用户名: 密码: 验证码:
基于局部法的预应变下高强钢断裂预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢材因其具有良好的力学性能、经济性能和使用性能等优点,在船舶、桥梁、压力容器、电力铁塔、高层建筑、油气管道等民用和工业设施领域得到广泛地应用,是国民经济建设和国防建设中的重要材料。但无论是在安装还是在实际服役过程中都会受到温度和塑性变形的影响。针对这两种影响因素,本文选取Q420高强结构钢和X80管线钢为研究对象,系统研究了温度和塑性预应变对钢材力学性能及其断裂韧度的影响,并基于局部法对其断裂行为进行了预测。
     首先根据冲击试验结果得出Q420高强结构钢和X80管线钢的韧-脆转变温度区间。然后对这两类钢材的原材料和预应变材料分别进行了不同温度下的拉伸试验。试验结果表明,钢材的屈服强度和抗拉强度随着温度的降低而增大,塑性随着温度的降低而减小;拉预应变因工作硬化提高了钢材的屈服强度与抗拉强度,而压预应变因包申格效应降低了钢材的屈服强度与抗拉强度,但两者都降低了钢材的塑性。此外,无论是拉预应变还是压预应变对屈服强度的影响程度更大。
     利用标准三点弯曲试样分别测试了Q420高强结构钢和X80管线钢原材料和预应变材料在不同温度下的断裂韧度。试验结果表明,温度对钢材的断裂韧度具有显著影响,其随着温度的降低显著减小,断裂形式也由延性断裂向脆性断裂转变;无论是拉预应变还是压预应变都降低了钢材的断裂韧度,进一步引起钢材断裂形式的转变。此外,本文并对不同断裂方式下的试样断口形貌进行了分析。
     通过有限元数值模拟分析发现,温度和预应变对试样断裂时裂纹尖端区域应力应变场的增大作用促进了材料的脆性断裂,即弹塑性材料的断裂主要取决于裂纹尖端的应力应变场及其微观断裂过程。
     本文将局部法应用于结构钢和管线钢预应变材料的断裂行为研究。研究发现,不同温度下的原材料试样和预应变材料试样发生断裂时,在相同断裂概率下的威布尔应力基本相同,并基于局部法理论由原材料试样的试验结果成功预测了不同温度下预应变试样的断裂韧度概率分布。此外,本研究提出了一个简单的参考温度ΔT_P评定方法:在服役温度T下的预应变材料试样的临界CTOD值可以由较低温度TΔT_ P下的原材料试样的临界CTOD值所代替,参考温度ΔT_ P是作为预应变引起的流变应力的变化值Δσ~P_f的函数提出的。由该评定方法得出的ΔσP~_ f-ΔT_ P评定曲线与试验直接得到的结果基本一致。
Due to their outstanding mechanical properties, economic properties and service performance, steels have been widely applied in the civil and industrial facilities of ships, bridges, pressure vessels, power towers, high-rise buildings, oil and gas pipelines, etc. It has become an important material in the national economic construction and national defense construction. However, it may suffer from effects of the temperature and plastic deformation before and during operation. For these two factors, taking high-strength structural steel Q420 and pipeline steel X80 as examples, this paper systematically studied effects of temperature and prestrain on tensile and fracture toughness of steels, and evaluated the fracture behavior based on the local approach.
     Firstly, according to the impact test results, the ductile-brittle transition temperatures of high-strength structural steel Q420 and pipeline steel X80 were obtained. Then, tensile tests were conducted on the virgin and prestrained materials at different temperatures. The test results revealed that the yield stress and tensile strength of steels were increased with the decrease in temperature, but it reduced the plasticity. Furthermore, the yield stress and tensile strength of steels increased in steels with tensile prestrain due to work hardening and decreased in compressed steels due to the Bauschinger effect, but they all reduced the plasticity. In addition, the effect of prestrain could be more significant for the yield stress.
