用户名: 密码: 验证码:
铝合金薄壁结构搅拌摩擦焊热—力学过程的研究及模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
搅拌摩擦焊是一项先进的固相焊接技术,在航空航天等精密制造领域有广阔的应用前景。但目前该方法在热及力学过程方面的研究并不完善,严重影响了人们科学和准确地认识和应用这项先进技术。基于此,本文深入研究搅拌头和被焊材料的相互作用,建立了计算焊接生热功率的生热方程,理清了热载荷和搅拌头机械载荷对接头残余应力和变形的影响,实现了工程结构焊后残余应力和变形的高效预测。本研究具有基础研究和生产指导两方面的重要意义。
     设计和开展不同工艺参数条件下的铝合金搅拌摩擦焊试验,通过测量搅拌头扭矩和焊接温度场的变化,系统分析了转速、焊速和下压力对搅拌摩擦焊生热功率的影响规律,发现搅拌摩擦焊能始终保持固相过程的根本原因在于其生热和温度具有反馈平衡作用。以搅拌摩擦焊中的功热转换为基础,结合工艺参数对生热功率的影响规律,建立了能体现固相焊接过程并能全面反映转速、下压力和焊速影响的生热方程,实现了直接依据工艺条件计算焊接热输入量、预测焊接温度场、预测焊接所需主轴扭矩等目标。
     针对铝合金薄板在搅拌摩擦焊后残余应力和变形与电弧焊结果显著不同的现象,利用数值模拟工具深入探索搅拌头机械载荷对被焊结构瞬态应力应变的影响规律和机制。发现搅拌头下压力具有增加搅拌区材料受力状态中的静水压力成分、增大试板下表面和垫板之间的摩擦力、使搅拌区内靠近试板上表面的材料产生面内附加膨胀等作用,是铝合金薄板搅拌摩擦焊后残余变形与电弧焊结果相反的根本原因,同时对残余应力和变形的减小也有贡献,而搅拌头扭矩主要导致焊接残余应力产生不对称的分布特征,对残余变形影响较小。
     根据搅拌头与被焊材料之间相互作用的研究结果,建立了合理的搅拌摩擦焊应力和变形数值分析模型,为提高残余应力和变形数值预测的效率,开发了以温度为控制变量、并且温度载荷分段添加的温度函数法。对于大型薄壁结构件的焊接残余应力和变形,温度函数法计算结果与移动热源法计算结果的差别在15%以内,但计算时间可以减少到移动热源法的10%以内。利用温度函数法实现了铝合金薄壁结构搅拌摩擦焊残余变形的高效预测。
Friction stir welding (FSW) is an advanced solid state joining technology, which has great potential of application in many fields like aerospace industry. The thermo-mechanical effect of FSW on welded structure becomes more and more important in industry application. Meanwhile the thermo-mechanical effect of FSW is different from most arc welding processes for its lower temperature, lower residual stress and small distortion. Therefore, the interaction between stir tool and the material being welded, which is the most important character of FSW, was investigated in this dissertation. First, an equation was established to calculate the heat generation. Then, the effects of thermal load and stir tool’s mechanical loads on welding residual stress and distortion of joint were distinguished. Finally, a high efficiency numerical simulation method was developed to predict the residual stress and distortion of engineering structures after FSW. The research in this dissertation could give powerful supports in some aspects of foundational research and application of FSW.
     FSW experiments on aluminium alloy sheets with different rotation speed, travel speed and down force were carried out, and the torques of stir tool and the welding temperature fields were also measured during welding process. Based on these measured results, the influence of rotation speed, travel speed and down force on heat generation was discussed. The results of experiment and analysis showed that there was a reactive-balanceable effect between heat generation and welding temperature in FSW, which resulted in the solid state welding process. Based on the transformation from mechanical energy to heat energy and the influence of welding parameters on heat generation in FSW process, an equation was established to calculate the heat generation using only welding parameters. The equation successfully represented the solid state welding process and the influence of rotation speed, travel speed and down force on heat generation in FSW. With this heat generation equation, the welding temperature field and the torque of stir tool during FSW process can be predicted through numerical simulation.
