用户名: 密码: 验证码:
铝合金/不锈钢预涂层TIG熔—钎焊特性与界面行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝合金与不锈钢的复合结构具有质轻、高强、耐腐蚀等方面的综合优势,在航空航天、汽车制造及造船等领域中应用越来越广泛,然而两者之间固溶度低,热物理性能差异大,且极易反应生成脆性的金属间化合物,这已成为焊接领域中的难点问题。近来,电弧熔-钎焊方法以其便捷、高效化的焊接特性成为铝/钢异种合金连接中的热门研究方向,促进液态钎料在钢表面的润湿铺展,并控制界面脆性化合物层的生长,是获得优质铝/钢接头的关键问题。
     本文首次提出了预涂层TIG熔-钎焊方法,针对3mm厚的铝合金与不锈钢板对接结构,全面地研究了其焊接特性,研制出了适用于电弧加热条件下的预涂层,开发出了接头成形控制技术,获得了具有熔焊与钎焊双重特征的复合型接头。在此基础上,研究了接头微观结构特征,深入分析了界面层的组织形态与反应产物,评定了接头力学行为,建立了界面结构与力学性能之间的联系。进一步,从焊接能量控制与合金元素作用两方面展开研究,分析了焊接热输入对界面温度场分布的影响,通过热力学与动力学分析,揭示了TIG熔-钎焊界面层生长机制,深入研究了合金元素对界面结构的作用,分析了其控制界面层生长的作用机理,实现了铝/钢异种合金的可靠连接。
     通过润湿铺展试验和多组元正交试验,获得了综合性能良好的预涂层,分析了其促进钎料润湿铺展的作用机理,阐述了预涂层TIG熔-钎焊接头成形行为,开发出了单面焊双面成形控制技术,获得了成形良好的铝/钢对接接头。预涂层成分为:改性的Nocolok钎剂(KAlF4 65%+K3AlF6 35%) 55wt%,Zn 20wt%,Sn 20wt%,K2SiF6 5wt%。预涂层的作用主要体现在三个方面:一是熔融氟化物钎剂去除液态钎料表面的残余氧化膜,净化液态钎料表面;二是氟化物钎剂分解并覆在熔池表面,显著降低液-气界面张力σl-g;三是Zn和Sn金属液层沉积在钢表面并溶入液态钎料,降低液-固界面张力σl-s。接头成形过程为:预涂层首先熔化,在钢表面形成液态薄膜;随后,焊丝送到坡口根部,紧贴成形槽底部,并迅速熔化,液态钎料在钢板背面润湿铺展,完成背面成形;最后,液态钎料沿坡口表面进行“上坡”铺展,实现正面成形。
     研究了铝合金/不锈钢TIG熔-钎焊接头微观结构特征,深入分析了不同填充钎料和焊接热输入条件下的界面结构,测试了接头的力学性能,研究了接头的断裂行为。采用Al-Si12钎料时,界面层厚度分布不均匀,呈锯齿状生长,由τ5-Al8Fe2Si和θ-(Al,Si)13Fe4两层化合物构成,随着热输入量的增加,界面层中θ相生长迅速,整体界面层厚度在3-10μm之间,形态由小锯齿状向粗大锯齿状变化;界面层具有高的硬脆性,在界面层由τ5相组成,厚度在5-7μm之间,呈粗大锯齿状生长时,具有较高的抗裂能力,接头抗拉强度在120-130MPa之间,界面层抗拉强度在80-100MPa之间。采用Al-Cu6钎料时,界面层厚度分布较为均匀,呈短须状生长,由θ-Al13(Fe,Cu)4一层化合物组成,随着热输入量的增加,界面层厚度在2-5μm之间,形态由短须状向粗针状变化;界面层具有较高的抗裂性,当界面层厚度在2-4μm之间,呈短须状生长时,其抗裂能力最强,接头抗拉强度达到170-180MPa,界面层抗拉强度在135-150MPa之间。
     运用MARC有限元软件实现了对TIG熔-钎焊界面温度场分布的数值模拟,通过热力学和动力学分析,计算了不同化合物的生长自由能,阐述了界面层的生长机制。温度场模拟结果显示,液-固界面温度分布不均匀,坡口顶部位置与底端位置相差近300℃,加热时间相差2.5s,界面峰值温度在700-1200℃之间,加热时间不超过10s。热力学计算结果显示,随着含Al量的升高,化合物的生长自由能逐渐降低,Si元素的加入能够显著降低化合物的生长自由能,界面处形成含Al量最高的Al-Fe-Si三元相。动力学分析结果显示,界面层的生长行为是由溶解动力学控制的,钢基体在铝液中的溶解过程决定着整个界面层的结构特征,而界面峰值温度对溶解过程起到决定性的影响,界面温度控制在1000℃左右时,界面层由τ5相一层组成,厚度在5-8μm之间,呈锯齿状生长,计算分析结果与实际界面结构相符合,对界面层的生长实现最佳能量控制。
     研究了不同含量Si、Cu元素对界面结构的作用效果,揭示了其控制界面层生长的作用机理。Si元素是通过与Al、Fe反应形成Al-Fe-Si三元相来实现对界面层生长控制的,Si元素极易在界面偏聚,增大了Fe原子向铝液中的溶解速度,Si含量在5wt%左右时,界面由τ5-Al8Fe2Si和θ-(Al,Si)13Fe4两层化合物组成,控制界面层生长的作用效果最佳。Cu元素是通过置换固溶于θ-Al13Fe4相中抑制了其择优生长取向来控制界面层生长的,同时形成少量的Al-Cu结合对提高了界面层的抗裂性,Cu含量在6wt%左右时,界面层由θ-Al13(Fe,Cu)4相组成,接头具有最佳的力学性能。
Hybrid structures of aluminum alloy and stainless steel have the comprehensive benefits, such as light weight, high strength and corrosion resistance, etc. Their application has a high technical and economical potential in aerospace vehicle, automobile and shipbuilding. However, joining of aluminum alloy and stainless steel has great difficulty since brittle intermetallic compounds (IMCs) are formed in the joint. Nowadays, arc welding-brazing with the characteristics of convenient operation and high efficiency offers a great potential for material combinations of aluminum alloy and steel. The key issues to obtain high-quality arc welding-brazing joints are to promote the filler metal wetting and spreading on steel surface and to control the brittle IMC layer growth in the Al-steel interface.