     The fracture toughness tests were performed under three-point bending loading conditions for the virgin and prestrained specimens of high-strength structural steel Q420 and pipeline steel X80 at different temperatures. The test results revealed that temperature significantly influenced the fracture toughness of steels and that fracture toughness was significantly reduced with the decrease in temperature, resulting in brittle fractures. Prestrain also reduced the fracture toughness of steels, and further increased the probability of brittle fractures. Meanwhile, specimen fracture morphologies of different fracture modes were also analyzed.
     Based on the finite element analysis, it was found that the near-tip stress/strain fields near the crack tip of different specimens were elevated by temperature and prestrain. Such activation of the near-tip stress fields facilitated the brittle fracture of steels. It can be concluded that the fracture toughness of elastic-plastic material mainly depends on the stress/strain field near the crack tip and its micro-fracture process.
     The local approach was used to study the fracture behaviors of the prestrained materials of structural steel and pipeline steel. The research found that the Weibull stress for all specimens were identical under the same fracture probability when the fracture initiation occurred for the virgin and prestrained specimens at different temperatures. Based on the local approach, the fracture toughness probability distributions of the prestrained specimens at different temperatures had been predicted from the test results of the virgin material specimens. Furthermore, this paper proposed a simplified reference temperature△T_ P evaluation method. The fracture toughness at the service temperature T with prestrain could be displaced by the fracture toughness of the virgin material at a lower temperature T△σ_T~P. The temperature shift△T_P was provided as a function of the flow stress elevation caused by the prestrain. The estimated△σ_ P~f-△T_ P curve was almost consistent with the experimental results.
引文
[1] GB 1591-88:低合金结构钢[S]. 1988.
    [2] GB/T 1591-94:低合金高强结构钢[S]. 1994.
    [3]杨靖波,李茂华,杨风利,等.我国输电线路杆塔结构研究新进展[J].电网技术, 2008, 32(22): 77-83.
    [4]李鹤林.油气输送钢管的发展动向与展望[J].焊管, 2004, 27(6): 1-11.
    [5] Mohipour M. High pressure pipelines-trends for the new millennium[A]. 2000 International Pipeline Conference Proceedings, Calgery, Canada, Otc. 2000.
    [6] Chaudhari V, Ritzmann D J, Wellnitz G, et al. Willings V. German gas pipeline first to use new generation linepipe[J]. Oil and Gas Journal, 1995(2): 40-46.
    [7] Janzen T S. The alliance pipeline - a design shift in long distance gas transmission[A]. Proceeding of International Pipeline Conference, ASME, Calgery, Canada, 1998.
    [8]庄传晶,冯耀荣,霍春勇,等.国内X80级管线钢的发展及今后的研究方向[J].焊管, 2005, 28(2): 10-14.
    [9] Nobuyuki Ishikawa, Mitsuhiro Okatsu, Shigeru Endo. High deformability UOE linepipes produced by advanced TMCP technology, TMS eds. Proceedings of international symposium on microalloyed steels for Oil & Gas industry, Araxa-MG, Brazil: 2006.
    [10] Yong-Yi Wang, Ming Liu. Weld Integrity from the Perspective of Strain-Based Design of Large Diameter and High Strength Pipelines, Special issue of proceedings of“Pipeline Technology Now and Then”at the 8th International Welding Symposium (8WS), Kyoto, Japan, Novermeter17-18, 2008, pp. 3-10.
    [11] Woo-Hyun Song, Dong-Han Seo, Jang-Yong Yoo, et al. Mechanical Properties and Microstructure of Girth Welds for X100 Grade Plate and Pipe, Special issue of proceedings of“Pipeline Technology Now and Then”at the 8th International Welding Symposium (8WS), Kyoto, Japan, Novermeter17-18, 2008, pp. 19.
    [12] GloverA. Research and application of X100 and X120[C]. Proceedings of Symposium on X80 Grade Steel and Linepipes. Beijing, 2004.
    [13] Hillenbrand H G, Kalwa C, et al, Experiences with an offshore pipeline project for the North Sea(Langeled), TMS eds. Proceedings of international symposium on microalloyed steels for Oil & Gas industry, Araxa-MG, Brazil: 2006.5. Offshore Standard OS-F101. Submarine Pipeline Systems, DetNorske Veritas; 2000.