     The residual stress and distortion of aluminium alloy sheet after FSW are obviously different from those of the arc fusion weld. Their distortion directions are opposite, and the value of residual stress and distortion in FSW is lower than those in arc welding. According to this phenomenon, the trends and mechanisms of the stir tool’s mechanical loads affecting on the transient stress and strain of welded structure were analyzed with numerical simulation. The investigation finds out that the down force of stir tool have the functions of increasing the components of hydrostatic stress in the stress state of the material in stir zone, increasing the friction between back plate and bottom surface of welded sheet, and bringing additional expansion in longitudinal and transversal direction of the sheet to the material in the upper part of stir zone besides the thermal expansion. These functions of down force are the essential reasons for the abnormal distortion phenomenon on the friction stir welded aluminium alloy sheet compared with the conventional arc welding. The torque of stir tool results in the asymmetrical distribution of residual stress in FSW, but it has little influence on residual distortion.
     According to the investigation of the interaction between stir tool and material being welded, a reasonable numerical simulation model on FSW was established to analyze the residual stress and distortion. In order to enhance the efficiency of the numerical calculation, a new welding numerical simulation technique called temperature function method was developed, in which the controlling variable was welding temperature, and this temperature was added into the model in subsection form. For the prediction of welding residual stress and distortion of large structure, the error between computed results from the temperature function method and the moving heat source method was no more than 15%, while the time cost in the temperature function method is less than 10% of that in the moving heat source method. At last, the temperature function method was applied to predict the residual stress and distortion of aluminium alloy thin-walled structure after FSW.
引文
[1] Thomas W M, Nicholas E D, Needham J C, et al. Friction Stir Welding. International Patent Application No. PCT/GB92102203 and Great Britain Patent Application No. 9125978.8, 1991.
    [2] Mishra R S, Ma Z Y. Friction stir welding and processing. Materials Science and Engineering, 2005, R50:1-78.
    [3] Threadgill P L, Leonard A J, Shercliff H R, et al. Friction stir welding of aluminium alloys. International Materials Reviews, 2009, 54(2):49-93.
    [4] Nandan R, DebRoy T, Bhadeshia H K D H. Recent advances in friction stir welding-Process, weldment structure and properties. Materials Science, 2008, 53:980-1023.
    [5]关桥,栾国红.搅拌摩擦焊的现状与发展.中国机械工程学会焊接学会第十一次全国焊接会议论文集(第一册):D15-D29.
    [6]关桥.轻金属材料结构制造中的搅拌摩擦焊技术与焊接变形控制(上).航空科学技术, 2005, 4:13-16.
    [7]任淑荣,马宗义,陈礼清,等.搅拌摩擦焊接及其加工研究现状与展望.材料导报, 2007, 21(1):86-92.
    [8] Tweedy B M, Arbegast W A, Hrabe R H, et al. Aging weapons systems repair using friction stir welding. Friction Stir Welding and Processing V: 237-246, 2009.
    [9] Kyffin W J, Russell M J. Friction stir welding for nuclear reactor repair. Stainless Steel Industry, 2007, 4:17-20.
    [10] Lohwasser D: Application of friction stir welding for aircraft industry. Proceedings of 2nd international Symposium on Friction Stir Welding, Gothenburg, Sweden, 2000.
    [11]栾国红.飞机制造中的搅拌摩擦焊技术及其发展.航空制造技术, 2009, 20:26-31.
    [12]赵明书,董春林,栾国红,等.搅拌摩擦焊在列车制造中的优势分析及应用现状.航空制造技术, 2009, 21:66-68.
    [13]付娟,赵勇,严铿.搅拌摩擦焊在铝合金船舶建造中的应用.中外船舶科技, 2008, 1:15-19.
    [14]董春林,栾国红,关桥.搅拌摩擦焊在航空航天工业的应用发展现状与前景.焊接, 2008, 11:25-31.
    [15]王月,吴始栋.搅拌摩擦焊在海军装备上的应用.鱼雷技术, 2007, 3:12-18.
    [16] Afrin N, Chen D L, Jahazi M. Microstructure and tensile properties of friction stir welded AZ31B magnesium alloy. Material Science Engineering: A, 2008, 472:179-186.
    [17] Sakthivel T, Mukhopadhyay J. Microstructure and mechanical properties of friction stir welded copper. Journal of Material Science, 2007, 42:8126-8129.
