用户名: 密码: 验证码:
非水锂一氧二次电池纳米二氧化锰阴极的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对目前锂离子电池比功率低和锂氧电池存在充放电电压差过大和循环性能差的主要问题,选择高比功率和高比能量锂二次电池纳米电极材料制备进行研究,采用溶胶凝胶模板法合成了钛酸锂纳米阵列电极材料,常压水溶液沉淀法合成了纳米二氧化锰材料。在锂氧电池阴极材料中选用纳米二氧化锰双功能催化剂、制备氧扩散阴极极片、选择非水电解液等构建锂氧测试电池,对非水锂氧二次电池纳米二氧化锰阴极性能进行了研究。
     首先,使用电化学阳极氧化铝箔的方法制备出有序纳米微孔氧化铝模板。通过溶胶填充模板法制备出了Li4Ti5O12纳米线阵列,使用SEM、EDS等手段对纳米线组成和晶型形貌进行了表征。实验结果表明:以孔径为100nm的氧化铝有序微孔薄膜为模板,于-0.1MPa的真空条件下填充浓度为0.8mol/L Li4Ti5O12溶胶,于80℃干燥,900℃空气中焙烧20h,重复溶胶填充-烘干-焙烧过程四次,制得了平均直径约为70nm的尖晶石结构的Li4Ti5O12纳米线阵列。
     以高锰酸钾和硫酸锰水溶液化学沉淀法制备纳米二氧化锰,结合使用XRD、SEM和BET等表征手段研究了反应物摩尔比、反应温度及反应时间对生成二氧化锰晶型和形貌的影响。控制适当反应物摩尔比、反应温度、反应时间可分别制得不同晶型和形貌的纳米级二氧化锰颗粒。以反应物摩尔比nKMnO4:nMnSO4=2:3,控制反应温度90℃反应6h可制得直径为30nm,长约1000nm,比表面积为77.241m2/g的纳米线状α-MnO2;以反应物摩尔比nKMnO4:/nMnSO4=2:1.5,控制反应温度80℃反应4h可制得粒径约为300nm,比表面积为70.474m2/g的层状δ-MnO2;以反应物摩尔比nKMnO4:nMnSO4=2:12,控制反应温度80℃反应4h可制备出粒径约为100nm,比表面积为33.303m2/g的不规则纳米γ-Mn02微粒。
     然后,以旋转圆盘玻碳电极为工作电极,采用三电极体系研究纳米α,γ,δ-Mn02分别在组成为LiPF6(1mol/L)+EC/DEC/DMC(Vol.1:1:1)、 LiPF6(1mol/L)+PC/DME(W.1:1)和LiPF6(1mol/L)+PC/DME(W.1:2)三种非水电解液中的催化氧还原和氧化过氧化钾的电化学性能。电极在使用前用A1203悬浮液充分擦拭表面。称取10mg Mn02颗粒,加5mL超纯水混合并超声匀化分散10分钟。用移液管移取10.0μL悬浮液滴涂于干净的圆盘电极表面,在氮气气氛中控温105℃烘干。再移取10.0μL浓度为0.2750g·L-1的Nafion (5wt.%)乳液,涂于催化剂薄膜层上于105℃烘干即得到电化学实验工作电极。在氩气气氛的真空手套箱中组装三电极测试体系。以玻碳电极为工作电极,以Ag/AgCl电极为参比电极,对电极为铂丝,控制扫描速度为100mV/s,扫描范围为-2~2V(vs. Ag/AgCl)。控制测试体系温度为25℃,为保持电解液中有一定浓度的氧气,在测定前1小时给电解液连续通氧气。实验结果表明,纳米α,γ,δ-MnO2在三种非水电解液中催化氧还原峰峰电流密度大小顺序均为为α-MnO2>γ-MnO2>δ-MnO2。α-MnO2在前二种非水电解液中催化氧还原峰峰电流密度分别为-8.715、-18.54mA·mg-1,在第三种电解液中出现二个还原峰,在OV时形成较宽的氧还原峰,其电流密度为-16.79mA·mg-1、在-0.71V出现的还原峰电流密度为-21.71mA·mg-1。以相同的测试方法,在以上三种电解液中加入过量的过氧化锂制得饱和了过氧化锂的非水电解液,测定纳米α,γ,δ-MnO2催化氧化过氧化锂的电化学性能。实验结果显示,在LiPF6(1mol/L)+EC/DEC/DMC(Vol.1:1:1)电解液中δ-MnO2有明显的氧化峰,峰电流密度为6.569mA·mg-1,而α-MnO2和γ-MnO2均无;在LiPF6(1mol/L)+PC/DME (W.1:1)电解液中γ-MnO2、α-MnO2和8-MnO2氧化峰均强,峰电流密度分别为27.93、24.44、19.13mA·mg-1;在LiPF6(1mol/L)+PC/DME(W.1:2)电解液中,δ-MnO2、γ-MnO2和a-Mn02氧化峰电流密度分别为33.712、32.075、1.272mA·mg-1。实验表明,α-MnO2和δ-MnO2在LiPF6(1mol/L)+PC/DME (W.1:2)电解液中,对氧还原和过氧化锂的氧化有较强的催化作用。故此,本论文锂氧电池性能研究选择LiPF6(1mol/L)+PC/DME (W.1:2)为电解液,选择α-MnO2+δ-MnO2(质量比1:1)混合晶体为阴极氧还原和过氧化锂氧化的双功能催化剂。
     称取0.35g ketjen碳黑、0.15g α,δ-MnO2、15g聚偏氟乙烯胶(0.056g PVDF粉末+15gNMP+10ml异丙醇)分别倒入50ml烧杯中充分搅拌混合,制得浆态阴极承载料。取二组直径为2.5cm的泡沫镍基体放置其中载料,超声处理15分钟后取出并除去表层多余浆态阴极料,于烘干箱80℃干燥2小时,取出冷却后再次放入浆态阴极料中进行二次载料操作,超声15分钟,取出除去表层多余浆态物,于80℃十燥2小时至恒重,然后取出,其中一组用3MPa压力压制,而后放入烘箱中恒温175℃加热处理2小时后既得测试用多孔阴极。取出称量电极质量并计算阴极单位面积或体积载碳/二氧化锰的质量。
     最后,以锂箔为阳极、LiPF6(1mol/L)+PC/DME(W.1:2)电解液、Celgard-2500高分子聚合物膜为隔膜及制备的阴极装入电池模具构建非水锂-氧电池。在25℃-65℃条件下,以常压纯氧为阴极反应物测试锂-氧电池首次放电和充放电循环行为研究其电化学性能。
     以低电流密度(0.1m A/cm2)研究温度对锂氧电池首次放电容量的影响。恒电流首次放电性能结果显示,25℃时,电池容量为2822mAh·g-1,随着测试温度(25℃~-65℃)升高电池容量随之升高,50℃时达最大值3870mAh·g-1,再升高温度因电解液不稳定等原因致使容量下降。且在50℃时,具有较高的放电平台(2.81V)和较低的充电电压平台(4.22V);以优化的条件制备阴极并组装电池,在50℃以恒电流密度0.1mA·cm-2对锂氧电池充放电循环性能进行测试。结果显示,共完成了五次较完整的循环过程。
     综合分析首次放电和循环充放电实验、剖析电池和使用XRD表征放电终止阴极结果表明:测试温度对锂氧电池首次放电容量、LiPF6(1mol/L)+PC/DME(W.1:2)电解液稳定性有很大影响作用,是影响非水锂氧二次电池纳米二氧化锰阴极性能最关键的因素。筛选和制备稳定的电解液将是今后的重要课题。
This thesis focuses on the problems of lithium-oxygen battery that low specific power, huge gap between charge and discharge voltage and poor cycling performance.Dual-function catalyst of the MnO2was used in the cathode material. High specific power and energy lithium secondary battery nano electrode material preparation was chosen to studied.Sol-gel template synthesis method was used to produce the lithium titanate nanoarray electrode materials, atmospheric water solution precipitation was used to synthesize nanometer MnO2material. Take using nano-MnO2bifunctional catalyst for the cathode materials, making oxygen diffusion cathode piece, choosing nonaqueous electrolyte and other optimization conditions were used to investigate the nano-MnO2cathode performance in nonaqueous lithium-oxygen secondary battery.