     In this study, the precoating TIG welding-brazing method was first put forward and its welding characteristics of aluminum alloy and stainless steel butt structure was comprehensively studied. The special precoating flux layer applied to arc heating and the butt joint formation control technology were developed and the hybrid joints with typical welding-brazing dual characteristics was obtained. On these basis, the microstructure features of the joint, especially the shapes and reaction products of the interface layer, were analyzed and the mechanical behavior of the joint was evaluated and the effect of interface structure on the mechanical properties of the joint was discussed. Further, the study focused on the welding heat input and the role of alloying elements to control the interface layer growth. The effect of heat input on the interface temperature distribution was analyzed and the growth mechanism of interface layer was revealed through thermodynamic and kinetic analysis. The effect of alloying elements on the interface structure was studied detailedly and the control mechanism of alloying elements on the interface layer growth was analyzed. Finally, the high-quality dissimilar joint of aluminum alloy and stainless steel was obtained successfully.
     The special precoating flux layer applied in arc heating was obtained through wetting and spreading experiments and orthogonal experiments and its promotion mechanism of wetting and spreading was analyzed. The joint formation behavior was described and its control technology of single-side welding and double-side forming was developed. The composition of precoating layer is that modified Nocolok flux (KAlF4 65wt%+K3AlF6 35wt%) 55wt%, Zn 20wt%, Sn 20wt% and K2SiF6 5wt%. The three major roles of precoating layer are: First, molten fluoride flux removes the residual oxide film to clean the surface of the liquid filler metal; Second, fluoride flux decomposes and floats up in the molten pool to reduce the interface tensionσl-g; Third, Zn and Sn metals deposits on the steel surface and dissolves into the filler metal further to reduce the interface tensionσl-s. The joint formation process is: First, the precoating layer melts to form the liquid film on steel surface; Then, the welding wire is sent to the groove root and melts rapidly to spread on the steel back surface to form the back formation; Finally, the liquid filler metal uphill spreads to form a front formation.
     The interface microstructures of the joints with different filler metals and different heat input were analyzed and the mechanical properties of the joints were tested and the fracture behavior of the joints was studied. With Al-Si12 filler metal, the interface layer presents a nonuniform and sawtooth shape and consists of two types of IMC phases, which areτ5-Al8Fe2Si phase in the seam side andθ-(Al,Si)13Fe4 phase in the steel side. With the increase of heat input, theθphase layer grows rapidly and the whole layer is in 3-10 thickness and the shape changes from the small sawtooth to the coarse. Both of the IMC phases have high hard and brittle nature, and when the interface layer consists of onlyτ5 phase with the thickness of 5-7μm and the coarse sawtooth shape, it can inhibit the interface cracking effectively and the tensile strength of the joint reaches 120-130MP and the value of the interface layer is 80-100MPa. With Al-Cu6 filler metal, the interface layer presents short whisker shape and consists of onlyθ-Al13(Fe,Cu)4 phase. With the increase of heat input, the whole layer is in 2-5μm thickness and the shape changes from the short whisker to the needle-like. The interface layer has a high crack resistance, and when the interface layer is in 2-4μm thickness and presents short whisker shape, it has the highest crack resistance and the tensile strength of the joint reaches 170-180MP and the value of the interface layer is 135-150MPa.
