用户名: 密码: 验证码:
单一井径大膨胀率膨胀套管用TWIP钢的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膨胀管技术被认为是21世纪石油钻采行业的核心技术之一,该技术的最终目的是研发单一井径膨胀管技术。膨胀管材料的选择与优化是膨胀管研究的一个重要的分支,本研究的目的就是开发适用于单一井径膨胀管技术用钢。
     孪生诱发塑性钢因其具有高强度和高塑性,在膨胀管技术的应用中拥有巨大的潜力。在目前孪生诱发塑性钢的基础上,结合单一井径膨胀管对材料性能的特殊要求,借助于TWIP钢的层错能热力学计算,优化设计了四种TWIP钢,其化学成分为(wt%)C:0.1-0.3%,Mn:25%,Cr:4-10%,Ni:2%,A1:2%,Si:1%,Mo:0.5%;并利用万能材料试验机、OM、XRD、SEM、TEM及EDS等现代实验分析手段,对所设计试制钢材的力学性能和防腐性能进行了检测分析。分析了包括热轧、冷轧和固溶等加工工艺、形变温度和应变速率对性能组织的影响,最后在实验的基础上,建立了温加工条件下的TWIP钢的本构方程。利用有限元软件模拟计算了所研制膨胀管的膨胀过程,对TWIP钢的加工硬化机理进行了探讨。
     所研制钢的加工工艺对组织性能的影响研究表明,采用真空冶炼,热轧后固溶处理是一条合理的加工工艺路线。热轧采用多道次小压下量方式,单道次压下量小于20%,初轧温度为1050-1150℃,终轧温度为800℃;采用950-1050℃加热保温半小时淬水固溶处理工艺,材料性能达到屈服强度350-400 MPa,抗拉强度650-800 MPa,断后延伸率50%-70%,强塑积50000MPa%,加工硬化指数高达0.56。
     所研制钢的拉伸试验数据显示,形变温度和应变速率对材料的屈服强度、抗拉强度和延伸率具有较大的影响。在25-300℃的范围内,随着形变温度升高,无论是热轧态、冷轧态还是固溶态,所研制材料的强度和延伸率都逐渐降低。原因可能是温度升高,材料的层错能升高,形变机制由孪生为主变为以滑移为主。在4.2×10-4-6.3×10-3/s速率区间,伴随着应变速率的加快,材料的强度和延伸率都逐渐降低,可能由于应变速率提高,位错运动受限,形变孪晶不易形成所致。
     在金属材料电化学工作站对材料的耐蚀性进行了测试分析显示所研制钢材经固溶处理后抗腐蚀性能优良,形变后抗腐蚀性能有所降低,Cr和Ni元素的加入有助于提高抗腐蚀性能,腐蚀的力学化学效应是形变后抗腐蚀性能降低的主要原因。
     利用有限元仿真方式模拟大膨胀率膨胀管的膨胀过程,得到了与在井下温度场条件下动态拉伸试验相近的结果。
     基于公理设计理论,对所研制材料的硬化机理进行梳理和探讨,发现材料成分中Mn的大量存在是产生孪生诱发塑性的基础,C-Mn等原子团的存在提高了基体的固溶强化效果。
     综上所述,所研制的TWIP钢适合于制备大膨胀率膨胀套管,这种高性能套管的产生将为单一井径大膨胀率膨胀套管技术的实施和推广提供必要的物质条件。
Expandable Tubular Technology is considered one of the core technology in the oil drilling industry in the 21st century, the final goal of this technology is to develop the monodiameter expandable tubular technology. The selection and optimization of expandable tubular material is an important branch for the research of expandable tubular. Developing suitable steel for monobore technology is the purpose of this study.
     Austentie high-Mn based twinning-induced plasticity steels has great potential prospect in the applications of expandable tubular technology because of the excellent tensile strength and ductility property. Based on the twinning-induced plasticity steels, combined with the special requirements for the material properties of monobore technology, by means of thermodynamic calculation of stacking fault energy, four new TWIP Steels were developed. The steels are consisted of 0.1~0.3%C,25% Cr,4~10%Mn,2%Ni,2%A1, 1%Si,0.5%Mo, the rest is Fe. The manufacturing process, mechanical properties and corrosion behavior of the TWIP steels were studied by using the universal testing machine with heating insulation unit, OM, XRD, SEM, TEM and EDS. In addition, the expandable deformation constitutive equation of TWIP steels was established under the temperature range from 25℃to 300℃. And then, expansion process of the expandable casing made from the new TWIP steels was simulated by Finite element software. Finally, hardening mechanism of the TWIP steels was investigated.