     First, AAO film in this paper was prepared by electrochemical anodic oxide method; Li4Ti5O12nanoarrays were prepared with the method of Sol-filling AAO template. The morphology and structure of Li4Ti5O12nanoarrays were characterized by SEM, EDS et al. The experimental results show that spinel Li4Ti5O12nanoarrays with mean diameter of70nm were synthesized by immersing the porous AAO in sol of0.8mol/L under-0.1MP and drying at80℃then roasting at900℃for20h in the air after repeating steps above for four times.
     KMnO4and MnSO4were used to produce nano-MnO2through Chemical precipitation. Combined with the characterization methods such as XRD, SEM and BET to discover the influence of reactants molar ratio, reaction temperature and reaction time to produce manganese dioxide crystal form and morphology. Different crystal structure and morphology of nanoscale MnO2particles were produced by controlling appropriate reactant molar ratio, reaction temperature and reaction time. The reactant ratio was nKMnO4:nMnSO4=2:3, and reaction temperature control90℃for6h. A kind of diameter of about30nm, length about1000nm, specific surface area of77.241m2/g nano linear α-MnO2was obtained; The reactant ratio was nKMnO4:nMnso4=2:1.5, and reaction temperature controlled80℃for4h. A kind of diameter of about300nm, specific surface area of77.474m2/g nano layered δ-MnO2was obtained; The reactant ratio was nKMnO4:nMnSO4=2:12, and reaction temperature controlled80℃for4h. A kind of diameter of about100nm, specific surface area of33.303m2/g nano layered γ-MnO2was obtained.
     Rotating disk glassy carbon electrode as the working electrode, a three-electrode system was used to research catalytic oxygen reduction and oxidation of lithium oxide electrochemical performance of nano-α,γ,δ-MnO2in the three kinds of nonaqueous electrolyte:LiPF6(1mol/L)+EC/DEC/DMC (Vol.1:1:1)、LiPF6(1moI/L)+PC/DME(W.1:1) and LiPF6(1moI/L)+PC/DME (W.1:2). Al2O3suspension was used fully wipe the surface before the electrode using. lOmg MnO2particles weighted, plus5mL ultra-pure water were mixed,homogenized and dispersed for10minutes by ultrasonic. Pipetted pipette10.0μL of suspended droplets applied to the clean surface of the disc electrode, the temperature control105℃drying in a nitrogen atmosphere. Pipetted10.1μL concentration of0.2750g·L-1of Nafion (5wt.%) emulsion, applied it to the catalyst film layer and dried at105℃,there got the electrochemical experiments working electrode. Test the system of the three-electrode assembly in a vacuum glove box of the argon atmosphere. Glassy carbon electrode as the working electrode, the counter electrode was a platinum wire, a Ag/AgCl electrode as reference electrode, and controlled the scan speed of100mV/s, the scan range of-2to2V (vs. Ag/AgCl). Control testing system temperature of25℃, in order to maintain the electrolyte a certain concentration of oxygen, the oxygen was continuously to the electrolyte solution one hour before measurement. Experimental results showed that the order of nano-α,γ,δ-MnO2catalytic oxygen reduction peak current density in the three kinds of non-aqueous electrolyte. The former two kinds of nonaqueous electrolyte solution of the α-MnO2catalytic oxygen reduction peak current densities were-8.715、-18.54mA·mg-1, Two reduction peak appeared in the third electrolyte, a wide oxygen reduction peak formed at OV when the current density was-16.79mA·mg-1, and a reduction peak appeared at-0.71V when the current density was-21.71mA·mg-1. In the same test method, adding an excess of lithium peroxide obtained in the above three electrolyte saturated non-aqueous electrolyte lithium peroxide to test the catalytic oxidation electrochemical properties of α,γ,δ-MnO2to the lithium oxide. Experimental results showed that δ-MnO2had an obvious oxidation peak in the LiPF6(1mol/L)+EC/DEC/DMC(Vol.1:1:1) the peak current density was6.569mA·mg-1, no α-MnO2and γ-MnO2; γ-MnO2, α-MnO2and δ-MnO2oxidation peak were strong in the LiPF6(1mol/L)+PC/DME(W.1:1) electrolyte, The peak current density were27.93,24.44,19.13mA·mg-1; δ-MnO2, γ-MnO2and α-MnO2oxidation peak current density were33.712,32.075,1.272mA·mg-1in LiPF6(1mol/L)+PC/DME (W.1:2) electrolyte. Above all,α-MnO2and δ-MnO2had strong catalytic on oxygen reduction and lithium peroxide oxidation in LiPF6(1mol/L)+PC/DME (W.1:2) electrolyte. Therefore, in this paper LiPF6(1mol/L)+PC/DME (W.1:2)was selected as the electrolyte to study the lithium oxygen battery performance, α-MnO2+δ-Mn02(w.1:1) mixed crystal was chosen as cathode and the oxygen reduction and lithium peroxide oxidation of the dual-function catalyst.