     The interface temperature distribution during TIG welding-brazing process was computed by MARC finite element method and the growth free energy of the different intermetallic phases were calculated and the growth mechanism of interface layer was described through thermodynamic and kinetic analysis. The temperature field simulation results show that the liquid-solid interface temperature is uneven with the gap of nearly 300℃and 2.5s from the top to the bottom of the groove and the peak temperature ranges from 700 to 1200℃and the reaction time is less than 10s with different heat input. The thermodynamic analysis results show that the growth free energy of the IMC layer decreases with the increase of Al content and Si element can significantly reduce the growth free energy of IMC layer, so the interface forms the Al-Fe-Si ternary phase with the highest Al content. The kinetic analysis results show that the interface growth behavior is controlled by the dissolution kinetics and the dissolution process of steel matrix into molten pool determine the interface structure and the interface peak temperature plays a decisive impact on the dissolution process. When the interface temperature is at about 1000℃, the interface layer consists of onlyτ5 phase and is in 5-8μm thickness and presents the sawtooth shape. The calculated results are consistent with the actual interface structure, so the interface temperature at about 1000℃is the optimum energy control for the interface layer growth.
     The effect of different contents of Si and Cu elements on the interface structure was studied detailedly and their control mechanism on the interface layer growth was revealed. The control mechanism of Si elements is that Si enriches at the interface and increases the dissolution rate of Fe atoms into molten pool and then Si reacts with Al and Fe atoms to form Al-Fe-Si ternary phase. With Si content of 5wt%, the interface layer consists ofτ5-Al8Fe2Si andθ-(Al,Si)13Fe4 and this Si content achieves the best control effect on the IMC layer growth. The control mechanism of Cu elements is that Cu can replace some Fe atoms inθ-Al13Fe4 to inhibit its preferred orientation growth. At the same time, Al-Cu bond presents higher binding ability than Al-Fe, soθ-Al13(Fe,Cu)4 has a high crack resistance. With Cu content of 6wt%, the joint reaches the best mechanical properties.
引文
1 A. Mathieu, S. Pontevicci, J. C. Viala, E. Cicala, S. Mattei and D. Grevey. Laser brazing of a steel/aluminum assembly with hot filler metal. Materials Science and Engineering A. 2006, 435/436: 19-28.
    2 Y. Matsumura, S. Ogawa, T. Misaki. Joining process of dissimilar metal for aluminum roof. Welding International. 2008, 22(2): 73-76.
    3李亚江,王娟,刘强.有色金属焊接及应用.北京:化学工业出版社. 2006: 251-256.
    4 T. F. Kong, L. C. Chan, T. C. Lee. Experimental study of effects of process parameters in forge-welding bimetallic materials: AISI 316L stainless steel and 6063 aluminium alloy. Strain. 2009, 45(4): 373-379.
    5 M. Sahin. Joining of stainless-steel and aluminium materials by friction welding. International Journal of Advanced Manufacturing Technology. 2009, 41(5/6): 487-497.
    6 M. J. Rathod, M. Kutsuna. Joining of aluminum alloy 5052 and low-carbon steel by laser roll welding. Welding Journal. 2004, 83(1): 16-26.
    7 B. P.里亚博夫.铝及铝合金与其它金属的焊接.王义衡,赵瑞湘译.北京:宇航出版社. 1990: 3-41, 144-172.
    8 S. Kuroda, K. Saida, K. Nishimoto. Microstructure and properties of directly bonded joint of A6061 aluminum alloy to SUS316 stainless steel-study on diffusion bonding of aluminum alloy to stainless steel (Report 1). Quarterly Journal of the Japan Welding Society. 1999. 17(3): 484-489.
    9 G. Lorenzin, G. Rutili. the innovative use of low heat input in welding: Experiences on 'cladding' and brazing using the CMT process. Weling International. 2009, 23(8): 622-632.
    10 J. P. Bergmann, J. Wilden, S. Reich, S. F. Goecke. Methods and solutions for joining plates made from different metals using voltaic arc welding. Welding International. 2009, 23(12): 895-903.
    11 T. Takemoto, S. Kimura, Y. Kawahito, H. Nishikawa, S. Katayama. Fluxless joining of aluminium alloy to steel by laser irradiation method. WeldingInternational. 2009, 23(5): 316-322.
    12 G. Sierra, P. Peyre, F. Deschaux Beaume, D. Stuart and G. Fras. Galvanised steel to aluminium joining by laser and GTAW processes. Materials Characterization. 2008, 59(12): 1705-1715.
    13 F. W. Bacha, A. Beniyashb, K. Lauc and R. Versemann. Joining of steel-aluminum hybrid structures with electron beam on atmosphere. Advanced Materials Research. 2005, (6-8): 143-150.
    14 H. J. Park, S. Rhee, M. J. Kang, D. C. Kim. Joining of steel to aluminum alloy by AC pulse MIG welding. Materials Transactions. 2009, 50(9): 2314-2317.
    15 D. R. G. Achar, J. Ruge, S. Sundaresan. Metallurgical and mechanical investigations of aluminum-steel fusion welds (1). Aluminum. 1980, 56(6): 391-397.