     The effect of manufacturing process on organization and performance was studied. The results show that the process is a reasonable process:vacuum melting, then hot rolling followed by annealing under the 1050℃/0.5h/water. The optimized mechanical values are as following:Rp=350-400 MPa, Rm=650-800 MPa, total elongation equals 50~70%, the product of strength and ductility is above 50000MPa%, work-hardening factor may be up to 0.56.
     The tensile test data of the TWIP steel show that deformation temperature and strain rate have a great impact on material yield strength, tensile strength and elongation. Under 25~300℃, with the deformation temperature increasing, the strength and elongation of the TWIP steel are gradually reduced, whether it is hot rolled, cold-rolled or solution state of steel, The reason is probably that the stacking fault energy of TWIP steel increased with temperature increasing. This makes the main deformation mechanism change from twinning to slipping. In the rate range of 4.2×10-4~6.3×10-3/s, with the acceleration of strain rate, the material strength and elongation decreased. This probably is due to the increased strain rate restricted dislocation movement, which making it difficult to form deformation twins.
     The material's corrosion resistance of TWIP steel was tested and analyzed by using electrochemical workstation. It can be showed that the corrosion resistance is excellent after solution treatment. The corrosion resistance will reduce after deformation. Mixed with Cr and Ni the corrosion resistance will enhance. The mechanical-chemistry effect of corrosion is the primary factor for corrosion resistance decreasing after deformation.
     We can obtain the similar dynamic tensile test results as in the condition of underground temperature field by using the finite element simulation method to simulate expansion process of expansion pipe which has large expansion rate.
     Based on the axiomatic design theory, the material hardening mechanism was discussed. It can be found that the existence of Mn element is the foundation of TWIP. Meanwhile, the existence of C-Mn clusters enhanced the effect of matrix solution strength.
     In summary, the developed TWIP steel can be used to produce expandable casing with large expansion rate. This will provide necessary materials for the implementing and extending for monobore technology.
引文
[1]西部石化网新闻中心.2010,2,23
    [2]叶建平,唐书恒.中国煤层气资源[J].中国煤层气.1998,(2):25-28
    [3]郑玉柱,韩宝山.煤层气采收率的影响因素及确定方法研究[J].天然气工业.2005,25(1):20-123
    [4]陈多福,姚伯初,赵振华,徐文新.珠江口和琼东南盆地天然气水合物形成和稳定分布的地球化学边界条件及其分布区[J].海洋地质与第四纪地质.2001,21(4):73-78