     Weighed0.35g ketjen carbon black and0.15g α,δ-MnO2,15g poly vinylidene fluoride vinyl plastic(0.056g PVDF powder+15gNMP+10ml isopropanol), poured respectively into50ml beakers and sufficiently stirred and mixed to produce the slurry cathode bearing-material. Took two sets of diameter2.5cm nickel foam substrates to fill with bearing-material by15minutes sonication. After that took the substrates out and clear the excess pulp state cathode material, dried at80℃for2hours; Repeat the above steps once. One group suppressed under3MPa pressure, then put it into the oven for2hours thermostat heated at175℃,there got the test porous cathode. Weighed electrodes quality and calculated the quality of the cathode unit area or volume contained carbon/MnO2.
     With lithium foil anode, LiPF6(lmol/L)+PC/DME(w.1:2) electrolyte, Celgard2500polymer membrane for diaphragm and preparation of the cathode load cell mould constructed non water lithium-oxygen battery. In25℃-65℃condition, With pure oxygen at atmospheric pressure as cathode reactant tested lithium-oxygen battery first discharge and recharge cycles behavior studied the electrochemical performance.
     Studied temperature on lithium oxygen battery first discharge capacity at low current density (0.1mA/cm2). The first time constant current discharge performance results showed the battery capacity increased with testing temperature (25℃-65℃) increased, when the temperature reached to50℃the battery capacity grow up to maximum of3870mAh·g-1, However, when the temperature continue rising, the battery capacity declined, the reason for this is electrolyte unstable. In addition, the battery had the high discharge platform (2.81V) and low charging voltage platform (4.22V) in50℃; with the optimum conditions prepared cathode and assembled battery, In50℃, with the constant current density of0.1mA·cm-2, the lithium battery charging and discharging cycle to oxygen performance test results show that completed five times more complete cycle process.
     The first discharge and circulation charge and discharge experiments were conducted and discharge termination cathode was characterized by SEM and XRD. The results showed that:Test temperatures had a great influence on first discharging capacity and lithium-oxygen cell electrochemical performance;(3) Carbonic acid esters LiPF6nonaqueous electrolyte used in lithium-oxygen battery system existed two defects. One was after the charge and discharge termination electrolyte in battery anode zone had withered evidences, which showed that the solvent volatile was larger at50℃and the electrolyte loss was serious in the charge and discharge process. So the transfer channels of lithium ion between cathode and anode were lost, which was the main reason of charging and discharging cycle termination of lithium oxygen batteries. The another was electrolyte property was not stable and solvent and solute participated in reactions in cathode, which affected the formation of pure lithium peroxide in the process of the cathode discharge reaction. As a result, complex lithium compound formed among cathode discharge sediment, which was the key factor that influenced the charge and discharge process and cycle performance.
     In short, in nonaqueous lithium oxygen electrochemical system, temperature which had great influence on cathode catalyst activity and the stability of the electrolyte, was one of the key factors that affected the lithium oxygen cell electrochemical performance. The composition of electrolyte and stability of lithium oxygen system were key factors that influenced charging and discharging electrochemical reaction and cycle numbers, and also determined the battery specific capacity and charging and discharging current density. We believe that the primary task of the future research for lithium oxygen batteries and improving the electrochemical performance is to screen the electrolyte with more stable physical and chemical properties.
引文
[1]http://en.wikipedia.org/wiki/Lithium iron phosphate battery.
    [2]Handbook of Batteries,3rd ed.; Linden, D.; Reddy,T.B., Eds.; McGraw-Hill:New York, 2002.
    [3]Armand M, Tarascon J-M. Building better batteries. Nature,2008,451:652-657.
    [4]Bruce PG, Scrosati B, Tarascon J-M. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed,2008,47:2930-2946.
    [5]Chen J, Cheng FY. Combination of lightweight elements and nanostructured materials for batteries. Acc Chem Res,2009,42:713-723.
    [6]Guo Y-G, Hu J-S, Wan L-J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater,2008,20:2878-2887.
    [7]Li H, Wang ZX, Chen LQ, Huang XJ. Research on advanced materials for Li-ion batteries. Adv Mater,2009,21:4593-4607.
    [8]Hassoun J, Scrosati B. A high-performance polymer tin sulfur lithium ion battery. Angew Chem Int Ed,2010,49:2371-2374.
    [9]Yang Y, McDowell MT, Jackson A, etc. New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Lett,2010,10:1486-1491.
    [10]Abraham KM, Jiang Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc,1996,143:1-5.
    [11]Ogasawara T, Debart A, Bruce PG, etc. Rechargeable Li2O2 electrode for lithium batteries. J Am Chem Soc,2006,128:1390-1393.
    [12]Debart A, Bao J, Armstrong G, Bruce PG. An O2 cathode for rechargeable lithium batteries:The effect of a catalyst. J Power Sources,2007,174:1177-1182.
    [13]ZHANG Xin-Long, HU Guo-Rong, and PENG Zhong-Dong. Preparation and Effects of Mo-doping on the Electrochemical Properties of Spinel Li4Ti5O12 as Anode Material for Lithium Ion Battery Journal of Inorganic Materials,2011, Vol.26, No.4:443-448.
    [14]Dr.Bharat S Chaharl and Dr. Zhenhua Mao. Development of High Power Anode Material for Automotive Li-ion Batteries. World Electric Vehicle Journal,2009, Vol.3:2032-6653.
    [15]Sarah Stewart, Paul Albertus,Venkat Srinivasan, etc. Optimizing the Performance of Lithium Titanate Spinel Paired with Activated Carbon or Iron Phosphate. Journal of The Electrochemical Society,2008,155 (3):A253-A261.
    [16]Nakahara K, Nkajima R, Matsushima T, etc. Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells [J]. J Power Sources,2003,117(1/2):131-136
    [17]I.Isaev, G. Salitra, A. Soffer, etc. A new approach for the preparation of anodes for Li-ion batteries based on activated hard carbon cloth with pore design. Journal of Power Sources, 2003,119-121:28-33.
    [18]http://en.wikipedia.org/wiki/Lithium iron phosphate battery.
    [19]ZHANG Xin-Long, HU Guo-Rong, and PENG Zhong-Dong. Preparation and Effects of Mo-doping on the Electrochemical Properties of Spinel Li4Ti5O12 as Anode Material for Lithium Ion Battery,Journal of Inorganic Materials,2011, Vol.26, No.4:443-448.