    [14]高惠临.管线钢组织、性能、焊接行为[M].西安:陕西科学技术出版社, 1995.
    [15] Weisweiler F J, Sergeer G N. Non-destructive testing of large diameter pipe for oil and gas transmission lines[M]. New York: [s. n.], 1987.
    [16]宋艾玲,梁光川,王文耀.世界油气管道现状与发展趋势[J].油气储运, 2006, 25(10): 1-6.
    [17] Hagiwara N, Masuda T, Oguchi N. Effects of prestrain on fracture toughness and fatigue-crack growth of line pipe steels[J], Journal of pressure vessel technology, Transaction of the ASME, 2001, 123: 355-361.
    [18] Fukuda N, Hagiwara N, Masuda T. Effect on prestrain on tensile and fracture toughness properties of line pipes[J], Transaction of the ASME, Journal of Offshore Mechanics and Arctic Engineering, 2005, 127:263-268.
    [19] Sivaprasad S, Tarafder S, Ranganath V R, et al. Effect of prestrain on fracture toughness of HSLA steels[J], Materials Science and Engineering A, 2000, 284:195-201.
    [20]高惠临.管道工程面临的挑战与管线钢的发展趋势[J].焊管, 2010, 33(10): 5-18.
    [21] Jaeyoung Lee, P.E. Introduction to Offshore Pipelines and Risers, 2008.
    [22] DNV Offshore Standard OS-F101[S]. Submarine Pipeline Systems, DetNorske Veritas; 2000.
    [23]张迎辉,赵鸿金,康永林.相变诱导塑性TRIP钢的研究进展[J].热加工工艺, 2005, 35(6): 60-64.
    [24] Denys, Lefevre R M, Glover T, et al. Weld metal yield strength variability in pipeline girth welds[C], Proceeding of the 2nd International Pipeline Technology Conference, Ostend: ASME, 1995.
    [25] Gordon R, Hammond J, Swamk G. Welding challenges for strain-based design[C], The International Conference on advances in welding technology: Pipeline Welding and Thechnology, Galveston: [s.n.], 1999.
    [26]潘家华.油气管道断裂力学分析[M].北京:石油工业出版社, 1989.
    [27] Starostin V. Pipeline disaster in the USSR[J]. Pipe and Pipeline International, 1990, 35(2): 7-8.
    [28]李鹤林,赵新伟,吉玲康.油气管道失效分析与完整性管理[J].理化检验, 2005, 41(增刊): 24-31.
    [29]贾安东.焊接结构与生产[M].北京:机械工业出版社, 2007.
    [30]兰州石油机械研究所编译.低温用钢结构的脆性断裂[M]. 1974.
    [31]涂铭旌.低合金钢低温脆性断裂论文集[M].陕西:西安交通大学出版社, 1985.
    [32]黄克智译,切列帕诺夫著.脆性断裂力学[M].北京:科学出版社, 1990.
    [33]田锡唐.焊接结构[M].北京:机械工业出版社, 1982.
    [34]张淑茳,史冬岩.海洋工程结构的疲劳与断裂[M].黑龙江:哈尔滨工程大学出版社, 2007.
    [35] Griffith A A. The theory of rupture. Proceedings of the first international congress for applied mechanics. Delft. 1924. 55-63.
    [36] Orowan E. Fracture and strength of solids. Reports on Progress in Physics, 1948, 12: 185-232.
    [37] Irwin G R. Analysis of stress and strains near the end of a crack traversing a plate[J]. Appl. Mech., 1957, 24: 361-364.
    [38] Welss A A. Application of fracture mechanics at the beyond general yielding. British Welding Journal, 1963, 10: 563-570.
    [39] Dugdale D S. Yielding of steel sheets containing alits. J. Mech. Ph. Solid, 1960, 8:100-108.
    [40] Dawes M G. Fracture control in high yield strength weldments. Welding Research Supplement, 1974, 53: 369-379.
