, 1996, 37(3):134-154.
    [67]徐祖耀.马氏体相变与马氏体[M].第二版.北京:科学出版社,1999.
    [68] Garcia C I, Lis A K, Pytel S M, et al. Ultra-low carbon bainitic plate steels: processing, microstructure, and properties [J]. Iron and Steelmaker, 1991, 18(10): 97-106.
    [69] Yang Z G, Fang H S. An overview on bainite formation in steels [J]. Current Opinion in Solid State and Materials Science, 2005, (9):277-286.
    [70] Tsuzaki K, Maki T. The effect of cooling rate on the morphology of lath martensite in Fe-Ni alloys [J]. Journal of the Japan Institute of Metals,1981,45(2): 126-134.
    [71] Choi C S, Ro K S. Fundamental study of ultra high strength steel development-effect of cooling rate on mechanical properties of Fe-20Ni martensitic alloy [J]. Journal of the Korean Institute of Metals, 1985, 23(10):1127-1135.
    [72] Pense A W, Stout R D. Fracture toughness and related characteristics of cryogenic steels [J]. Welding Research Council Bulletin, 1975, (205): 44.
    [73] Strife J R, Passoja D E. The effect of heat treatment on microstructure and cryogenic fracture properties in 5Ni and 9Ni steel [J]. Metallurgical Transactions A, 1980, 11(8): 1341-1350.
    [74] Marschall C W, Hehemann R F, Troiano A R. The characteristics of 9% nickel low carbon steel[J]. Transactions of American Society for Metals, 1962, (55):135-148.
    [75] Tsangarakis N. On the dependence of fracture toughness on metallurgical factors [J]. Material Science and Engineering, 1983, 58(2):269-276.
    [76] Jang J I, Ju J B , Lee B W, et al. Effects of microstructure change on fracture characteristics in coarse-grained heat-affected zones of QLT-processed 9% Ni steel[J]. Materials Science and Engineering A, 2003, 340(1-2): 68-79.
    [77] Leblond J B, Devaux J. A new kinetic model for aniso-thermal metallurgical transformation in steels including effect of austenite grain size [J]. Acta Metallurgica, 1984, 32(1):137-146.
    [78] Magee C L. Phase transformations [M]. American Society for Metals, 1970.
    [79] Zhao H Z, Liu X H, Wang G D. Progress in modeling of phase transformation kinetics[J]. Journal of Iron and Steel Research International, 2006, 13(3): 68-73.
    [80]莫春立,钱百年,国旭明,等.焊接热源计算模式的研究进展[J].焊接学报,2001,22(3):93-96.
    [81] Goldak J. A new finite model for welding heat source [J]. Metallurgical Transactions, 1984, 15B (2):299-305.
    [82]王继峰.焊接温度场和应力场的热源模型研究[D].秦皇岛:燕山大学,2006.
    [83] Hongyuan F, Qingguo M,Wenli Xu, et al. New general double ellipsoid heat source model [J]. Science and Technology of Welding & Joining, 2005, 10(3):361-368.
    [84]张文钺.焊接传热学[M].北京:机械工业出版社, 1989.
    [85]张文钺.焊接物理冶金[M].天津:天津大学出版社,1991.
    [86]田锡唐.焊接结构[M].北京:机械工业出版社,1997.
    [87]张文钺.焊接冶金学:基本原理[M].北京:机械工业出版社,1999.
    [88]张文钺,杨清峡.焊接HAZ硬化因子的研究[J].焊接学报,1991,12(4):195-200.
    [89] Corttell C L M. Hardness equivalent may lead to a more critical measure of weldability [J].Metal Construction, 1984, 16(12):740-744.
    [90] Bibby M J, Goldak J A, Jefferson I, et al. A methodology for computing heat affected zone hardness, microstructure and preheat temperature[C]// International Conference on Comptuer Technology in Welding. Cambridge, England, 1988.
    [91]崔忠圻,刘北兴.金属学与热处理[M]. 3版.哈尔滨:哈尔滨工业大学,2007.
    [92] Kim, K J, Schwartz L H. Effects of intercritical tempering on the impact energy of Fe-9Ni-0.1C[J]. Material Science and Engineering, 1978, 33(1): 5-20.