    [20]Dr.Bharat S Chaharl and Dr. Zhenhua Mao. Development of High Power Anode Material for Automotive Li-ion Batteries. World Electric Vehicle Journal,2009, Vol.3:2032-6653.
    [21]Candace K. Chan,Xiao Feng Zhang,and Yi Cui. High Capacity Li Ion Battery Anodes Using Ge Nanowires, Nano Lett.,2008 Vol.8, No.1:307-309.
    [22]CANDACE K. CHAN, HAILIN PENG, Yi Cui, etc. High-performance lithium battery anodes using silicon nanowires. nature nanotechnology,2008, VOL.3:31-35.
    [23]Nahong Zhao, Lijun Fu, Lichun Yang, etc. Nanostructured anode materials for Li-ion batteries, Pure Appl. Chem.,2008,Vol.80, No.11:2283-2295.
    [24]Charles R. Sides and Charles R. Martin. Nanostructured Electrodes and the Low-temperature Performance of Li-Ion battery. Adv. Mater.,2005,17. No.1:125-128.
    [25]http://en.wikipedia.org/wiki/Lithium-ion battery.
    [26]Masataka Wakihara. Recent developments in ion battery. Material Science and Engineering,2001, R33:109-134.
    [27]J.M. Skowronski, S. Bla'zewicz, M. Walkowiak. New Type of Carbon/Carbon Composite as Anode Material for High Power Li-ion Cells, Journal of New Materials for Electrochemical Systems,2006,9:353-358.
    [28]Kristin Persson, Vijay A.Sethuraman, Laurence J.Hardwick, etc. Lithium Diffusion in Graphitic Carbon, J.Phys. Chem. Lett.,2010,1:1176-1180.
    [29]Andrew T. Stamps, Charles E. Holland, Ralph E. White, etc. Analysis of capacity fade in a lithium ion battery. Journal of Power Sources,2005,150:229-239.
    [30]Candace K. Chan, Reken N. Patel, Michael J. O'Connell, etc. Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes. Acsnano.,2010,VOL.4, NO.3:1443-1450.
    [31]Seong-Ho Yoon, Chul-Wan Park, Hojung Yang, et al. Novel carbon nanofibers of high graphitization as anodic materials for lithium ion secondary batteries. Carbon,2004, 42:21-32.
    [32]Arumugam Sivashanmugam, Sukumaran Gopukumar, Ramasamy Thirunakaran, etc. Novel Li4Ti5O12/Sn nano-composites as anode material for lithium ion batteries. Materials Research Bulletin,2011,46:492-500.
    [33]Sarah Stewart,Paul Albertus,Venkat Srinivasan, etc. Optimizing the Performance of Lithium Titanate Spinel Paired with Activated Carbon or Iron Phosphate. Journal of The Electrochemical Society,2008,155 (3):A253-A261.
    [34]Godfrey Sikha, Branko N.Popov, etc. Effect of Porosity on the Capacity Fade of a Lithium-Ion Battery, Journal of The Electro-chemical Society,2004, 151(7):A1104-A1114.
    [35]Karthikeyan Kumaresan, Qingzhi Guo, Ralph E. White, etc. Cycle life performance of lithium-ion pouch cells. Journal of Power Sources,2006,158:679-688.
    [36]Qi Zhang, Ralph E. White. Capacity fade analysis of a lithium ion cell. Journal of Power Sources,2008,179:793-798.
    [37]John Christensen,Venkat Srinivasan and John Newman. Optimization of Lithium Titanate Electrodes for High-Power Cells. Journal of The Electrochemical Society,2006,153 (3):A560-A565.
    [38]Candace K. Chan, Xiao Feng Zhang, and Yi Cui. High Capacity Li Ion Battery Anodes Using Ge Nanowires. NANO LETTERS,2008 Vol.8, No.1:307-309.
    [39]Gang Ning, Ralph E. White, Branko N. Popov. A generalized cycle life model of rechargeable Li-ion batteries. Electrochimica Acta,2006,51:2012-2022.
    [40]Laurence Lacroix-Orio, Monique Tillard, David Zitoun, etc. New Synthesis Method of a Si Nanocomposite Anode for Li-Ion Batteries Chem. Mater.,2008,20:1212-1214.
    [41]J. L. Allen, T. R. Jow, J. Wolfenstine. Low temperature performance of nanophase Li4Ti5O12. Journal of Power Sources,2006,159:1340-1345.
    [42]A.Magasinki, P.Dixon. B. Hertzberg. etc. High-performance lithium-ion anodes using a hierarchical bottom-up approach. NATURE MATERIALS,2010,DOI: 10.1038/NMAT2725:1-6.
    [43]Sindhuja Renganathan, Ralph E. White. Semianalytical method of solution for solid phase diffusion in lithium ion battery electrodes:Variable diffusion coefficient. Journal of Power Sources,2011,196:442-448.
    [44]P.Ramadass, Bala Haran, Ralph White, etc. Mathematical modeling of the capacity fade of Li-ion cells. Journal of Power Sources,2003,123:230-240.
    [45]Shriram Santhanagopalan, Qingzhi Guo, Ralph E. White, etc. Review of models for predicting the cycling performance of lithium ion batteries,Journal of Power Sources, 2006,156:620-628.
    [46]Long Cai, Ralph E. White. Mathematical modeling of a lithium ion battery with thermal effects in COMSOL Inc. Multiphysics (MP) software. Journal of Power Sources,2011. 196:5985-5989.
    [47]C.M. Julien, K. Zaghib. Electrochemistry and local structure of nano-sized Li4/3Mes/3O4 (Me=Mn,Ti) spinels. Electrochimica Acta,2004,50:411-416.
    [48]Kiyoshi Nakahara, Ryosuke Nakajima, Tomoko Matsushima, etc. Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells[J]. Journal of Power Sources,2003,117:131-136
    [49]Ali Abouimrane, Owen C. Compton, Khalil Amine, etc. Non-Annealed Graphene Paper as a Binder-Free Anode for Lithium-Ion Batteries. J. Phys. Chem. C 2010,114, 12800-12804.
    [50]Po-Chiang Chen, Jing Xu, Haitian Chen, etc. Hybrid Silicon-Carbon Nanostructured Composites as Superior Anodes for Lithium Ion Batteries. Nano Res.,2011,4(3): 290-296.
    [51]Ramaraja P.Ramasamy, Jong-Won Lee, Branko N.Popov. Simulation of capacity loss in carbon electrode for lithium-ion cells during storage. Journal of Power Sources,2007, 166:266-272.