    [41]压力容器缺陷评定编制组.压力容器缺陷评定规范CVDA-1984.压力容器, 1985, 2(1): 2-21.
    [42] Hutchinson J W. Singlar behavior at the end of a tensile crack in a hardening material[J]. Mech. Phys. Solids, 1968, 16: 13-31.
    [43] Rice J R, Rosengren G F. Plan strain deformation near a crack tip in a power law hardening material[J]. Mech. Phys. Solids, 1968, 16: 1-12.
    [44] AI-Ani A M, Hancock J W. J-dominance of short cracks in tension and bending[J]. Journal of Mechanics and Physics of Solids, 1991, 39: 23-43.
    [45] Betegon C, Hancock J W. Two-parameter characterization of elastic-plastic crack ti fields[J]. Journal of Applied Mechanics, 1991, 58: 104-113.
    [46]Du Z Z, Hancock J W. The effect of non-singular stresses on crack-tip constraint[J]. Journal of Mechclhics and Physics of Solids, 1991, 39: 555-567.
    [47] Parks D M. Advances in characterization of elastic-plastic crack-tip fields[A]. in topics in fracture and fatigue, A. S. Argon, Ed., Springer Verlag, 1992, 59-98.
    [48] Wang Y Y. On the two-parameter characterization of elastic-plastic crack-front fields in surface-cracked plates[A]. in Constraint Effects in Fracture, ASTM STP 1171, Hackett, et al. Eds., American Society for Testing and Materials, Philadelphia,1993, 120-138.
    [49] O'Dowd N P, Shih C F. Family of crack-tip fields characterized by a triaxiality parameter: Part I-structure of fields[J]. Journal of the Mechanics and Physics of Solids, 1991, 39(8): 989-1015.
    [50] O'Dowd N P, Shih C F. Family of crack-tip fields characterized by a triaxiality parameter: Part II-fracture applications[J]. Journal of the Mechanics and Physics of Solids,1992,40: 939-963.
    [51] Dodds R H, Anderson T L, Kirk M T. A framework to correlate a/W ratio effects on elastic-plastic fracture toughness[J]. International Journal of Fracture,1991, 48: 1-22.
    [52] Anderson T L, Dodds R H. Specimen size requirements for fracture toughness testing in the ductile-brittle transition region[J]. Journal of Testing and Evaluation, 1991, 19: 123-134.
    [53] Beremin F M. A local Criterion for Cleavage Fracture of a Nuclear Pressure Vessel Steel. Metallurgical Transactions, 1983, 14A(11): 2277-2287.
    [54] Evans A G. A General Approach for the Statistical Analysis of Multiaxial Fracture. Journal of American Ceramic Society, 1978, 61(7-8): 302-308.
    [55] Matsuo Y. Statistical Theory for Multiaxial Stress States Using Weibull’s Three- Parameter Function. Engineering Fracture Mechanics, 1981, 14(3):527-538.
    [56] Proceedings of the 1996 1st European Mechanics of Material is conference on local Approach to Fracture, EUROMECH-MECAMAT’96.
    [57] R6 assessment of the integrity of structures containing defects. Procedure R6, Revision 3. British Energy Generation Ltd, Gloucester, UK, 1997.
    [58] Pisarski H G., Wallin K. The SINTAP fracture toughness estimation procedure. Engineering Fracture Mechanics, 2000, 67(6): 613~624.
    [59] ESIS P6-98, procedure to measure and calculate local approach criteria using notched tensile specimens, ESIS Document, European Structural Integrity Society, March 1998.
    [60] Mudry F. A local approach to cleavage fracture [J]. Nuclear Engineering Design, 1987, 105(1): 65-76
    [61] Minami F, Ruggieri C, Ohata M, Toyoda M. Evaluation of specimen geometry effect on brittle fracture resistance based on the local approach [J]. Soc. Mat. Sci., 1996, 45(5): 544-551.