    16关中原.国外铝、铝合金与不锈钢的电子束焊接.导弹与航天运载技术. 1987, (7): 68-72.
    17 R. Borrisutthekul, P. Mitsomwang, S. Rattanachan, Y. Mutoh. TIG welding of dissimilar metals between steel/aluminum alloy. Welding in the World. 2009, 53(SP.ISS.): 585-588.
    18 P. Peyre, G. Sierra, F. Deschaux-Beaume, D. Stuart and G. Fras. Generation of aluminum-steel joints with laser-induced reactive wetting. Materials Science and Engineering A. 2007, 444: 327-338.
    19 T. Murakami, K. Nakata, H, Tong. Dissimilar metal joining of aluminum to steel by MIG arc brazing using flux cored wire. ISIJ International. 2003, 43(10): 1596-1620.
    20雷振,于宁,游爱清,林尚扬. 5A02/Q235钢Nd: YAG激光-脉冲MIG复合热源熔钎连接.焊接学报. 2008, 29(6): 21-28.
    21张洪涛.铝/镀锌钢板CMT熔-钎焊机理研究.哈尔滨工业大学博士学位论文. 2008: 99-105.
    22 E. Nikitina. Metallurgical and technological special features of producing welded-case structures from aluminum alloys. Welding International. 2007, 21(4): 299-303.
    23刘津邦.钢材的热浸镀铝.北京:冶金工业出版社. 1995: 9-46, 127-143.
    24夏原.钢材浸铝和浸扩铝工艺及表层组织性能的研究.哈尔滨工业大学博士学位论文. 1995: 1-13.
    25 S. Marten, J. Sven, F. Uwe and D. Mike. Joining of steel-aluminium mixed joints with energy-reduced GMA processes and filler materials on an aluminium and zinc basis. Welding and Cutting. 2008, 7(1): 30-38.
    26 A. Mathieu, R. Shabadi, A. Deschamps, M. Suery, S. Matte?, D. Grevey, E. Cicala, Dissimilar material joining using laser (aluminum to steel using zinc-based filler wire). Optics & Laser Technology. 2007, 39(3): 652-661.
    27 L. Agudo, S. Weber, A. Leitner, E. Arenholz, J. Bruckner, H. Hackl, A. Pyzalla. Influence of filler composition on the microstructure and mechanical properties of steel-aluminum joints produced by metal arc joining. Advanced Engineering Materials. 2009, 11(5): 350-358.
    28 H. Ozaki, M. Kutsuna. Laser-roll welding of a dissimilar metal joint of low carbon steel to aluminium alloy using 2KW fiber laser. Welding International. 2009, 23(5): 345-352.
    29 M. K. Karfoul, G. J. Tatlock, R. T. Murray. The behaviour of iron and aluminium during the diffusion welding of carbon steel to aluminium. Journal of Materials Science. 2007, 42(14): 5692-5699.
    30 R. Lewis. Joining of aluminum by methods other than fusion welding. Aluminum Industry. 1992, 11(4): 16-19.
    31 S. Elliott, E. Wallach. Joining aluminum to steel, Part 2-Friction Welding. Metal Construction. 1981, 13(4): 221-225.
    32 T. Yokoyama, I. Yasuyuki. Impact tensile properties of 6061 aluminum alloy to SUS 304 stainless steel friction-welded butt joints. Welding International. 2003, 17(7): 514-523.
    33 M. Sahin. Joining of stainless-steel and aluminium materials by friction welding. International Journal of Advanced Manufacturing Technology. 2009, 41(5/6): 487-497.
    34 G. Madhusudhan, A. Sambasiva, T. Mohandas. Role of electroplated interlayer in continuous drive friction welding of AA6061 to AlSl 304 dissimilar metals. Science and Technology of Welding and Joining. 2008, 13(7): 619-628.
    35 N. Yamamoto, M. Takahashi, M. Aritoshi, K. Ikeuchi. Effect of intermetallic compound layer on bond strength of friction-welded interface of commercially pure aluminum to mild steel. Quarterly Journal of the Japan Welding Society. 2005, 23(4): 622-627.
    36 N. Yamamoto, M. Takahashi, M. Aritoshi, K. Ikeuchi. Effect of interfacial layer on bond strength of friction-welded interface of Al-Mg5083 alloy to mild steel. Quarterly Journal of the Japan Welding Society. 2005, 23(3): 496-503.
    37 N. Yamamoto, M. Takahashi, M. Aritoshi, K. Ikeuchi. Effect of intermetallic compound layer on bond strength of friction-welded interface of Al-Mg5052 alloy to mild steel. Quarterly Journal of the Japan Welding Society. 2005, 23(2): 352-358.
    38 R. S. Coelho, A. Kostka, S. Sheikhi, J. Dos Santos, A. R. Pyzalla. Microstructure and mechanical properties of an AA6181-T4 aluminium alloy to HC340LA high strength steel friction stir overlap weld. Advanced Engineering Materials. 2008, 10(10): 961-972.