    [52]Nam-Soon Choi, Yan Yao, Yi Cui. One dimensional Si/Sn-based nanowires and nanotubes for lithium-ion energy storage materials. Journal of Materials Chemistry,2011, 21,9825-9840. DOI:10.1039/COJM03842C.
    [53]Naichao Li, David T. Mitchell, Charles R. Martin, etc. A Nanostructured Honeycomb Carbon Anode. Journal of The Electrochemical Society,2003,150 (7)A979-A984.
    [54]Volodymyr G. Khomenko, Ilona V. Senyk and Viacheslav Z. Barsukov, etc. ADVANCED NANOSTRUCTURED ANODE MATERIALS FOR LITHIUM-ION BATTERIES. Nanomaterials:Applications and Properties (NAP-2011). Vol.2, Part 1,78-81.
    [55]Saeed Khaleghi Rahimian, Sean C. Rayman, and Ralph E. White. Maximizing the Life of a Lithium-Ion Cell by Optimization of Charging Rates. Journal of The Electrochemical Society,2010,157 (12) A1302-A1308.
    [56]Chunsheng Wang, A. John Appleby, and Frank E. Little. Low-Temperature Characterization of Lithium-Ion Carbon Anodes via Microperturbation Measurement. Journal of The Electrochemical Society,2002,149 (6)A754-A760.
    [57]Ramaraja P. Ramasamy, and Ralph E. White, etc. Calendar life performance of pouch lithium-ion cells. Journal of Power Sources,2005,141:298-306.
    [58]Rui XH, Ding N, Liu J, etc. Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material.Electrochim Acta,2010,55:2384-2390.
    [59]Nyten A, Abouimrane A, Armand M, etc. Electrochemical performance of Li2FeSiO4 as a new Li-battery cathodematerial. Electrochem Commun,2005,7:156-160.
    [60]Rui XH, Li C, Chen CH. Synthesis and characterization of carbon-coated Li3V2(PO4)3 cathode materials with different carbon sources.Electrrochim Acta,2009,54:3374-3380.
    [61]Rui XH, Li C, Liu J, etc. The Li3V2(PO4)3/C composites with high-rate capability prepared by a maltose-based sol-gel route.Electrochim Acta,2010,55:6761-6767.
    [62]Wang L, Zhang L-C, Lieberwirth I, etc. A Li3V2(PO4)3/C thin film with high rate capability as a cathode material for lithium-ion batteries. Electrochem Commun,2010,12: 52-55.
    [63]Amine K, Tukamoto H, Yasuda H, etc. A new three-volt spinel Li1+xMn1.5Ni0.5O4 for secondary lithium batteries. J Electrochem Soc,1996,143:1607-1613.
    [64]Zhong Q, Bonakdarpour A, Zhang M, etc. Synthesis and electrochemistry of LiNixMn2-xO4. J Electrochem Soc,1997,144:205-213.
    [65]Fang X, Ding N, Feng XY, etc. Study of LiNi0.5Mn1.5O4 synthesized via a chloride-ammonia co-precipitation method:Electrochemical performance, diffusion coefficient and capacity loss mechanism. Electrochim Acta,2009,54:7471-7475.
    [66]Wang QY, Liu J, Murugan AV, etc. High capacity double-layer surface modified Li[Li0.2Mn0.54Ni0.13Co0.13]02 cathode with improved rate capability. J Mater Chem,2009, 19:4965-4972.
    [67]Wei G-Z, Lu X, Ke F-S, etc. Crystal habit-tuned nanoplate material of Li[Li1/3-2x/3NixMn2/3-x/3]O2 for high-rate performance lithium-ion batteries. Adv Mater, 2010,22:4364-4367.
    [68]Kim GY, Park YJ, etc. High-rate, high capacity ZrO2 coated Li[Li1/6Mn1/2Co1/6Ni1/6]O2 for lithium secondary batteries. J Appl Electrochem,2008,38:1477-1481.
    [69]Zheng JM, Li J, Zhang ZR, etc. The effects of TiO2 coating on the electrochemical performance of Li[Lio.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery. Solid State Ionics,2008,179:1794-1799.
    [70]Wu XL, Chen LL, Xin S, etc. Preparation and Li storage properties of hierarchical porous carbon fibers derived from alginic acid. ChemSusChem,2010,3:703-707.
    [71]Wu XL, Liu Q, Guo YG, etc. Superior storage performance of carbon nanosprings as anode materials for lithium-ion batteries.Electrochem Commun,2009,11:1468-1471.
    [72]Zhang W-M, Hu J-S, Guo Y-G, etc. J. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries Adv Mater, 2008,20:1160-1165.
    [73]Ji HX, Wu XL, Fan LZ, etc. Self-wound composite nanomembranes as electrode materials for lithium ion batteries. Adv Mater,2010,22:4591-4595.
    [74]Hassoun J, Scrosati B. A high-performance polymer tin sulfur lithium ion battery. Angew Chem Int Ed,2010,49:2371-2374.
    [75]Yang Y, McDowell MT, Jackson A, Cha JJ, Hong SS, Cui Y. New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Lett,2010,10: 1486-1491.
    [76]Debart A, Paterson AJ, Bao J, Bruce PG. α-MnO2 nanowires:A catalyst for the O2 electrode in rechargeable lithium batteries. Angew Chem Int Ed,2008,47:4521-4524.
    [77]Kuboki T, Okuyama T, Ohsaki T, Takami N. Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte. J Power Sources,2005,146:766-769.
    [78]He P, Wang YG, Zhou HS. A Li-air fuel cell with recycle aqueous electrolyte for improved stability. Electrochem Commun,2010,12:1686-1689.
    [79]Wang Y, Zhou H. A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy. J Power Sources,2010,195:358-361.
    [80]Pritiraj M. Nanotechnology:Nano-oscillators get it together [J]. Nature,2005, 437:325-326.
    [81]Hamed M, Hassn H A. Small things and big changes in the developing world [J]. Science, 2005,309:65-66.
    [82]Lieber C M. One-dimensional nanostructures:Chemistry [J]. Physics& Applications Solid State Commun.1998,107(11):607-616.
    [83]Gavillet J, Loiseau A, Journet C, etc. Root-growth mechanism for single-wall carbon nanotubes[J]. Phys. Rev. Lett.2001,87(27):275504-275507.
    [84]Hirata T, Satake N, Jeong G H, etc. Magnetron-type radio-frequency plasma control yielding vertically well-aligned carbonnanotube growth[J]. Appl. Phys. Lett.,2003,83(6): 1119-1121.