    [62] Wiesner C S, Goldthorpe M R. The effect of temperature and specimen geometry on the parameters of the local approach to cleavage fracture[J]. Journal De Physique IV, 1996, 6(C6): 295-304.
    [63] Hongyang Jing, Lianyong Xu, Lixing Huo, Yufeng Zhang. Evaluation on fracture toughness at dynamic loading for welded joint based on the local approach [J]. J. Mater. Sci. Technol., 2004, 20(1): 113-117
    [64] Hongyang Jing, Lianyong Xu, Lixing Huo, Fumiyoshi Minami. Transferability of charpy absorbed energy to fracture toughness based on Weibull stress criterion [J]. J. Mater. Sci. Technol., 2005, 21(1): 1-4
    [65]荆洪阳,刘秀国,霍立兴,张玉凤.动载下焊接接头断裂行为预测[J].焊接学报, 2001, 22(6): 7-10
    [66]荆洪阳,霍立兴,张玉凤.地震载荷下焊接接头断裂行为预测研究[J].机械工程学报, 2001, 37(10): 96-99
    [67]荆洪阳,南二三吉.焊接接头脆性断裂的局部法研究[J].压力容器(Pressure Vessel Technology), 1999, 16(5): 10-13
    [68]荆洪阳,徐连勇,霍立兴,张玉凤.韧-脆转变温度区间内焊接接头断裂韧度预测[J].焊接学报, 2004, 25(1): 45-47,51
    [69] Pineau A. Global and local approaches of fracture-transferability of laboratory test results to compoments. In Topics in Fracture and fatigue. A.S. Argon, Eds., Springer-Verlag, New York, 1992. 197-234.
    [70] Xiao Guangchun, Jing Hongyang, Xu Lianyong. Prediction of Temperature and Prestraining Effects on Fracture Toughness of High-strength Structural Steel by the Local Approach, Materials Science and Engineering A, 2011, 528(7-8): 3044-3048.
    [71] Xiao Guangchun, Jing Hongyang, Xu Lianyong. Prediction of Prestraining Effect on Fracture Toughness of High-strength Structural Steel by the Local Approach, Materials Science and Technology, 2011, 27(3): 637-641.
    [72] Gao X, Dodds R H Jr, Tregoning R L, Joyce J A. Weibull stress model for cleavage fracture under high-rate loading[J]. Fatigue Fracture Engineering Materials Structure, 2001, 24: 551-564.
    [73] Ohata M, Minami F, Toyada M. Local approach to strength mis-match effect on cleavage fracture of notched material[J]. Journal De Physique IV, 1996, 6(C6): 269-278.
    [74] 12th Bienniel Conference on Fracture of the European-Structural-Integrity-Society(ECF12) Sheffield, England, SEP, 1998: 14-18.
    [75] Ainsworth RA, et al. R6-Revision 4: 2001, Assessment of the integrity of structure containing defect British Energy Generation Ltd. Amendment, 2000.
    [76] Little CD, Machmeier PM. High strength fracture resistant weldable steels[P]. USA Patent: 4, 076, 525, 1978.
    [77] Minami F, Bruckner-Foit A, Munz D. Estimation procedure for the Weibull parameters used in the local approach. International Journal of Fracture, 1992, 54(3): 197-210.
    [78] Ruggieri C, Dodds R H Jr. Wstress: Numerical computation of probabilistic fracture parameters, Report documentation page, University of Illinois. 1998.
    [79] Ruggieri C, Minami F, Toyoda M. A statistical approach for fracture of brittle materials based on the Chain-of-Bundles model. Transactions of the ASME. Journal of Applied Mechanic,. 1995, 62(2): 320-328.
    [80] Ruggieri C, Dodds R H Jr. A transferability model for brittle fracture including constraint and ductile tearing effects: a probabilistic approach. International Journal of Fracture, 1996, 79(4): 309-340.
    [81] Ruggieri C, Dodds R H Jr. Probabilistic modeling of brittle fracture including 3-D effects on constraint loss and ductile tearing. Journal de Physique IV (Colloque), 1996, 6(6): 353-362.