    39 R. S. Coelho, A. Kostka, J. Dos Santos, A. R. Pyzalla. EBSD technique visualization of material flow in aluminum to steel friction-stir dissimilar welding. Advanced Engineering Materials. 2008, 10(12): 1127-1133.
    40 T. Watanabe, H. Takayama, A. Yanagisawa. Joining of aluminum alloy to steel by friction stir welding. Journal of Materials Processing Technology. 2006, 178(1-3): 342-349.
    41 C. M. Chen, R. Kovacevic. Joining of Al 6061 alloy to AISI 1018 steel by combined effects of fusion and solid state welding. International Journal of Machine Tools and Manufacture. 2004, 44(11): 1205-1214.
    42 H. Uzun, C. Donne, A. Argagnotto. Friction stir welding of dissimilar Al 6013-T4 To X5CrNi18-10 stainless steel. Materials and Design. 2005, 26(1): 41-46.
    43 W. Lee, M. Schmuecker, U. Mercardo, G. Biallas and S. Jung. Interfacial reaction in steel-aluminum joints made by friction stir welding. Scripta Materialia. 2006, 55(4): 355-358.
    44 Y. C. Chen, T. Komazaki, Y. G. Kim, T. Tsumura and K. Nakata. Interface microstructure study of friction stir lap joint of AC4C cast aluminum alloy and zinc-coated steel. Materials Chemistry and Physics. 2008, 111(2-3): 375-380.
    45 M. Roulin, J. W. Luster, G. Karadenz, A. Mortensen. Strength and structure of furnace-brazed joints between aluminum and stainless steel. Welding Journal. 1999, 78(5): 151-155.
    46 M. Naka, T. Okada. Ultrasonic joining of steel to aluminum. Proceedings of the3rd International Brazing and Soldering Conference. 2006: 303-306.
    47张启运,庄鸿寿.钎焊手册.第2版.北京:机械工业出版社. 2008: 36-73, 597-610.
    48何鹏,冯吉才,钱乙余.接触反应法解决铝/不锈钢钎焊的缺陷及脆性.材料科学与工艺. 2005, 13(1): 82-85.
    49曲文卿,董峰,齐志刚,庄鸿寿,孟伟.异种材料的连接.航天制造技术. 2006, (3): 44-49.
    50 P. Liu, Y. Li, J. Wang, J. Guo. Vacuum brazing technology and microstructure near the interface of Al/18-8 stainless steel. Materials Research Bulletin. 2003, 38(9/10): 1493–1499.
    51吕学勤,吴毅雄,张庆云. Al-不锈钢连接中的Ni层阻碍机理.上海交通大学学报. 2003, 37(2): 164-166, 170.
    52 W. Song, K. Saida, A. Ando and K. Nishimoto. Brazability of aluminum alloy to steels using aluminum filler metal-Dissimilar laser brazing of aluminum alloy and steels (Report 1). Quarterly Journal of the Japan Welding Society. 2004, 22(2): 315-322.
    53 F. Wagner, I. Zerner, M. Kreimeyer. Characterization and Properties of Dissimilar Metal Combinations of Fe/Al and Ti/Al-Sheet Materials. International Congress on Applications of Lasers & Electro-Optics, Jacksonville, FL, USA. 2001: 365-374.
    54 A. Mathieu, S. Pontevicci, J. Viala, E. Cicala, S. Mattei and D. Grevey. Laser brazing of a steel/aluminium assembly with hot filler wire (88% Al, 12% Si). Materials Science and Engineering A. 2006, 435-436:19-28.
    55曾如川.铝镁合金/钢异种材料电子束焊接性研究.哈尔滨工业大学硕士学位论文. 2006: 34-54.
    56张秉刚,何景山,曾如川,冯吉才. LF2铝合金与Q235钢加入中间Cu层电子束焊接接头组织及形成机理.焊接学报. 2007, 28(6): 37-40.
    57 D. R. G. Achar, J. Ruge, S. Sundaresan. Metallurgical and mechanical investigations of aluminum-steel fusion welds (II). Aluminum. 1980, 56(7): 465-469.
    58 J. Wilden, J. P. Bergmann, M. Dolles, S. Reich, S. Fernande, S. F. Goecke. Low temperature brazing of zinc coated steel and steel/aluminium joints by setting Zn AI-Alloys as brazing material. Proceedings of the 3rd International Brazingand Soldering Conference, San Antonio, TX, United States. 2006: 32-39.
    59 J. Bruckner. Cold metal transfer has a future joining steel to aluminum. Welding Journal. 2005, 86(6): 38-40.
    60 H. Pinto, A. Pyzalla, H. Hackl, J. Bruckner. A comparative study of microstructure and residual stresses of CMT-, MIG - And laser-hybrid welds. Residual Stresses VII - Proceedings of the 7th European Conference on Residual Stresses, ECRS 7. 2006: 625-632.