    [18] Ramirez A J, Juhas M C. Microstructural evolution in Ti–6Al–4V friction stir welds. Material Science Forum, 2003, 426-432:2999-3004.
    [19] Fujii H, Cui L, Tsuji N, et al. Friction stir welding of carbon steels. Material Science Engineering: A, 2006, 429:50-57.
    [20]柴鹏,栾国红.搅拌摩擦焊技术的新起点——钢的焊接.焊接, 2007, 2:11-16.
    [21]黄春平,邢丽,柯黎明,等.紫铜与低碳钢厚板搅拌摩擦焊工艺分析.焊接学报, 2009, 30(12):37-40.
    [22]王快社,张小龙,沈洋,等. TC4钛合金搅拌摩擦焊连接组织形貌研究.稀有金属材料与工程, 2008, 37(11):2045-2047.
    [23] D.拉达伊.焊接热效应温度场、残余应力、变形.北京:机械工业出版社, 1997.
    [24]张培磊,严铿,赵勇.搅拌摩擦焊温度场最新研究进展.热加工工艺, 2006, 35(7):57-59.
    [25] Khandkar M Z H, Khan J A. Thermal modeling of Overlap friction stir welding for Al-alloys. Journal of Materials Processing & Manufacturing Science, 2001, 10:91-105.
    [26] Schmidt H, Hattel J, Wert J. An analytical model for the heat generation in friction stir welding. Modeling and Simulation in Materials Science and Engineering, 2004, 12:143-157.
    [27] Tang W, Guo X, McClure J C, et al. Heat input and temperature distribution in friction stir welding. Journal of Materials Processing & Manufacturing Science, 1998, 7:163-172.
    [28] Fourment L, Guerdoux S. Numerical simulation of the friction stir welding process using both lagrangian and arbitrary lagrangian eulerian formulations. Proceedings of 5th international Symposium on Friction Stir Welding, France, 2004.
    [29] Simar A, Pardoen T. Influence of friction stir welding parameters on the power input and temperature distribution in aluminium alloys. Proceedings of 5th international Symposium on Friction Stir Welding, France, 2004.
    [30] Zhang H W, Zhang Z, Chen J T. Finite element simulation of the friction stir welding process. Material Science and Engineering: A, 2005, 403:340-348.
    [31] Rhodes C G, Mahoney M W, Bingel W H, et al. Effects of friction stir welding on microstructure of 7075 aluminum. Scripta materialia, 1997, 36(1):69-75.
    [32] Liu G, Murr L E, Niou C S, et al. Microstructural aspects of the friction-stir welding of 6061-T6 aluminum. Scripta materialia, 1997, 37(3):355-361.
    [33] Murr L E, Liu G, McClure J C. A TEM study of precipitation and related microstructures in friction-stir-welded 6061 aluminium. Journal of materials science, 1998, 33(5):1243-1251.
    [34] Mahoney M W, Rhodes C G, Flintoff J G, et al. Properties of FSWed 7075-T651 aluminum. Metallurgical and Materials Transcation: A, 1998, 29(7):1955-1964.
    [35] Sato Y S, Kokawa H, Enmoto M, et al, Microstructural evolution of 6063 aluminum during friction-stir welding. Metallurgical and Materials Transcation: A, 1999, 30(9):2429-2437.
    [36] Kwon Y J, Saito N, Shigematsu I. Friction stir process as a new manufacturing technique of ultrafine grained aluminum alloy. Journal of materials science letters, 2002, 21(19):1473-1476.
    [37] Yeong-Maw Hwang, Zong-Wei Kang, Yuang-Cherng Chiou, Hung-Hsiou Hsu. Experimental study on temperature distributions within the workpiece during friction stir welding of aluminum alloys. International Journal of Machine Tools & Manufacture, 2008, 48:778-787.
    [38] Sato Y S, Urata M, Kokawa H. Parameters controlling microstructure and hardness during friction-stir welding of precipitation-hardenable aluminum alloy 6063. Metallurgical and Materials Transcation: A, 2002, 33(3):625-635.
    [39]徐韦锋,刘金合,栾国红,等.厚板铝合金搅拌摩擦焊温度场的检测与分析.机械科学与技术, 2008, 27(9):1159-1162.