    [82] Ruggieri C. Probabilistic treatment of fracture using two failure models. Probabilistic Engineering Mechanics, 1998, 13 (4): 309-319.
    [83] Gao X, Ruggieri C, R Dodds R H Jr. Calibration of Weibull stress parameters using fracture toughness data. International Journal of Fracture, 1998, 92 (2): 175-200.
    [84] Ruggieri C, Gao X, Dodds R H Jr. Transferability of elastic-plastic fracture toughness using the Weibull stress approach: Significance of parameter calibration. Engineering Fracture Mechanics, 2000, 67 (2): 101-117.
    [85] Satoh S, Tsukamoto M, Minami F. et al. Evaluation of interface strength of plasma sprayed coatings by the local approach. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, v 3, Materials Engineering, 1996. 157-164.
    [86] Minami F, Satoh S, Tsukamoto M. Evaluation of interface strength of bonded dissimilar materials based on Weibull stress fracture criterion. Mate, 2000, 3-4: 67-72.
    [87]荆洪阳,霍立兴,张玉凤等.非均质焊接接头断裂行为预测研究[J].机械工程学报, 2000, 36(9): 48-50.
    [88]徐连勇.涂层/基体界面的断裂行为研究[D].天津大学博士论文, 2006.
    [89] Lianyong Xu, Hongyang Jing, Yongdian Han. Evaluation on Interfacial Fracture Behavior of HVAS Coating/Substrate System Based on the Local Approach. Advanced Materials Research, 2008, 33-37: 301-306.
    [90] Lianyong Xu, Hongyang Jing, Jun Wei et al. Evaluation of Interfacial Fracture Behavior of HVAS Coating/Substrate System Using a Local Approach. Solid State Phenomena, 2008, 136: 125-132.
    [91]邹吉权.超高强度钢及其焊接接头的断裂行为研究[D].天津大学博士论文, 2008.
    [92] Fields B A, Miller K J. Fibrous Crack Initiation and Propagation in Pre-strained HY100 Steel. Conference on Tolerance of Flaws in Pressurised Components, Institution of Mechanical Engineers, London, UK, 1978: 117–124.
    [93] Thompson H E, Knott J F. Effects of Crack Length and Pre-Strain on Ductile Fracture. CF-ECF 6: Fracture Control of Engineering Structures, Proc. 6th Biennial Conference on Fracture, 1986, 3: 1737–1749.
    [94] El-Fadaly M S, El-Sarrage T A, Eleiche A M, Dahl W. Fracture Toughness of 20MnMoNi55 Steel at Different Temperatures as affected by Room-Temperature Pre-Deformation[J]. J. Mater. Process. Technol., 1995, 54: 159–165.
    [95] Miyata T, Tagawa T, Aihara S. Influence of Pre-strain of Fracture Toughness and Stable Crack Growth in Low Carbon Steels[J]. Fatigue and Fracture Mechanics, 1997, 1321: 167–176.
    [96] Fukuda N, Yatabe H, Kawaguchi S, Watanabe T, Masuda T. Experimental and analytical study of cold bending process for pipelines[J]. Journal of Offshore Mechanics and Arctic Engineering, 2003, 125: 153-157.
    [97]吴海凤,郑磊.预应变量和时效温度对X80管线钢性能的影响[J].材料热处理技术, 2009, 38(10): 166-169.
    [98]孙宏.预应变对X80级螺旋缝埋弧焊接管线钢拉伸性能的影响[J].理化检验, 2009, 45(1): 18-19.
    [99] Eikrem P A, Zhang Z L, Nyhus B. Effect of plastic prestrain on the crack tip constraint on pipeline steels, International Journal of Pressure Vessels and Piping, 2007, 84: 708-715.
    [100] Eikrem P A, Zhang Z L, Ostby E, et al. Numerical study on the effect of prestrain history on ductile fracture resistance by using the complete Gurson model, Engineering Fracture Mechanics, 2008, 75: 4568-4582.