    61 L. Agudo, S. Weber, H. Pinto, E. Arenholz, J. Wagner, H. Hackl, J. Bruckner, A. Pyzalla. Study of microstructure and residual stresses in dissimilar Al/steels welds produced by cold metal transfer. Materials Science Forum. 2008, 571/572: 347-353.
    62 L. Agudo, N. Jank, J. Wagner, S. Weber, C. Schmaranzer, E. Arenholz, J. Bruckner, H. Hackl, A. Pyzalla. Investigation of microstructure and mechanical properties of steel-aluminium joints produced by metal arc joining. Steel Research International. 2008, 79(7): 530-535.
    63 L. Agudo, D. Eyidi, C. H. Schmaranzer, E. Arenholz, N. Jank, J. Bruckner, A. Pyzalla. Intermetallic FexAly-phases in a steel/Al-alloy fusion weld. Journal of Materials Science. 2007, 42(12): 4205-4214.
    64冯吉才,何鹏,张洪涛.铝钢异种金属预涂层连接方法.中国:国家发明专利.申请号: 200810064272.2.
    65 U. R. Kattner, B. P. Burton. Phase Diagrams of Binary Iron Alloys. ASM International, Materials Park, Ohio, USA. 1993: 12-28.
    66 P. M. Robinson, M. B. Bever. Thermodynamic Properties of Metals and Alloys. John Wiley & Sons, New York, USA. 1967: 69.
    67 M. Yasuyama, K. Ogawa and T. Taka. Spot welding of aluminium and steel sheet with insert of aluminium clad steel sheet. Sumitomo Metals. 1996, 48(4): 87-95.
    68 S. Miyazaki, A. Kawachi, S. Kumai, A. Sato. Plastic deformation of hardly deformable Al13Fe4 particles embedded in an Al-Al13Fe4 dual phase alloy. Materials Science and Engineering A. 2005, 400/401(1/2): 294-299.
    69 N. Yoneyama, K. Mizoguchi, S. Kumai, A. Sato, M. Kiritani. Plastic deformation of Al13Fe4 particles in Al-Al13Fe4 by high-speed compression. Materials Science and Engineering A. 2003, 350(1/2): 117-124.
    70刘津邦.钢材的热浸镀铝.北京:冶金工业出版社. 1995: 9-46, 127-143.
    71 T. Heumann, N. A. Dittrich. Structure character of the Fe2Al5 intermetallics compound in hot dip aluminizing process. Z. Metallk. 1959, 50: 617-625.
    72 K. Saito, K. Sugiyama, K. Hiraga. Al13M4-type structures and atomic models of their twins. Materials Science and Engineering A. 2000, 294/296: 279-282.
    73刘中青,邸斌.异种材料的焊接.北京:科学出版社. 1990: 68-77.
    74 G. Adam. The investigation on the microstructure model of aluminized steel. Metallurgical Transactions A. 1977, 8(4): 973-975.
    75李君.激光焊接钢-铝薄板焊缝材料的研究.焊接技术. 2006, 35(4): 25-27.
    76 Y. J. Li, L. Arnberg. A eutectoid phase transformation for the primary intermetallic particle from Alm(Fe,Mn) to Al3(Fe,Mn) in AA5182 alloy. Acta Materialia. 2004, 52(10): 2945-2952.
    77 M. Genba, K. Sugiyama, K. Hiraga, Y. Yokoyama. Crystalline structure of a Cu-substitutedλ-Al13Fe4 phase by means of the anomalous X-ray scattering. Journal of Alloys and Compounds. 2002, 342(1/2): 143-147.
    78 L. G. Hou, H. Cui, Y. H. Cai, J. S. Zhang. Effect of (Mn+Cr) addition on the microstructure and thermal stability of spray-formed hypereutectic Al-Si alloys. Materials Science and Engineering A. 2009, 527(1/2): 85-92.
    79 K. Stein-Fechner, J. Konys, O. Wedemeyer. Investigations on the transformation behavior of the intermetallic phase (Fe,Cr)2Al5 formed on MANET II steel by aluminizing. Journal of Nuclear Materials. 1997, 249(1): 33-38.
    80 L. Dubourg, F. Hlawka, A. Cornet. Study of aluminium-copper-iron alloys: application for laser cladding. Surface and Coatings Technology. 2002, 151/152: 329-332.
    81于文花,朱颖,康慧,曲平. Al-Si-Cu-Ni低熔点钎料中合金元素对其性能的影响.焊接. 2002, (11): 21-25.
    82 A. Boag, A. E. Hughes, N. C. Wilson, A. Torpy, C. M. MacRae, A. M. Glenn, T. H. Muster. How complex is the microstructure of AA2024-T3?. Corrosion Science. 2009, 51(8): 1565-1568.
    83 M. V. Akdeniz, A. O. Mekhrabov. Effect of substitutional impurities on the evolution of Fe-Al diffusion layer. Acta Materialia. 1998, 46(4): 1185-1192.