    [40]王丽.搅拌摩擦焊接热力耦合[硕士学位论文].兰州:兰州理工大学, 2007.
    [41] Song M, Kovacevic R, Thermal modeling of friction stir welding in a moving coordinate system and its validation, International Journal of Machine Tools & Manufacture, 2003, 43:605-615.
    [42] Li Y, Murr L E, McClure J C. Flow visualization and residual microstructures associated with the friction-stir welding of 2024 aluminum to 6061 aluminum. Material Science and Engineering: A, 1999, 271(1-2):213-223.
    [43] Heinz B, Skrotzki B. Characterization of a friction-stir-welded aluminum alloy 6013. Metallurgical and Materials Transactions: B, 2002, 33(3):489-498.
    [44] Sato Y S, Kokawa H, Enmoto M, et al. Precipitation sequence in friction stir weld of 6063 aluminum during aging. Metallurgical and Materials Transcation: A, 1999, 30(12):3125-3130.
    [45] Su J Q, Nelson T W, Mishra R S, et al. Microstructural investigation friction stir welded 7050-T651 aluminium. Acta Materialia, 2003, 51(3):713-729.
    [46] Gould J E, Feng Z L. Heat flow model for FSW of aluminum alloys. Journal of Materials Processing & Manufacturing Science, 1998, 7:185-194.
    [47]李红克.铝合金薄板搅拌摩擦焊变形规律及其产生机理的研究[博士后研究报告].北京:清华大学, 2007.
    [48]严铿,雷艳萍,章正,等.铝合金搅拌摩擦焊时焊接速度与热输入的关系.焊接学报, 2009, 30(1):73-76.
    [49]鄢东洋,史清宇,吴爱萍,等.搅拌摩擦焊接过程的试验测量及分析.焊接学报, 2010, 31(2):67-70.
    [50]张昭,张洪武.搅拌摩擦焊接中材料变形及残余应力分析.兵器材料科学与工程, 2006, 29(3):61-66.
    [51]王希靖,韩晓辉.基于FLUENT的铝合金搅拌摩擦焊三维流场数值模拟.电焊机, 2006, 36(1):48-50.
    [52]张昭,张洪武.搅拌摩擦焊中动态再结晶及硬度分布的数值模拟.金属学报, 2006, 42(9):998-1002.
    [53] Qin X L, Michaleris P. Elasto-visco-plastic analysis of welding residual stress. Science and Technology of Welding & Joining, 2009, 14(7):606-615.
    [54]汪建华,姚舜,魏良武.搅拌摩擦焊的传热和力学计算模型.焊接学报, 2000, 21(4):61-64.
    [55] Frigaard O, Grong O, Midling O T. A process model for friction stir welding of age hardening aluminum alloys. Metallurgical and Materials Transactions: A, 2001, 32(5):1189-1200.
    [56] Schmidt H, Hattel H. Modeling of friction stir welding. Proceeding of 5th International Symposium on Friction Stir Welding, France, 2004.
    [57]张培磊,赵勇,严铿,蒋成禹.铝合金搅拌摩擦焊温度场的数值模拟.江苏科技人学学报(自然科学版), 2005, 19(6):88-91.
    [58] Khandkar M Z H, Khan J A, Reynolds A P. Prediction of temperature distribution and thermal history during friction stir welding: input torque based model. Science and Technology of Welding and Joining, 2003, 8:165-174.
    [59] Shi Qing-yu, Dickerson T, Shercliff H R. Thermo-mechanical analysis on welding process of aluminium 2024 with TIG and FSW. Proceeding of 6th International Conference on Trends in Welding Research, USA, 2003.
    [60] Dickerson T L, Shi Qing-yu, Shercliff H R. Heat flow into friction stir welding tools. Proceedings of 4th International Symposium on Friction Stir Welding, USA, 2003.
    [61] Shi Qing-y, Dickerson T, Shercliff H R. Thermo-mechanical FE modelling of friction stir welding of Al-2024 including tool loads. Proceedings of 4th International Symposium on Friction Stir Welding, USA, 2003.