    [5]于兴河,张志杰,苏新,陈芳,李杨.中国南海天然气水合物沉积成藏条件初探及其分布[J].地学前缘.2004,11(1):311-315
    [6]孟庆昆,谢正凯,冯来等.可膨胀管技术概述[J].钻采工艺.2003,(04):67-68
    [7]张文华,刘国辉.可膨胀管技术及其应用[J].石油钻采工艺.2001,(1):28-31
    [8]杨传勇.国外可膨胀套管技术的发展及应用[J].石油机械.2006,(10):74-77
    [9]张广辉等.实体膨胀管补贴工艺的应用[J].科技资讯.2007,(30):30
    [10]赵金洲等.实体膨胀管补贴技术研究新进展[J].石油钻采工艺,2006,(04): 17-19
    [11]李勇,李学源,付申,王扩军.可膨胀套管技术发展及在吐哈油田的应用[J].石油矿场机械.2007,36(12):78-81
    [12]杨斌,练章华,叶顶鹏等.两种典型膨胀管膨胀工艺技术研究[J].钻采工2008,31(4):88-90,93
    [13]陈功剑,李春福,王鹏飞,申文竹.可膨胀管技术及其在石油工业中的应用[J].石油仪器.2009,(02):65-67
    [14]周思宏,王辉,任厚毅.膨胀式筛管防砂工艺的应用[J].石油矿场机械.2004,(04):58-61
    [15]朱彩虹,孙辉等.疏松砂岩稠油油藏防砂方法优选试验研究[J].特种油气藏.2000,7(3):36-38
    [16]徐德军,尹强,马宏伟,许庆银.绕丝筛管砾石充填防砂井产能预测方法探讨与应用[J].油气田地面工程.2002,(03):15-17
    [17]刘大红,宋秀英,刘艳红,张恒,李春福.割缝筛管防砂设计及应用[J].石油机械.2004,(08):13-16
    [18]景瑞林,尹强,田宝国,孔令旭.割缝筛管防砂技术研究[J].石油钻采工艺.2001,(02):72-75
    [19]王自力,唐洪明,曾祥林等.金属棉筛管出砂量对储集层物性影响评价实验研究[J].海洋石油.2007,27(4):37-41
    [20]杨建平.金属烧结筛管防砂技术[J].石油钻采工艺.2004,(s1):39-41
    [21]张勇,刘艳涛,朱桂娟,张玉梅.砾石充填防砂技术在港西油田的深化研究与应用[J].断块油气田.2007,14(6):74-75,80
    [22]Robert L.Cuthbertson, Annabel Green, John A.G.Dewar, et al.Completion of an Underbalance Well Using Expandable Sand Screen for Sand Control. SPE/IADC 79792.2003
    [23]Oladele O.Owoeye,Leste.O.Aihevba,R.A.Hartmann,et,al. Optimization of Well Economics By Application of Expandable Tubular Technology. IADC/SPE 59142.2000
    [24]Mark van Buren. Trial of an Expandable Sand Screen to Replace Internal Gravel Packing. SPE/IADC 57565.1999
    [25]李天降,张建军,赵平.膨胀筛管防砂—机械防砂新思路[J].海洋石油.2004,24(2):78-80
    [26]陈功剑,李春福,宋开红.实体膨胀管工具优化分析[J].石油机械.2009,37(11):29-32
    [27]徐瑞萍.可膨胀管材料的研究与开发[D].天津:天津大学.2006.
    [28]徐瑞萍,刘洁,张玉新等.石油膨胀材料的设计准则[J].石油机械.2005,(11):28-31
    [29]王善永,杨俊义,宋志平.几种特殊套管螺纹接头[J].石油矿场机械.2005, (04):83-85
    [30]李霄,豆峰,裴勇毅,李栋才.可膨胀管技术及其管材性能[J].石油矿场机械.2005,(4):61-63
    [31]何志高.论干酪根热降解成油理论弊端[J].海相油气地质.1999,(02):50-56
    [32]徐矛唐.近年来生油理论研究的新发展[J].石油学报.1986,(3):102-116.
    [33]张景廉,冯有奎.无机生油理论与21世纪中国油气勘探战略[J].新疆石油地质.2002,(3):248-251
    [34]张建兵,施太和,练章华.钻井膨胀管膨胀过程中不均匀变形的试验研究[J].石油机械.2002,(7):9-12
    [35]Juanita Cassidy and Chuck Butterfield. Electrochemical Investigation of Oilfield Fluid Corrosion on Expanded Casing[J]. CORROSION 2002.2002.
    [36]刘清友,侯豁然.微合金钢超细组织的控制轧制[J].钢铁研究学报.2000,(6):29-32
    [37]陈士华,邓照军,李平和.超细晶低碳钢热连轧板中的Hall-Petch关系研究[J].物理测试.2007,(04):1-4,7
    [38]翁宇庆.超细晶粒钢理论及技术发展[J].钢铁.2005,(3):1-8
    [49]宋立秋,侯豁然,左军等.超细晶粒钢的显微组织[J].钢铁钒钛.2003,(3): 32-36
    [40]夏卿坤,胡冠昱.形变诱导铁素体相变技术[J].长沙大学学报.2005,(02):15-18
    [41]陈勇军,王渠东,彭建国.大塑性变形制备细晶材料的研究、开发与展望[J].材料导报.2005,19(4):77-80
    [42]王效琪.叠轧法制备超细晶铜材工艺基础研究[D].昆明理工大学.2005.
    [43]陶常印.控制轧制和控制冷去工艺的研究[J].鞍钢技术.1997,(09):17-20.