    [85]Zhu L B, Xu J W, Xiu Y H, etc. Electrowetting of aligned carbon nanotube films[J]. J. Phys. Chem. B,2006,110(32):15945-15950.
    [86]Zheng M J, Zhang L D, Li C H, etc. Ordered indium-oxide nanowire arrays and their photoluminescence properties [J]. Appl. Phys. Lett.2001,79(6):839-841.
    [87]Mazadiyaski K S, Dolloff R T, Smith S. Preparation of high-purity submicron barium titanate powders[J]. J Am ceram Soc,1969,52(10):523-526.
    [88]Qian Y T, Su Y, Xie Y, etc. Hydrothermal preparation and characterization of nanocrystalline powder of sphalerite [J]. Mats Research Bulletin,1995,30(5):601-605.
    [89]Stallings W E, Henry L H. Synthesis of Nanostructured Titania Powders via Hydrolysis of Titanium Isopropoxide in Supercritical Carbon Dioxide[J]. Langmuir,2003,19(7): 2989-2994.
    [90]Whitney T M, Jiang J S, Searson P C, etc. Fabrication and Magnetic Properties of Arrays of Metallic Nanowires[J]. Science,1993,261(5126):1316-1319.
    [91]Yan J H, Wan Z N. The formation of cadmium sulfide nanowires in different liquid crystal systems[J]. Mater Sci Eng (A),2000,286(1):106-109.
    [92]Li A P, Muller F, Birner A, etc. Hexagonal pore arrays with a 50-420nm interpore distance formed by self-organization in anodic alumina[J]. Appl. Phys.1998,84(11): 6023-6026.
    [93]Masuda H, Fukuda K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina[J]. Science,1995,268(6):1466-1468.
    [94]Nahong Zhao, Lijun Fu, Lichun Yang, etc. Nanostructured anode materials for Li-ion batteries, Pure Appl. Chem.,2008,Vol.80, No.11:2283-2295.
    [95]Charles R. Sides and Charles R. Martin. Nanostructured Electrodes and the Low-temperature Performance of Li-Ion battery. Adv. Mater.,2005,17, No.1:125-128.
    [96]Nam-Soon Choi, Yan Yao, Yi Cui. One dimensional Si/Sn-based nanowires and nanotubes for lithium-ion energy storage materials. Journal of Materials Chemistry,2011, 21,9825-9840. DOI:10.1039/C0JM03842C.
    [97]Arumugam Sivashanmugam, Sukumaran Gopukumar, Ramasamy Thirunakaran, etc. Novel Li4Ti5O12/Sn nano-composites as anode material for lithium ion batteries. Materials Research Bulletin,2011,46:492-500.
    [98]Martin C R. Nanomaterials:a membrane-based synthetic approach[J]. Science, 1994,266(23):1961-1965.
    [99]Hulteen J C, Martin C R. A general template-based method for the preparation of nanomaterials[J]. Mater Chem,1997,7(7):1075-1079.
    [1]I. Isaev, G. Salitra, A. Soffer, etc. A new approach for the preparation of anodes for Li-ion batteries based on activated hard carbon cloth with pore design. Journal of Power Sources, 2003,119-121:28-33.
    [2]http://en.wikipedia.org/wiki/Lithium iron phosphate battery.
    [3]ZHANG Xin-Long, HU Guo-Rong, and PENG Zhong-Dong. Preparation and Effects of Mo-doping on the Electrochemical Properties of Spinel Li4Ti5O12 as Anode Material for Lithium Ion Battery,Journal of Inorganic Materials,2011, Vol.26, No.4:443-448.
    [4]Dr.Bharat S Chaharl and Dr. Zhenhua Mao. Development of High Power Anode Material for Automotive Li-ion Batteries. World Electric Vehicle Journal,2009, Vol.3:2032-6653.
    [5]Candace K. Chan,Xiao Feng Zhang,and Yi Cui. High Capacity Li Ion Battery Anodes Using Ge Nanowires, Nano Lett.,2008 Vol.8, No.1:307-309.
    [6]CANDACE K. CHAN, HAILIN PENG, Yi Cui, etc. High-performance lithium battery anodes using silicon nanowires. Nature nanotechnology,2008, VOL.3:31-35.
    [7]Nahong Zhao, Lijun Fu, Lichun Yang, etc. Nanostructured anode materials for Li-ion batteries. Pure Appl. Chem.,2008, Vol.80, No.11:2283-2295.
    [8]Charles R. Sides and Charles R. Martin. Nanostructured Electrodes and the Low-temperature Performance of Li-Ion battery. Adv. Mater.,2005,17, No.1:125-128.
    [9]http://en.wikipedia.org/wiki/Lithium-ion battery.
    [10]Nam-Soon Choi, Yan Yao, Yi Cui. One dimensional Si/Sn-based nanowires and nanotubes for lithium-ion energy storage materials. Journal of Materials Chemistry,2011, 21,9825-9840. DOI:10.1039/C0JM03842C.
    [11]Arumugam Sivashanmugam, Sukumaran Gopukumar, Ramasamy Thirunakaran, et al. Novel Li4Ti5O12/Sn nano-composites as anode material for lithium ion batteries. Materials Research Bulletin,2011,46:492-500.
    [12]Martin C R. Nanomaterials:a membrane-based synthetic approach [J]. Science,1994, 266(23):1961-1965.
    [13]Nishizawa M, Menon V P, Martin C R. Metal nanotubule membranes with electrochemically switchable ion-transport selectivity [J]. Science,1995,268:700-704.
    [14]Hulteen J C, Martin C R. A general template-based method for the preparation of nano-materials [J]. Mater Chem,1997,7(7):1075-1079.
    [15]Jirage K B, Hulteen J C, Martin C R. Nanotubule-based molecular filtration membranes [J]. Science,1997,278:655-660.
    [16]Abdollahzadeh M, Nasirpouri F, Parvini-Ahmadi N,etc. A comparison between self-ordering of nanopores in aluminium oxide achieved by two and three step anodic oxidation [J]. Current Applied Physics,2009,9(1):91-94.
    [17]Evlina P. Aluminum porous oxide growth-II. On the rate determining step [J].Electroehimica Acta.1995,40(8):1051-1055.
    [18]Hoyer P, Nishio K, Masuda H. Preparation of regularly structured porous metal membranes with two different hole diameters at the two sides [J]. Thin Solid Films,1996, 286(1/2):88-91.
    [19]Patrizia B, Carmelo S, Giovanni C, etc. Microporous alumina membranes electrochemically grown [J]. Electrochimica Acta,2003,48(20-23):3175-3183.