    [62] Gallais C, Denquin A. Modelling the relationship between process parameters, microstructural evolutions and mechanical behaviour in a friction stir welded 6XXX aluminium alloy. Proceedings of 5th International Symposium on Friction Stir Welding, France, 2004.
    [63]李红克,史清宇,赵海燕,等.热量自适应搅拌摩擦焊热源模型.焊接学报, 2006, 27(11):81-85.
    [64] Colegrove P A, Shercliff H R, Zettler R. Model for predicting heat generation and temperature in friction stir welding from the material properties. Science and Technology of Welding and Joining, 2007, 12(4):284-297.
    [65] Donne C D, Lima E, Wegener J, et al. Investigations on residual stress in friction stir welding. Proceedings of the 3rd International Symposium on Friction Stir Welding, Japan, 2001.
    [66]陈贺静,杨新歧.搅拌摩擦焊接残余应力的研究进展.有色金属加工, 2007, 36(4):34-41.
    [67] Dattoma V, DeGiorgi M, Nobile R. On the residual stress field in the aluminium alloy FSW Joints. Strain, 2009, 45(4):380-386.
    [68] Li Ting, Shi Qing-yu, Hong-ke Li, et al. Residual stresses of friction stir welded 2024-T4 joints. International Welding Joining Conference, Korea, 2007.
    [69]李亭,史清宇,李红克,等.铝合金搅拌摩擦焊接头残余应力分布.焊接学报, 2007, 28(6):105-108.
    [70]李亭. 2024铝合金搅拌摩擦焊研究[硕士学位论文].北京:清华大学, 2007.
    [71] Hatamleh O, Rivero I V, Swain S E. An investigation of the residual stress characterization and relaxation in peened friction stir welded aluminum-lithium alloy joints. Materials & Design, 2009, 10:3367-3373.
    [72] Peel M, Steuwer A, Preuss M. Microstructure mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds. Acta Materialia, 2003, 51(16):4791-4801.
    [73] Rajamanickam N, Balusamy V, Thyla P R, et al. Numerical simulation of thermal history and residual stresses in friction stir welding of Al 2014-T6. Journal of Scientific & Industrial Research, 2009, 68(3):192-198.
    [74] Zhang Z, Zhang H W. Numerical studies on controlling of process parameters in friction stir welding. Journal of Materials Processing Technology, 2009, 209(1):241-270.
    [75] Bastier A, Maitournam M H, Roger F, et al. Modeling of the residual state of friction stir welded plates. Journal of Materials Processing Technology, 2008, 200(1-3):25-37.
    [76] Khandkar M Z H, Khan J A, Reynolds A P, et al. Predicting residual thermal stresses in friction stir welded metals. Journal of Materials Processing Technology, 2006, 174(1-3):195-203.
    [77] Zhu X K, Chao Y J. Numerical simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel. Journal of Materials Processing Technology, 2004, 146(2):263-272.
    [78] Chen C M, Kovacevic R. Prediction of evolutional stress in friction stir welding. Proceedings of Modeling, Control and Optimization in Ferrous and Nonferrous Industry Symposium, Chicago, USA, 2003.
    [79] Chao Y J, Qi X H. Thermal and thermo-mechanical modeling of friction stir welding of aluminum a11oy 6001-T6. Journal of Materials Processing and Manufacturing Science, 1998, 7(10):215-233.
    [80] Rajesh S R, Han S B, Woong S C, et al. Numerical determination of residual stress in friction stir weld using 3D-analytical model of stir zone. Journal of Materials Processing Technology, 2007, 187-188:224-226.
    [81] Li Ting, Shi Qing-yu, Li Hong-ke. Residual Stresses Simulation for Friction Stir Welded Joint. Science and Technology of Welding and Joining, 2007, 12(8): 664-670.
    [82]鄢东洋,史清宇,吴爱萍,等.搅拌头机械载荷在搅拌摩擦焊接中的作用的数值分析.金属学报, 2009, 45(8):994-999.
    [83] Zhang J X, Liu C. Dynamic behavior of welding angular distortion with or without external restriction. 8th international welding symposium, Japan, 2008.
    [84]张增磊,史清宇,鄢东洋,等.夹具拘束模型在焊接数值模拟中的建立及应用.金属学报, 2010, 46(2):119-124.