    [44]黄宝旭.氮、铌合金化孪生诱发塑性(TWIP)钢的研究[D].上海:上海交通大学.2007
    [45]刘国勋.金属学原理[M].北京:冶金工业出版社,1980
    [46]O.Grassel,G.Frommeyer,C.Derder,et a l.Transformation and mechanical properties of Fe-Mn-Si-Al TRIP-steels[J].Phys France.1997,5:383-391
    [47]Grassel O,L.Ruger,Frommeyer G,et al.High Strength Fe-Mn-(Al,Si)TRIP/TWIP Steels Development-Properties-Application[J].International Journal of Plasticity.2006,16(3): 1391
    [48]S.Vercammen,B-Blanpain,P.Wollants,et al.Cold rolling behaviour of all austenitic Fe-30Mn-3Al-3Si TWIP-steel:the importance of deformation twinning[J].Acta Materialia. 2004,V0152:2006-2014
    [49]齐殿威,周舒野.韩国浦项制铁公司TWIP钢的研发进展[J].上海金属.2009,3(15):7-12
    [50]G. Frommeyer. Supra-ductile and high strength manganese TRIP/TWIP steels for high energy absorption purpose [J]. ISIJ International,Vol.43,2003,438
    [51]D.Cornette, P.Cugy,A.Hildenbrand, M.Bouzekri, G.Lovat, Ultra.High strength Fe-Mn TWIP steels for automotive safety parts[J]. Revue de Metallurgie. Cahiers D Informations Techniques.2005,11:905-918
    [52]米振莉,唐荻等.Fe-28Mn-3Si-3Al TWIP钢变形的微观组织特征[J].北京科技大学学报.2007,29(12):1200-1203
    [53]米振莉,唐荻等.退火温度对25Mn-3Si-3Al-TWIP钢组织和力学性能的影响[J].北京科技大学学报.2007,29(2):117-121
    [54]黎倩,李麟,熊荣刚等.Fe-Mn-Si-Al系TWIP钢显微组织与力学性能的研究[J].上海金属.2008,30(1):8
    [55]王书晗,刘振宇,王国栋等.热处理工艺对TWIP钢组织性能的影响[J].东北大学学报.2008,30(2):6
    [56]熊荣刚,符仁钰,黎倩等.高速冲击拉伸条件下TWIP钢的力学性能[J].上海金属.2008,29(4):25
    [57]戎咏华,孟庆平,何刚等.Fe2Mn合金层错能的嵌入原子法计算[J].上海交通大学学报.2003,37(2):171
    [58]W.Steven,A.G.Haynes.Structure and Properties of Carbide Free Bainite.J. Iron Steel inst.1956,183,349-359
    [59]刘云旭.金属热处理原理[M].北京:机械工业出版社.1981
    [60]陈希杰.高锰钢[M].北京:机械工业出版社,1989
    [61]A.N. Vasiakos, J.Ohlert,K. Giasla,et al. Low-alloy TRIP steels:a correlation between mechanical properties and the retained austenite stability. Steel research.2002,73:249-252
    [62]L.Barbe, M.De Meyer, B.C.De Cooman.Determination of the Msσ temperature of dispersed phase TRIP-aided steels, B C De Cooman.Int.Conf.on TRIP-Aided High Strength Ferrous Alloys.Aachen:WMG.2001,65-69
    [63]Wang Y.Q.,Wang Z.,Yang J.H.et al.Pseudoelasticity,shape memory effect and fcc→hcp martensitic transformation associated with stacking faults in fcc alloys.Scripta Mater.1996,35:1161-1166
    [64]H.Schumann. Influence of stacking fault energy on the crystal lattice change mechanisms in the y/a phase transformation in high alloy steels[J]. Kristall Technik.1974,9 (10):1141
    [65]Lee Y k,Choi C S. Driving Force for γ→ε Martensitic Transformation and Stacking Fault Energy of y in Fe-Mn Binary System [J]. Metall Mater Trans A.2000,(31 A):355
    [66]Volosevich P Y, Grindnev V N,Pet rov YN. Manganese Influence on Stacking Fault Energy in Iron Manganese Alloys [J]. Phys Met Metallogr.1976, (42):126
    [67]Scott C, Allain S, FaralM, et al. The development of a new Fe-Mn-C austenitic steel for automotive applications[J]. La Revue de Metallurgie CIT.2006, (6):293-302