    [20]Masuda H, Yamada H, Satoh M, etc. Highly ordered nanochannel array architecture in anodic alumina [J]. Appl Phys Lett,1997.71(19):2770-2772.
    [21]Brian O, Graetzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature,1991,353:737-740.
    [22]Norio Taniguchi, On the Basic Concept of Nano Technology [J], Proc.ICPE Tokyo,1974, 42:18-23.
    [23]Lijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354 (6348):56-58.
    [24]Hu J T, Odom T W, Lieber C M. Chemistry and physics in one dimension:Synthesis and properties of nanowires and nanotubes[J]. Acc. Chem. Res.1999,32(5):435-445.
    [25]Lieber C M, Morales A M, Sheehan P E, etc. One-dimensional nanostruetures:rational synthesis. Novel properties and applications[C]. In proceedings of the Robert A. Welch foundation 40th conference on chemical Research:Chemistry the Nanometer scale; Welch Foundation:Houston,1997.
    [26]Lieber C M. One-dimensional nanostructures:Chemistry[J]. Physics& Applications Solid State Commun.1998,107(11):607-616.
    [27]Gavillet J, Loiseau A, Journet C, etc. Root-growth mechanism for single-wall carbon nanotubes [J]. Phys. Rev. Lett.2001,87(27):275504-275507.
    [28]Chen G H, Weng W G, Wu D J, etc. Preparation and characterization of graphite nanosheets from ultrasonic powdering technique [J]. Carbon,2004,42(4):753-759.
    [29]Gleiter H. Nanocrystalline materials [J]. Europhysics news,1989,20(4):223-315.
    [30]Shingu P H, Huang B, Nishitani S R, etc. Nano-Meter Order Crystalline Structures of Al-Fe Alloys Produced by Mechanical Alloying [J]. Suppl. to Trans. Japan Institute of Metals,1988,29:3-10.
    [31]J.M. Skowronski, S. Bla'zewicz, M. Walkowiak. New Type of Carbon/Carbon Composite as Anode Material for High Power Li-ion Cells, Journal of New Materials for Electrochemical Systems,2006,9:353-358.
    [32]Kristin Persson,Vijay A.Sethuraman, Laurence J.Hardwick. etc. Lithium Diffusion in Graphitic Carbon, J.Phys. Chem. Lett.,2010,1:1176-1180.
    [33]Andrew T. Stamps, Charles E. Holland, Ralph E. White, etc. Analysis of capacity fade in a lithium ion battery. Journal of Power Sources,2005,150:229-239.
    [34]Candace K. Chan, Reken N. Patel, Michael J. O'Connell, etc. Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes. Acsnano.,2010,VOL.4, NO.3:1443-1450.
    [35]Seong-Ho Yoon, Chul-Wan Park, Hojung Yang, etc. Novel carbon nanofibers of high graphitization as anodic materials for lithium ion secondary batteries. Carbon,2004, 42:21-32.
    [36]Ohzuku T, Yamamoto N, Ueda A. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells[J]. J Electrochem Soc,1995,142(5):1431-1436.
    [37]Zaghib K, Simoneau M, Armand M, etc. Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries[J]. Power Sources,1999,81-82: 300-305.
    [38]Prosini P P, Mancini R, Petrucci L, etc. Li4Ti5O12 as anode in all-solid-state, plastic, lithium-ion batteries for low-power applications [J]. Solid State Ionics,2001,144(1/2): 185-192.
    [39]Nakahara K, Nkajima R, Matsushima T, etc. Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells[J]. J Power Sources,2003,117(1/2):131-136.
    [40]Huang S H, Wen Z Y, Zhu X J, etc. Preparation and electrochemical performance of Ag doped Li4Ti5O12 [J]. Electrochemistry Communications,2004,6(11),1093-1097.
    [41]Sarah Stewart,Paul Albertus,Venkat Srinivasan, etc. Optimizing the Performance of Lithium Titanate Spinel Paired with Activated Carbon or Iron Phosphate. Journal of The Electrochemical Society,2008,155 (3):A253-A261.
    [42]John Christensen,Venkat Srinivasan and John Newman. Optimization of Lithium Titanate Electrodes for High-Power Cells. Journal of The Electrochemical Society,2006,153 (3):A560-A565.
    [43]J. L. Allen, T. R. Jow, J. Wolfenstine, Low temperature performance of nanophase Li4Ti5O12. Journal of Power Sources,2006,159:1340-1345.
    [44]Kiyoshi Nakahara, Ryosuke Nakajima, Tomoko Matsushima, etc. Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells[J]. Journal of Power Sources,2003,117:131-136
    [1]Jansen A N, Kahaian A J, Kepler K D, etc. Development of a high-power lithium-ionbattery[J]. Journal of Power Sources,1999(81/82):902-905.
    [2]Ohzuku T, Ueda A, Yamamota N. Zero-Strain Insertion Material of Li[Li1/3Ti5/3]O4 for Rechargeable Lithium Cells[J]. J. Electrochem. Soc.,1995,142(5):1431-1435.
    [3]Ohzuku T, Ueda A. Why transition metal (di) oxides are themost attractive materials for batteries [J]. Solid State Ionics,1994,69(3/4):201-211.
    [4]Tsutomu O, Atsushi U, Norihiro Y. Zreo-strain insertion materials of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells[J]. Electrochemical Society,1995,142(5):1431-1435.
    [5]Huang S H, Wen Z Y, Zhu X J, etc. Preparation and electro-chemical performance of Ag doped Li4Ti5O12 [J]. Electrochemistry Communications,2004,6(11):1093-1097.
    [6]Masuda H, Yamada H, Satoh M, etc. Highly ordered nanochannel-array architecture in anodic alumina[J]. Appl. Phy. Lett.,1997,71(19):2770-2772.
    [7]Masuda H, Hasegwa F, Ono S. Self-ordering of cell arrangement of anodic porousalumina formed in sulfuric acid solution [J]. J. Electrochem. Soc.,1997, 144(5):L127-L130.
    [8]Martin C R. Nanomaterials-A membrane-based synthetic approach[J]. Science, 1994,266(23):1961-1966.
    [9]Masuda H, Satoh M. Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask[J]. Jpn. J. Appl. Phys.,1996,35(1B15):126-129.
    [10]Cepak V M, Martin C R. Preparation and stability of template synthesized metal nanorod sols in organic solvents[J]. J. Phys. Chem.,1998,102(49):9985-9990.
    [11]Sauer G, Brehm G, Schneider S, etc. Highly ordered monocrystalline silver nanowire arrays[J]. J. Appl. Phy.,2002,91(5):3243-3247.