    84杨静,邱绍宇,朱金霞等.低熔点Ag-Al-Mn-Si合金钎料的钎焊工艺性能研究.核动力工程. 2005, 26(3): 259-264.
    85章桥新.论金属间化合物的脆性及其克服途径.稀有金属材料与工程. 1990, (6): 27-32.
    86郭建亭,孙超,谭明晖,李辉,赖万慧.合金元素对Fe3Al和FeAl合金力学性能的影响.金属学报. 1990, 26(1): 20-25.
    87周银娥.化学成分及合金元素对Fe-Al系金属间化合物微观缺陷和d电子的影响.广西大学硕士学位论文. 2005: 1-50.
    88张启运,刘淑淇.高温铝钎料的选择及其与母材的相互作用.金属学报. 1981, 17(3): 300-306.
    89胡刚,康慧,赵鹏飞,曲平.锡、镓对铝钛异种合金真空钎焊的影响.航空精密制造技术. 2001, 37(4): 15-19.
    90黄明宇,丁健君,顾卫标等.稀土在铝合金常规供应态、动态超塑性中的作用分析.江苏冶金. 2000, (5): 1-4.
    91马海军,李亚江,王娟. Al/Cu异种有色金属的真空钎焊工艺.焊接技术. 2007, 36(1): 36-40.
    92张伟.钢热浸镀铝层的组织结构和稀土镧的行为研究.西安理工大学博士学位论文. 2006: 22-58.
    93王利国. RE, B对AM60合金显微组织和性能的影响.稀有金属材料与工程. 2007, 36: 59-63.
    94 H. Laukant, C. Wallmann, M. Korte, U. Glatzel. Flux-less joining technique of aluminium with zinc-coated steel sheets by a dual-spot-laser beam. Advanced Materials Research. 2005, 6-8: 163-170.
    95 A. Mathieu, S. Matte?, A. Deschamps, B. Martin, D. Grevey. Temperature control in laser brazing of a steel/aluminium assembly using thermographic measurements. NDT and E International. 2006, 39(4): 272-276.
    96 T. Markovits, J. Takács, A. Lovas, J. Belt. Laser brazing of aluminium. Journal of Materials Processing Technology. 2003, 143/144(1): 651-655.
    97 E. V. Nikitina. Using suspensions of fluxes in arc welding of aluminium alloys. Welding International. 2006, 20(3): 222-225.
    98 R. Chen, Q. Zhang. Investigation of the Ternary System AlF3-KF-CsF. Journal of Solid State Chemistry. 2001, 161(1): 80-84.
    99 R. Chen, Q. Zhang. Investigation of the systems KAlF4-M3AlF6 (M=Rb, Cs). Thermochimica Acta. 354(1/2): 117-120.
    100吕学勤,杨尚磊,吴毅雄,奕尚清.铝合金与不锈钢钎焊用钎剂性能研究.焊接设备与材料. 2003, 32(4): 45-46.
    101陈根宝,黄明泰,刘佳炎.一种氟化物钎剂与一种铝硅型钎料.中国:国家发明专利.申请号: 87101020A, 1987.
    102陈志祥,曾燕,蔡志红,蔡沛沛,黄齐博.一种不锈铁-铝钎焊用无腐蚀钎剂.中国:国家发明专利.申请号: 01107835.8, 2001.
    103陈志祥,曾燕,蔡志红,蔡沛沛,刘宏江,张碧波.一种不锈铁-铝高频感应压力钎焊用无腐蚀钎剂.中国:国家发明专利.申请号: 200410077757.7, 2004.
    104攸彭,张锡清.一种不锈铁-铝钎焊用的新型钎剂.中国:国家发明专利.申请号: 200410002115.0, 2004.
    105卢锦堂,许乔瑜.热浸镀技术与应用.北京:机械工业出版社. 2006: 34-58.
    106朱立.钢材热镀锌.北京:化学工业出版社. 2006: 30-43, 227-242.
    107 S. P. Gupta. Intermetallic compound formation in Fe-Al-Si ternary system: Part I. Materials Characterization. 2003, 49(4): 269-291.
    108 Y. Li, P. Ochin, A. Quivy, P. Telolahy, B. Legendre. Enthalpy of formation of Al-Fe-Si alloys (τ5,τ10,τ1,τ9). Journal of Alloys and Compounds. 2000, 298: 198-202.
    109 Y. Li, B. Legendre. Enthalpy of formation of Al-Fe-Si alloys II (τ6,τ2,τ3,τ8,τ4). Journal of Alloys and Compounds. 2000, 302: 187-191.
    110 G.. Rosas, R. Perez. On the relationship between isothermal phase diagrams and quasicrystalline phase transformations in AlCuFe alloys. Materials Science and Engineering A. 2001, 298(1/2): 79-83.
    111 R. Qiu, C. Iwamoto, S. Satonaka. Interfacial microstructure and strength of steel/aluminum alloy joints welded by resistance spot welding with cover plate. Journal of Materials Processing Technology. 2009, 209(8): 4186-4193.