    [101] Minami F, Arimochi K. Evaluation of Prestraining and Dynamic Loading Effects on the Fracture Toughness of Structural Steels by the Local Approach[J], Journal of Pressure Vessel Technology, 2001, 123(3): 362-372.
    [102] Qiu H, Enoki M, Hiraoka K, Kishi T. Effect of pre-strain on fracture toughness of ductile structural steels under static and dynamic loading[J]. Engineering Fracture Mechanics, 2005, 72: 1624-1633.
    [103]卢庆华,张玉凤,霍立兴,陈立功,张莉.焊接接头在预应变下断裂性能试验研究[J].中国机械工程,2005, 16(4): 365-367.
    [104]卢庆华,张玉凤,霍立兴,张莉.预应变下焊接接头冲击韧度及韧脆转变的分析[J].焊接学报, 2003, 24(6): 43-46.
    [105]蒋家羚,洪文生,朱汉兴.预应变对16MnR钢COD及其降低系数的影响[J].机械强度, 1990, 12(4): 56-59.
    [106]朱汉兴,蒋家羚,李长春,薛继良.预应变对16MnR钢断裂韧性的影响[J].金属学报, 1991, 27(1): 49-54.
    [107]陈美宝,王荣.预拉伸变形后X60管线钢疲劳裂纹扩展特性[J].机械工程材料, 2004, 28(7): 18-20.
    [108]赵新伟,王荣,罗金恒,李鹤林,杨龙.预应变对X60管线钢疲劳裂纹形成寿命的影响[J].机械工程材料, 2005, 29(8): 46-48,70.
    [109] Rice J R, Tracey D M. On the Ductile Enlargement of Voids in Triaxial Stress Fields[J]. J. Mech. Phys. Solids, 1969, 17: 201–217.
    [110] Cosham A. A Model of Pre-Strain Effects on Fracture Toughness[J]. Journal of Offshore Mechanics and Arctic Engineering, Transactions of the ASME, 2001, 123: 182-190.
    [111] Shih C F. Relationships Between the J-Integral and the Crack Tip Opening Displacement for Stationary and Extending Cracks[J]. J. Mech. Phys. Solids, 1981, 29: 305–326.
    [112] Anderson T L. A Comparison of J-Integral and CTOD as Fracture Toughness Parameters[J]. Fracture Mechanics: Eighteenth Symposium, ASTM STP 945, D. T. Read and R. P. Reed, eds., American Society for Testing and Materials, Philadelphia, PA, 1988: 741–753.
    [113] Enami K. The Effects of Compressive and Tensile Prestrain on Ductile Fracture Initiation in Steels[J]. Engineering Fracture Mechanics, 2005, 72: 1089-1105.
    [114] Priest, A. H. Influence of Strain Rate and Temperature on the Fracture and Tensile Properties of Several Metallic Materials. Welding Institute-ASM International Conference, Cambridge, UK. 1976.
    [115] GB/T 229-1994:金属夏比缺口冲击试验方法[S]. 1994.
    [116] William Mohr. Strain-Based Design of Pipelines (Project No. 45892GTH). U. S. 2003.
    [117] GB/T 228-2002:金属材料室温拉伸试验方法[S]. 2002.
    [118] GB/T 13239-2006:金属材料低温拉伸试验方法[S]. 2006.
    [119] WES 2805. Method of Assessment for Defects in Fusion Welded Joints with Respect to Brittle Fracture and Fatigue Crack Growth (in Japanese). The Japan Welding Engineering Society (JWES), 1997.
    [120]武延民.钢结构脆性断裂的力学机理及其工程设计方法研究[D],清华大学博士论文, 2004.
    [121] British Standard BS 7448: Fracture Mechanics Toughness Tests, Part 1, Method for Determination of KIC, Critical CTOD and J Values of Metallic Materials[S]. 1991.
    [122] GB 4161-1984:金属材料平面应变断裂韧度K Ic试验方法[S]. 1984.
    [123] GB 2038-1991:金属材料延性断裂韧度J Ic试验方法[S]: 1991.