    [85] Price D A, Williams S W, Wescott A, et al. Distortion control in welding by mechanical tensioning. Science and Technology of Welding and Joining, 2007, 12(7):620-633.
    [86]柴鹏,栾国红,郭德伦. FSW接头残余应力分布及控制技术.焊接学报, 2005, 26(11):79-82.
    [87] Shi Qing-yu, Silvanus J, Liu Yuan, et al. Experimental study on distortion of Al-6013 plate after friction stir welding. Science and Technology of Welding and Joining, 2008, 13(5):472-478.
    [88] Choo H, Woo W, Brown D W, et al. Angular distortion and through-thickness residual stress distribution in the friction-stir processed 6061-T6 aluminum alloy. Materials Science & Engineering: A, 2006, 437(1):64-69.
    [89] Bhide S R, Michaleris P, Posada M, et al. Comparison of buckling distortion propensity for SAW, GMAW and FSW. Welding Journal, 2006, 85(9):189-195.
    [90]李红克,史清宇,王鑫,等.铝合金平板搅拌摩擦焊接应力变形分析.焊接学报, 2008, 29(2):81-84.
    [91]鄢东洋,史清宇,吴爱萍,等.铝合金薄板搅拌摩擦焊接残余变形的数值分析.金属学报, 2009, 45(2):119-124.
    [92]中国机械工程焊接学会.焊接手册(第3卷).北京:机械工业出版社, 2001.
    [93]田锡唐.焊接结构.北京:机械工业出版社, 1982.
    [94]奥凯尔勃洛姆.焊接变形与应力.北京:机械工业出版社, 1958.
    [95]李占文,李树立.焊接结构变形控制与矫正.北京:化学工业出版社, 2008.
    [96]黄国定.怎样防止焊接应力与变形.北京:机械工业出版社, 1982.
    [97]陈楚.数值分析在焊接中的应用.上海:上海交通大学出版社, 1985.
    [98]汪建华.焊接数值模拟技术及其应用.上海:上海交通大学出版社, 2003.
    [99]上田幸雄,村川英一,麻宁绪.焊接变形和残余应力的数值计算方法与程序.成都:四川大学出版社, 2008.
    [100]张建强.铝合金薄板结构焊接变形研究[博士学位论文].北京:清华大学, 2005.
    [101]蔡志鹏.大型结构焊接变形数值模拟的研究与应用[博士学位论文].北京:清华大学, 2005.
    [102]史清宇.焊接过程三维数值模拟的研究及应用[博士学位论文].北京:清华大学, 2000.
    [103] Ueda Y, Wang J, Murakawa H, et al. Three dimensional numerical simulation of various thermal-mechanical processes by FEM(ReportⅠ). Trans JWRI, 1992, 21(2):111-117.
    [104] Ueda Y, Wang J, Murakawa H, et al. Three dimensional numerical simulation of various thermal-mechanical processes by FEM (ReportⅣ). Trans JWRI, 1992, 22(2):289-294.
    [105]鹿安理,史清宇,赵海燕,等.焊接过程仿真领域的若干关键技术问题及其初步研究.中国机械工程, 2000, 11(1-2):201-205.
    [106] Brown S, Song H. Implications of three-dimensional numerical simulations of welding of large structures. Welding Journal, 1992, 71:55-62.
    [107]汪苏,周锋,张瑛莉.航空发动机燃烧室安装座相贯线焊缝焊接模拟.北京航空航天大学学报, 2008, 34(8):986-990.
    [108] Shi Q Y, Lu A L,Zhao H Y,etal. Development and application of adaptive mesh technique in three dimensional numerical simulation of welding process. Acta Metallurgica Sinica, 2000, 13(1):33-40.
    [109]蔡志鹏,鹿安理,史清宇,等.相似理论在焊接温度场和应力场及应变场中的应用.焊接学报, 2000, 21(3):79-82.
    [110]吕波,张立文,裴继斌.网格自适应技术在船用钢板激光弯曲成形过程数值模拟中的应用.塑性工程学报, 2004, 11(5):25-28.
    [111] Ueda Y, Yamakawa T. Analysis of thermal elastic-plastic stress and strain during welding. Trans. Japan Welding Soc, 1971, 2(2):90-100.