    [68]Y.Tomota,M.Strum et al.Microstructural dependence fo Fe-high Mn tensile behavior. Metall.TransA,1986,17,537-547
    [69]Y.G.Kim,J.M.Han,J.S.Lee.Composition and temperature dependence of tensile properties of austenitic Fe-Mn-Al-C alloys.Mater.Sci.Eng.A.1989,114,51-59
    [70]米振莉,唐荻,严玲等.高强度高塑性TWIP的开发研究[J].钢铁.2005,40(1):58
    [71]代永娟,米振莉,唐荻等.Fe-Mn-C系TWIP钢的组织和性能[J].上海金属.2007,29(5):132
    [72]严玲,唐荻,米振莉等.不同加工工艺对高强度高塑性TWIP钢组织与性能的影响[J].热加工工艺.2005,(8):15
    [73]O.Bouaziz,N.Guelton.Modelling of TWIP effect on work-hardening[J].Materials science and Engineering.2001,(319-321):246-249
    [74]王建华,任立军.高锰钢加工硬化机理研究[J].煤矿机械.2003,(1):24-27
    [75]R.E.Reed-Hill.The inhomogeneity of plastic deformation[J].Ohio:ASM.Metals Park. 1971:285-286
    [76]Christian J W,Mahajan S.Pro Mater Sci,1995;39:1
    [77]Cotrell A.H.,Dislocations and Plastic Flow in Crystals,Oxford University Press,London,UK,1953,p.223.
    [78]S.Curtze,V.-T.Kuokkala,M.Hokka,P.Peura,P.Verleysen.Effect of Composition,Temperature and Strain Rate on the Mechanical Behavior of High-Alloyed Manganese Steels.In the Proceedings of the New Developments in Metallurgy and Applications of High Strength Steels Conference,Buenos Aires,Argentina(2008).
    [79]Frank,F.C.,Phil.Mag.,42(1951),809.
    [80]Gray G.T.III,Kaschner G.C.,Mason T.A..,Maudlin P.J.,Chen S.R.,inAdvances in Twinning,ed.S.Ankem and C.S.Pande.TMS/AIME,Warrandale,PA,1999,p.157.
    [81]Thompson N.,Millard D.J.,Phil.Mag.,43(1952),422.
    [82]Bell.R.L.,Cahn R.W.,Proc.Roy.Soc.,A239(1957),494.
    [83]Suzuki H.,Barrett C.S.,Acta Metall.,6(1958),156.
    [84]Venables J.A.,PhilosophicalMagazine,6(1961),379.
    [85]Venables J. A.,Deformation Twinning,ed.R.E.Reed-Hill,J.P.Hirth and H.C. Rogers,Gordon&Breach,New York,1964,pp.77-116.
    [86]Meyers M.A.,Vhringer O.,Lubarda V.A.,The Onset of Twinning in Metals:A Constitutive Description,Acta mater.,49(2001),4025-4039.
    [87]P.C.J.Gallagher.The Influence Effects on the of Alloying,Temperature,and Related Stacking Fault Energy. Metallurgical Transactions.1970,1:2429-2461
    [88]贡海.马氏体及其形态控制因素[J].金属热处理,1981,1:10-22.
    [89]马凤仓,冯伟骏,王利,张荻TWIP钢的研究现状.宝钢技术.2008,6:62-66.
    [90]刘瑞晴.含Nb高锰钢的组织与性能研究.东北大学硕士学位论文,2009.
    [91]Meyers M., Dynamic material behavior, John Wiley and Sons, Canada 1994.
    [92]Hirth J, Lothe J, Theory of dislocations, McGraw-Hill, New York (1968).
    [93]Courtney T., Mechanical behavior of materials,2nd edition, McGraw-HillComanies, Singapore (2000).
    [94]Hosford W, Mechanical behavior of materials, Cambridge University Press (2006).
    [95]Gillis P P, Gilman J J, Taylor J W, Phil. Mag.,20 (1969),279.
    [96]Olson G B, Cohen M, Metall. Trans.,7A (1976),1897.
    [97]Frommeyer G.,Brux U.,Neumann P.ISIJ Int.,43(2003),No.3,pp.438-446.