    112 E. Frutos, J. L. González-Carrasco, C. Capdevila, J. A. Jiménez, Y. Houbaert. Development of hard intermetallic coatings on austenitic stainless steel by hot dipping in an Al-Si alloy. Surface and Coatings Technology. 2009, 203(19): 2916-2920.
    113 Y. Y. Chang, W. J. Cheng, C. J. Wang. Growth and surface morphology of hot-dip Al-Si on 9Cr-1Mo steel. Materials Characterization. 2009, 60(2): 144-149.
    114威廉.劳斯特克,詹姆斯. R.德伏莱克.刘以宽,魏馥铭,周莲译.金相组织解说.上海:上海科学技术出版社. 1984: 50-82.
    115丁惠麟,辛智华.实用铝、铜及其合金金相热处理和失效分析.北京:机械工业出版社. 2008: 1-104, 690-702.
    116 T. Sritharan, S. Murali, P. Hing. Synthesis of aluminium-iron-silicon intermetallics by reaction of elemental powders. Materials Science and Engineering A. 2000, 286(2): 209-217.
    117 S. Seifeddine, S. Johansson, I. L. Svensson. The influence of cooling rate and manganese content on theβ-Al5FeSi phase formation and mechanical properties of Al-Si-based alloys. Materials Science and Engineering A. 2008, 409(1/2): 385-390.
    118 Y. Du, J. C. Schuster, Z. K. Liu, R. Hu, P. Nash, W. Sun, W. Zhang, J. Wang, L. Zhang, C. Tang, Z. Zhu, S. Liu, Y. Ouyang, W. Zhang, N. Krendelsberger. A thermodynamic description of the Al-Fe-Si system over the whole composition and temperature ranges via a hybrid approach of CALPHAD and key experiments. Intermetallics. 2008, 16(4): 554-570.
    119 M. Vybornov, P. Rogl, F. Sommer. On the thermodynamic stability and solid solution behavior of the phasesτ5-Fe2Al7.4Si andτ6-Fe2Al9Si2. Journal of Alloys and Compounds. 1997, 247(1/2) 154-157.
    120程兰征,章燕豪.物理化学.上海:上海科学技术出版社. 2007: 3-112, 293- 302.
    121莫春立,钱百年,国旭明,于少飞.焊接热源计算模式的研究进展.焊接学报. 2001, 22(3): 93-96.
    122武传松.焊接过程与熔池形态.北京:机械工业出版社. 2008: 54-82.
    123黄德彬.有色金属材料手册.北京:化学工业出版社. 2005: 216-220.
    124赵玉珍.焊接熔池的流体动力学行为及凝固组织模拟.北京工业大学博士学位论文. 2004: 40-79.
    125 K. Bouche, F. Barbier, A. Coulet. Intermetallic compound layer growth between solid iron and molten aluminum. Materials Science and Engineering A. 1998, 249(1/2): 167-175.
    126 S. Kobayashi, T. Yakou. Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment. Materials Science and Engineering A. 2002, 338(1/2): 44-53.
    127祝汉良.压铸模与铝铸件间的焊合机理及其影响因素的研究.哈尔滨工业大学博士学位论文. 1998: 41-97.
    128陈树海. Ti/Al异种合金激光熔钎焊工艺与连接机理.哈尔滨工业大学博士学位论文. 2009: 86-110.
    129 A. E. Kiv, V. I. Ezersky, M. M. Talianker. The stability of structures with icosahedral local order in Al-based alloys with transition metals. Materials Science and Engineering A. 2003, 352(1/2): 100-104.
    130 T. L. Hu, H. L. Huang, D. Gan, T. Y. Lee. The microstructure of aluminized type
    310 stainless steel. Surface and Coatings Technology. 2006, 201(6): 3502-3509.
    131 D. Wang, Z. Shi. Aluminizing and oxidation treatment of 1Cr18Ni9 stainless steel. Applied Surface Science. 2004, 227(1/4): 255-260.
    132 G. H. Awan, F. ul Hasan. The morphology of coating/substrate interface in hot-dip-aluminized steel. Materials Science and Engineering A. 2008, 472(1/2): 157-165.
    133 M. V. Kral. A crystallographic identification of intermetallic phases in Al-Si alloys. Materials Letters. 2005, 59(18): 2271-2276.
    134 H. Y. Kim, T. Y. Park, S. W. Han, H. M. Lee. Effects of Mn on the crystal structure ofα-Al(Mn,Fe)Si particles in A356 alloys. Journal of Crystal Growth. 2006, 291(1): 207-211.
    135 K. A. Nazari, S. G. Shabestari. Effect of micro alloying elements on the interfacial reactions between molten aluminum alloy and tool steel. Journal of Alloys and Compounds. 2009, 478(1/2): 523-530.
    136 C. M. Dinnis, J. A. Taylor, A. K. Dahle. As-cast morphology of iron-intermetallics in Al-Si foundry alloys. Scripta Materialia. 2005, 53(8): 955-958.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700