    [112] Ueda Y, Murakawa H, Nakacho K, et al. Establishment of computional welding mechanics. Transactions of JWRI, 1995, 24(2):73-86.
    [113]高懿.基于状态固有应变的原位等效焊接单元研究及应用[博士学位论文].北京:清华大学, 2008.
    [114]谢雷,罗宇,谢志勇,等.基于固有应变的大型焊接结构变形的预测.焊接学报, 2004, 25(2):l07-110.
    [115]徐济进,陈立功,汪建华,等.基于固有应变法筒体对接多道焊焊接变形的预测.焊接学报, 2007, 28(1):77-80.
    [116] Tsai C L, Cheng W T, Lee T. Modeling strategy for control of welding induced distortion. Modeling of Casting, Welding and Advanced Solidification Processes VII, The Minerals, Metals and Materials Society, 1995:335-345.
    [117]徐军.大型起重机主梁焊接变形的模拟与控制[硕士学位论文].北京:清华大学, 2001.
    [118] Bachorski A, Painter M J, Smailes A J, et al. Finite-element prediction of distortion during gas metal arc welding using the shrinkage volume approach. Journal of Materials Processing Technology, 1999, 92:405-409.
    [119] Nishikawa H, Serizawa H, Murakawa H. Actual application of FEM to analysis of large scale mechanical problem in welding. Science and Technology of Welding and Joining, 2007, 12(2):147-152.
    [120]蔡志鹏,赵海燕,吴甦,等.串热源模型及其在焊接模拟中的应用.机械工程学报, 2001, 37(4):25-29.
    [121]蔡志鹏,鹿安理,赵海燕,等.串热源模型及1200t桥式起重机主梁腹板装焊过程的数值模拟.中国机械工程, 2002, 13(9):802-805.
    [122]蔡志鹏,赵海燕,鹿安理,等.焊接数值模拟中分段移动热源模型的建立及应用.中国机械工程, 2002, 13(3):208-210.
    [123]曾志,王立君.数值模拟技术在焊接中的应用.航空制造技术, 2008, 8:42-47.
    [124]汪建华,马继.计算机和数值模拟技术在焊接中的应用.电焊机, 2001, 31(12):3-8.
    [125] Valerie G, Georges M. Localized corrosion of 6056 T6 aluminium alloy in chloride media. Corrosion Science, 2000, 42:105-125.
    [126] Grimvall G. Thermophysical Properties of Materials: Non Metallic Solids. New York: Elsevier, 1999.
    [127] Parrott J E, Stuckes A D. Thermal Conductivity of Solids. London: Pion, 1975.
    [128] Zhang Z L, Silvanus J, Li H K, et al. Sensitivity analysis of history dependent material mechanical models for numerical simulation of welding process. Science and Technology of Welding and Joining, 2008, 13(5):422-429.
    [129]吴树森.材料加工冶金传输原理.北京:机械工业出版社, 2001.
    [130] Gerlich A, Su P, North T H. Peak temperatures and microstructures in aluminium and magnesium alloy friction stir spot welds. Science and Technology of Welding and Joining, 2005, 10(6):647-652.
    [131] Su P, Gerlich A, North T H, et al. Energy utilization and generation during friction stir spot welding. Science and Technology of Welding and Joining, 2006, 11(2):163-169.
    [132]吴芸,张其林.焊接铝合金构件残余应力试验研究.钢结构, 2007, 22(2):29-32.
    [133]周广涛,刘雪松,杨建国.铝合金薄壁圆筒纵直缝焊接残余应力数值模拟.焊接学报, 2008, 29(6):89-92.
    [134]张增磊,铝合金焊接应力变形数值模拟研究及应用[博士学位论文].北京:清华大学, 2009.
    [135]李言祥,吴爱萍.材料加工原理.北京:清华大学出版社, 2005.
    [136] Sarkani S, Tritchkov V, Michaelov G. An efficient approach for computing residual stresses in welded joints. Finite Elements in Analysis and Design, 2000, 35(3):247-268.
    [137] Jiang W, Yahiaoui K, Hall F R, et al. Finite element simulation of multipass welding: full three-dimensional versus generalized plane strain or axisymmetric models. The Journal of Strain Analysis for Engineering Design, 2005, 40(6):587-597.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700