    [98]Allain A.,Chateau J.-P.,Bouaziz O.,Migot S.,Guelton N.,Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys, Materials Science and Engineering A,387-389,(2004)158-162..
    [99]Mullner P.,Ferreira P.J.,On the energy of terminated stacking faults,Philosophical Magazin Letters,Vol.73,No.6,(1996),289-297.
    [100]Ferreira P.J.,Mullner P.,A thermodynamic model for the stacking fault energy, Acta mater.,Vol.46,No.13,(1998),pp.4479-4484.
    [101]Khachaturan A.G.,Theory of Structural Transformations in Solids,Chap.8.John Wiley,New York(1983).
    [102]J.H.Hildebrand.Solubility.Xll.Regularsolutions[J].Joumal of the American Chemical Soeiet,1929,(51):66.
    [103]W.L.Bragg,E. J. Williams.Proe.ROy.Soe.,1934,A145:609.
    [104]W.L.Bragg,E.J.Williams.Proe.ROy.Soe.,1935,A151:540.
    [105]H.K.Hardy.A sub-regular solution model and its applieation to some binary alloy systems[J].AetaMetall.,1953,(1):202;1954,(2):348.
    [106]0.RedliehandA.T.Kister.Algebraic rePresentation of thermodynamic Properties and the Classification of solutions[J].Industr.Eng.Chem.,1948,(40):345.
    [107]Cotes S, Sade M, Fernandez Guillermet A. Metall Mater. Trans.1995; A26,1957-1969.
    [108]Redlich O, Kister A T, Ind Eng Chem,40(1948),345-348.
    [109]Inden G, Phys B,103(1981),82-100.
    [110]Hillert M, Jarl M, CALPHAD,1978; 2,227-238.
    [111]S R Chen, H A Davies, W M Rainforth. Austenite Phase Formation in Rapidly Solidified Fe-Cr-Mn-C Steels. Acta Materialia,1999,47(18):4555-4569
    [112]张建光,赵钧良,周月明,张康华.超低碳18-8奥氏体不锈钢取代1Cr18Ni9Ti的可行性(1).上海钢研,1988,3:20-28.
    [113]Dinsdale A.T.,SGTE data for pure elements,CALPHAD,4(1991),15,pp.317-425.
    [114]Dumay A.,Chateau J.-P,Allain S.,Migot S.,Bouaziz O.,Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel,Mater.Sci.Eng.A,483-484(2008),pp.184-187.
    [115]Allain S.,Ph.D.Thesis,INPL,Nancy,2004.
    [116]Yang W.S.,Wan C.M.,The influence of aluminum content to the stacking fault energy in Fe-Mn-Al-C alloy system,Journal of Materials Science,25(1990),1821-1823.
    [117]Huang W.,CALPHAD,13(1989),243-252.
    [118]郭锦,唐获,米振莉,严玲,代永娟,热处理工艺对TWIP钢组织和性能的影响[J].2005年中国钢铁年会论文集:466-469.
    [119]李激光,丁亚杰,彭兴东等.水淬工艺对TWIP钢显微组织和力学性能的影响[J].金属 学报,2010;02(46):221-226.
    [120]P.哈森著.物理金属学[M]北京:科学出版社.1984
    [121]HirthJP.In:Reed-HillRE,HirthJP,RogersHC,editors.Deformationtwinning.New York:Gordon&Breach; 1963.p.112.
    [122]CohenJB,WeertmanJ.ActaMetall1963;11:996.
    [123]DasturYN,LeslieWC.MetallTransA1981;12:749.
    [124]Miura S,Takamura J,Narita N.TransJpn Inst Metals1968;9:555.
    [125]BouazizO,GueltonN.MaterSciEngA2001;319-321:246.
    [126]BouazizO,AllainS,ScottC.ScrMater2008;58:484.
    [127]刘向海,刘薇,刘嘉斌,舒康颖.退火工艺对低铝低硅孪晶诱发塑性钢组织及性能的影响.中国计量学院学报,2010,21(1):82-86.
    [128]毕新明,曹楚南.pH值和氯离子浓度对铁在酸溶液中的腐蚀电化学行为的影响.中国腐蚀与防护学报,1983,3(4):199-215.