    [93] Syn C K, Fultz B, Morris J W. Mechanical stability of retained austenite in tempered 9 Ni steel[J]. Metallurgical Transactions A, 1978, 9 (11):1635-1640.
    [94] Tamura H, Onzawa T, Uematsu S, et al. Retained austenite in cryogenic steel welds. Report 1: Notch toughness and retained austenite in 9%Ni steel welds using matched ferritic filler metals[J]. Journal of the Japan Welding Society, 1979, 48(11): 931-936.
    [95] Tamura H, Onzawa T, Uematsu S. Studies on retained austenite in cryogenic steel welds. Report 2: Retained austenite and notch toughness in synthetic HAZ of 9%Ni steel[J]. Journal of the Japan Welding Society, 1980, 49(12):854-860.
    [96] Tamura H, Onzawa T, Uematsu S. Notch toughness and retained austenite in synthetic HAZ of 9%Ni steel[J]. Transactions of the Japan Welding Society. 1982, 13(1): 51-58.
    [97] Kim B C, Lee S, Kim N J, et al. Microstructure and local brittle zone phenomena in high-strength low-alloy steel welds [J]. Metallurgical Transactions A, 1991, 22:139-149.
    [98] Lee S, Kim B C, Kwon D. Correlation of microstructure and fracture properties in weld heat-affected zones of thermomechanically controlled processed steels [J]. Metallurgical Transactions A, 1992, 23: 2803-2816.
    [99] Davis C L, King J E. Cleavage initiation in the intercritically reheated coarse-grained heat-affected zone: Part I. Fractographic evidence [J]. Metallurgical and Materials Transactions A, 1994, 25(3): 563-573.
    [100] Okada H, Ikeuchi K, Matsuda F, et al. Investigation of metallographic properties of MA constituents [J]. Journal of the Japan Welding Society, 1994, 12(2): 236-242.
    [101] Ion J C. Modeling the microstructural changes in steel due to fusion welding [D]. Lulea, Sweden: Lulea University of Technology, 1985.
    [102] Ion J C, Easterling K E, Ashby M F. A second report on diagrams of microstructure and hardness for heat affected zones in welds[J]. Acta Metallurgica, 1984, 32(11):1949-1962.
    [103] Easterling K E. Predicting heat affected zone microstructures and properties in fusion welds[C]// Advances in Welding Science and Technology, Adelaide, Australia: Australian Welding Institute, 1986, 1: 99-109.
    [104] Magoariec A, Maurickx T, Perdrix C. Regression modeling of the hardenability of low alloyed steels[C]// Mathematical Modeling of Weld Phenomena 3. London, UK, 1997: 295-309.
    [105] Agusa K, Kosho M, Nishiyama N, et al. Production of 9% nickel steel UOE pipe with ferritic filler submerged arc welding[J]. Transactions of the Iron and Steel Institute of Japan, 1986, 26(5): 359-366.
    [106] Tikkamaki S, Hanninen H. On the synergistic effects of hydrogen embrittlement and temper embrittlement in a 9% nickel steel[C]// Hydrogen Effects in Metals. Moran, AIME, 1981:811-818.
    [107] Terasaki T, Satoh K. The effect of hardness and hydrogen concentration on the critical stress of cold cracking in a welded joint [J]. Journal of the Iron and Steel Institute of Japan, 1982, 68(1):140-146.
    [108] Iwasaki Y, Yoshida Y, Wakamoto I, et al. Study on arc welding of heavy 9% Ni steel for LNG plant pressure vessel[J]. Mitsubishi Juko Giho, 1987, 24(3):268-273.
    [109]罗志昌,肖黎明,张伟明. 9%Ni钢焊接熔合区的冷裂敏感性评定与研究[J].石油工程建设, 1991,4:45-50.
    [110]周昭伟,蔡宏彬,江崇华,等. 9%Ni钢焊接熔合区氢致裂纹的研究[J].焊接学报,1989,10(1):37-46.
    [111]周昭伟,蔡宏彬,江崇华. 9%Ni钢焊接熔合区的氢致裂纹与马氏体带的关系[J].焊接学报, 1990, 11(4): 205-211.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700