    [124] Orowan E. Classical and dislocation theory of brittle fracture. The Technology Press of MIT and John wiley, New York, 1959.
    [125] Minami F, Ohata M, Toyoda M. Determination of required toughness of materials considering transferability to fracture performance evaluation for structure Components[J]. J. Society of Naval Architects of Japan, 1997, 182(2): 647-657.
    [126] Minami F, Ohata M, Toyoda M. Fracture toughness requirement for fracture performance evaluation of welded joints based on the local approach[A]. 15th. Conf. OMAE Florence[C]. New York: ASME, 1996, l93-202.
    [127] Kirk M T. Effect of constraint on specimen dimensions needed to obtain structurally relent toughness measures[J]. ASTM STPl171, 1997, 7(2): 79-103.
    [128] Howard I Othman A. Simulation of the behavior two large scale tests using ductile damage mechanics models derived from small scale laboratory data[A]. Proc. IUTAM symposium[C]. France, 1995, 102-115.
    [129] Wang Y Y. Two-Parameter characterization of elastic-plastic crack-tip fields and application to cleavage fracture[D]. Massachusetts Institute of Technology, 199l.
    [130] Weibull W. The phenomenon of rupture in solids. Ingeniors Vetenskaps Akademien, Handlingar, 1939, 153: 55.
    [131] Epstein B. Statistical aspects of fracture problems. Journal of Applied Physics, 1948, 19: 140-147.
    [132] Ruggieri C. Influence of threshold parameters on cleavage fracture predictions using the Weibull stress model[J]. International Journal of Fracture, 2001,110 (3): 281-304.
    [133] Knott J F. Some effects of hydrostatic tension on the fracture behavior of mild steel. Journal of Iron & Steel Institute, 1966, 204: 104-111.
    [134] Averbach B L. Micro and macro formation. International Journal of Fracture Mechanics, 1965, 1: 272-290.
    [135] Smith E. Cleavage fracture in mild steel[J]. International Journal of Fracture Mechanics,1968, 4: 131-145.
    [136] Ritchie R O, Knott J F, Rice J R. On the relationship between critical tensile stress and fracture toughness in mild steel[J]. Journal of Mechanics and Physics of Solids,1973, 21: 395-410.
    [137] Tetelman A S, Wilshaw T R, Rau Jr C A. The critical tensile stress criterion for cleavage. International Journal of Fracture Mechanics, 1968, 4: 147-157.
    [138] Feller W. Introduction to probability theory and its application, 1957, Vol.1. John Wiley & Sons, Inc. New York.
    [139] Courant R, John F. Introduction to calculus and analysis. 1965, Vol. I, John Wiley & Sons, Inc. New York.
    [140] Freudenthal A M. Statistical approach to brittle fracture. Fracture: An Advanced Treatise. Vol. II. H. Liebowitz, Ed., Academic Press, New York. 1968. 591-619.
    [141] Evans A G, Langdon T G. Progress in Materials Science. B. Chalmers, Ed., Pergamon Press, New York, 1976.
    [142] Gücer D E, Gurland J. Comparison of the statistics of two fracture modes. Journal of the Mechanics and Physics of Solids, 1962, 10: 365-373.
    [143]Daniels H E. The statistical Theory of the strength of bundles of threads. Proceedings of the Royal Society of London, 1945, 183 (A): 405-435.
    [144]Gumbel E J. Statistics of Extremes. Columbia University Press, New York, 1958.
    [145] Press W H, Teukolsky S A, Vetterling W T, Flannery B P. Numerical Recipes in FORTRAN: The Art of Scientifing Computing, 2nd ed., Cambridge University Press, 1992.
    [146] Cosham A, Hopkins P, Palmer A, The effect of prestrain on the fracture toughness of line pipe steel [J], Carbon, 2004: 2-7.
    [147] Gao X., Dodds Jr R. H., Tregoning R. L., Joyce J. A., Link R. E. A Weibull stress model to predict cleavage fracture in plates containing surface cracks. Fatigue & Fracture of Engineering Material & Structures, 1999, 22(6): 481-493.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700