    [129]程学群,李晓刚,杜翠薇.316L不锈钢在含Cl_高温醋酸溶液中的电化学行为.金属学报,2006,42(3):299-304.
    [130]陈伟昌,堂紫九.热轧过程的物理模型[J].特殊钢,1996,17(3):27-35.
    [131]粱轩,李大永,彭颖红.连续退火微合金双相钢应力应变关系[J].上海交通大学学报,2008,42(5):765-769
    [132]伍来智,张军,张鸿冰.40Cr钢奥氏体动态再结晶及晶粒细化[J].上海交通大学学报,2008,42(5):786-790
    [133]徐瑞萍,刘洁,张玉新等.石油膨胀管材料的设计准则[J].石油机械,2005,33(11):28-31
    [134]张西锋,袁守谦,魏颖娟.超细晶粒钢的制备原理及技术[J].钢铁研究学报,2008,20(04):1-7
    [135]许淳淳,张新生,胡钢.AISI304不锈钢在冷加工过程中的微观组织变化[J].北京化工大学学报,2002,29(6):27-31
    [136]黄重国,任学平.金属塑性成形力学原理[M].北京:冶金工业出版社,2008
    [137]Rune Gusevik, Randy Merritt Reaching. Deep reservoir targetsusing solid expandable tubular[C]. SPE 77612,2002
    [138]Stephen Kent,Rogerm,van Noort.Isolation of Problematic Zones Using a Cemented Expandable Slotted Liner. IADC/SPE 722951,2001
    [139]张建兵,施太和,练章华.钻井实体膨胀管技术[J].石油机械,2003,31(1):128-131
    [140]F.Marketz, R.W.F.Welling, R.H.J.van.Expandable Tubular Completions for Carbonate Reservoirs.SPE 88736,2007
    [141]Mack R D,Terry McCoy,Lev Ring.How in Stiu Expansion Affects Casing and Tubing Properties.World Oil,1999,20 (7):69-71
    [142]陈功剑,李春福,宋开红.实体可膨胀管工具优化分析[J].石油机械,2009,37(11):29-32.
    [143]A.Berger,W.W.Fleckenstein.A.W.Eustes.Effect of Eccentricity,Voids,Cement Channels, and Pore Pressure Decline on Collapse Resisttance of Casing.SPE 90045,2004
    [144]张东海.膨胀管技术的现状及未来[J].新疆石油科技,2006,16(4):34-37
    [145]Qing Lu, Dan Hannahs, Jerry Buster.Casing Drilling Connection Qualificaion for Shell Rocky Moutain Project[J].SPE 108141,2007
    [146]McCormick.PG. A model for the Portevin-Le Chatelier effect in substitutional alloys[J]. Acta Metall.,1972(20):351
    [147]C.Zener, J.H.Hollomon. Effect of Strain Rate Upon Plastic Flow of Steel,Journal of Applied Physics,1944(15):pp.22-32
    [148]贝建伟,陈炜,薛雷,承善.铝合金板温成形流变应力模型的建立与应用[J].热加工工艺,2009,38(50):14-17,21
    [149]戴培良.工程力学中的有限元方法[M].南京:南京航空航天大学,2003,10
    [150]邵蕴秋ANSYS8.0有限元分析实例导航[M].北京:中国铁道出版社,2004
    [151]欧阳宇,王菘等.有限元分析-ANSYS理论与应用[M].北京:电子工业出版社,2003
    [152]龚曙光ANSYS基础应用及范例解析[M].北京:机械工业出版社,2004年
    [153]刘俊生.结构概念分析与SAP2000应用[M].成都:西南交通大学出版社
    [154]王伟,马连湘,柯顺魁等ADINA及其在热分析中的应用[J].现代机械,2007(1):31-33
    [155]张四平,赖明,廖贺平.带悬臂桩-锚桩抗滑体系的试验研究及计算机仿真分析[J].重庆建筑科技大学学报.1998,20(2):109-114
    [156]陈幼平周宏业.斜拉桥的动力分析模型[J].中国铁道科学,1995,16(1):78-89
    [157]胡仔溪.利用NASTRAN和模态试验修正结构有限元分析模型[J].强度与环境,2000,(2):1-7
    [158]李国,叶欲明,沈火明等ANSYS土门工程应用实例[M].北京:中国水利水电出版设,2007
    [159]李黎明ANSYS有限元分析使用教程[M].北京:清华大学出版社
    [160]刘金梅,周国强韩国有等.波浪作用下海洋石油井架模态参数识别与承载力评价[J].海洋工程,2009,27(1):22-27
    [161]郑晓晶,周国强,郭奕珊.海洋石油钻机井架动力特性分析[J].大庆石油学研学报,2005,29(3):53-54
    [162]秦太验,柳春图,段梦兰等.具有裂纹损失桩腿的海洋石油平台有限元分析[J].海洋工程,2000,18(3):15-19
    [163]A.S.Zheng. Improved Model for Collapse Pressure of Oval Coiled Tubing [J]. SPE Journal,1999,4(1):57-63
    [164]P.D.Pattillo,Z.A.Moschovidils,Manohar Lal.An Evaluation of Concentric Casing for Nonuniform Load Applications. SPE Drilling & Completion,1995,9:186-192
    [165]陈勇,练章华,张海清等.考虑初始椭圆度的套管抗载能力分析[J].石油矿场机械,2007,36(7):35-38
    [166]Filiippov A, Mack R, Cook L,et al.Expandable Tubular Solutions.SPE 56500,1999
    [167]李鹤林,韩礼红.刍议我国油井管产业的发展方向.焊管[J].2009,32(4):5-10
    [168]李鹤林,韩礼红.刍议我国油井管产业的发展方向(续).焊管[J],2009,32(5):11-14
    [169]Stewart, R.B, Marketz F, Lohbeck, etal. Expandable Wellbore Tubulars. SPE60766, 1999
    [170]Hara H., Ohatke N., Horita, et al. Variable-shape Extrusion of Aluminum Square Pipe Using DLC Coated Dies. New Diamond and Frontier Carbon Technol.,14(6:331-340
    [171]C GRuan, W.C.Maurer. Analytical Model for Casing Expansion. SPE/IADC 92281, 2005:256-270
    [172]Hadfield RA. Science 1888,12:284.
    [173]Hutchinson B, Ridley N. Scr Mater 2006,55:299.
    [174]Nave MD, Barnett MR. Scr Mater 2004,51:881.
    [175]Stanford N, Carlson U,Barnett MR. Metall Mater Trans A 2008;39:934.
    [176]Raghavan KS, Sastri AS,Marcinkowski MJ.Trans Metall Soc AIME 1969,245:1569.
    [177]BouazizO, GueltonN. Mater Sci EngA 2001;319C321:246 Mats Nordlund. An Information Framework for Engineering Design based on Axiomatic Design http://wl. 131. telia. com/-u13103746/thesis/index. htm
    [178]Dai Gil Lee. Nam Pyo Suh. Axiomatic Design and Fabrication of Composite Structures: Applications in Robots, Machine Tools, and Automobiles[M]. OXFORD UNIVERSITY PRESS
    [179]李士同,吕宇鹏,朱瑞富等.浅论高锰钢的加工硬化机制[J].兵器材料科学与工程,1999,22(5):61-65.
    [180]朱瑞富,吕宇鹏等.高锰钢的价电子结构及其本质特征[J],科学通报,1996,41(14):1336-1338.
    [181]吕宇鹏,李士同等Fe-Mn(Cr)-C系合金马氏体的价电子结构分析[J],1999,11(2):55-58.
    [182]Cook D C. M et all T rans,1987,18A:201
    [183]刘志林,林成.合金电子结构参数统计值及合金理学性能计算[M].北京:冶金工业出版社,2008
    [184]Cottrell, A.H.andBilby,B.A., Phil.Mag.,1951,42:573.
    [185]Sleeswik, A.W., Phil.Mag.,1974,29,407.
    [186]Cohen,J.B.andWeertman,J., Actametall.,1963,11,997-1368.
    [187]Haasen, P.andKing,H., Z.Metallk.,1960,51,722.
    [188]Sleeswik, A.W., Phil.Mag.,1963,8,467.
    [189]Mahajan, S.andChin,G.Y., Actametall.,1973,21,1353.
    [190]Bolling, GF.andRichman, R.H., Actametall.1965,13,709-745.
    [191]Orowan, E. Dislocationsin Metals, ed. M.Cohen.AIME.1958, p.116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700