    [12]Zheng M J, Zhang L D, Li G H. etc. Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique[J].Chem. Phy. Lett.,2002,363(122):123-128.
    [13]潘中来,刘力,林子吉,等.钛酸锂/复合电极材料及其制备方法:CN,101431154A[P].2009-05-13.
    [14]Hao Y J, Lai Q Y, Lu J Z, etc. Synthesis and characterization of spinel Li4Ti5O12 anode material by oxalic acid-assisted sol-gel method[J]. Journal of Power Sources,2006, 158(2),1358-1364.
    [15]Kanamura K, Umegaki T, Naito H, etc. Structural and electrochemical characteristics of Li4/3Ti5/3O4 as an anode material for rechargeable lithium batteries[J]. Journal of Applied Electrochemistry,2001,31(1):73-78.
    [1]Linden D. Handbook of batteries (3rd edition) [M], McGraw-Hill Companies, American, 2003,3(38).
    [2]Abraham K.M., Jiang Z. A Polymer Electrolyte Based Rechargeable Lithium/Oxygen Battery [J]. Journal of the Electrochemical Society,1996,143(1):1-5.
    [3]Read J. Characterization of the Lithium/Oxygen Organic Electrolyte Battery [J]. Journal of the Electrochemical Society,2002,149 (9):A1190-A1195.
    [4]Read J, Mutolo K., Ervin M, etc. Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery [J]. Journal of the Electrochemical Society, 2003,150 (10):A1351-A1356.
    [5]Zhang T, Imanishi N, Hasegawa S, etc. Li/Polymer Electrolyte/Water Stable Lithium-Conducting Glass Ceramics Composite for Lithium-Air Secondary Batteries with an Aqueous Electrolyte [J]. Journal of the Electrochemistry society,2008, 155(12):A965-A969.
    [6]Shimonishia Y, Zhanga T, Johnsonb P, etc. A study on lithium/air secondary batteries-Stability of NASICON-type glass ceramics in acid solutions [J]. Journal of Power Sources,2010,195(18):6187-6191.
    [7]Wang Y G, Zhou H S. A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy [J]. Journal of Power Sources.2010,195 (1):358-361.
    [8]Ogasawara T, Debart A, Holzapfel M, etc. Rechargeable Li2O2 Electrode for Lithium Batteries Journal of the American Chemical Society,2006,128 (4):1390-1393.
    [9]J. Read. Characterization of the Lithium/Oxygen Organic Electrolyte Battery [J]. Journal of the Electrochemical Society,2002,149(9):1190-1195.
    [10]Kuboki T, Okuyama T, Ohsaki T, etc. Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte [J]. Journal of Power Sources,2005, 146(1-2):766-769.
    [11]Hasegawa S, Imanishi N, Zhang T, etc. Study on lithium/air secondary batteries-Stability of NASICON-type lithium ion conducting glass-ceramics with water [J]. Journal of Power Sources,2009,189(1):371-377.
    [12]Kowalczk I, Read J, Salomon M. Li-air batteries:A classic example of limitations owing to solubilities [J]. Pure Appl. Chem.,2007,79(5):851-860.
    [13]Komanicky V, Iddir H, Chang, etc. Shape-Dependent Activity of Platinum Array Catalyst [J]. Journal of the American Chemical Society,2009,131(16):5732-5733.
    [14]Xu Y, Ruban A V, Mavrikakis M. Adsorption and Dissociation of O2 on Pt-Co and Pt-Fe Alloys [J]. Journal of the America Chemistry Society,2004,126(14):4717-4725.
    [15]Wang C, Daimon H, Lee Y, etc. Synthesis of Monodisperse Pt Nanocubes and Their Enhanced Catalysis for Oxygen Reduction [J]. Journal of the America Chemistry Society, 2007,129(22):6974-6975.
    [16]Qian Y D, Wen W, Adcock P A, etc. Pt M/C Catalyst Prepared Using Reverse Micelle Method for Oxygen Reduction Reaction in PEM Fuel Cells [J] Journal of Physical Chemistry C,2008,112(4):1146-1157.
    [17]Falcona H, Carbonio R E. Study of the heterogeneous decomposition of hydrogen peroxide:its application to the development of catalysts for carbon-based oxygen cathodes [J]. Journal of Electroanalytical Chemistry.1992,339 (1-2):69-83.
    [18]Khomenko V G, Barsukov V Z, Katashinskii A S. The catalytic activity of conducting polymers toward oxygen reduction [J]. Electrochemistry of Electrocactive Materials, 2005,50(7-8):1675-1683.
    [19]Kiros Y, Schwartz S. Pyrolyzed macro cycles on high surface area carbons for the reduction of oxygen in alkaline fuel cells [J] Journal of Power Source,1991,36 (4):547-555.
    [20]Kivisaari J. Lamminen J, Lampinen M J, etc. Preparation and measurement of air electrodes for alkaline fuel cells [J]. Journal of Power Source,1990,32(3):233-241.
    [21]Imamuraa H, Sakataa Y, Tsuchiya S. Preparation and catalytic properties of lanthanide-metal-dosed catalyst systems [J]. Journal of Alloys and Compounds,1993,193 (l-2):62-64.
    [22]Brito P S D, Sequeira C A C. Cathodic oxygen reduction on noble metal and carbon electrodes [J]. Journal of Power Sources,1994,52(1):1-16.
    [23]Lu Y C, Gasteiger H A, Parent M C, Chiloyan V, Horn Y S. The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li/Oxygen Batteries [J]. Electrochemical and Solid-State Letters,2010,13(6):A69-A72.
    [24]Thapa A K, Saimen K, Ishihara T. Pd/MnO2 Air Electrode Catalyst for Rechargeable Lithium/Air Battery [J]. Electrochemical and Solid-State Letters,2010, 13(11):A165-A167.
    [25]Debarta A, Baoa J, Bruce P G, etc. An O2 cathode for rechargeable lithium batteries:The effect of a catalyst [J]. Journal of Power Sources,2007,174(2):1177-1182.
    [26]Dobley A, Rodriquez R, Abraham K M. Proceedings of the Electrochemical Society, 2004,496,10:3-8.
    [27]Zhang D, Fu Z H, Wei Z, etc. Polarization of Oxygen Electrode in Rechargeable Lithium Oxygen Batteries [J]. Journal of the Electrochemical Society,2010,157(3):A362-A365.
    [28]Yang J S, Xu J J. Nanoporous amorphous manganese oxide as electrocatalyst for oxygen reduction in alkaline solutions [J]. Electrochemistry Communications,2003, 5(4):306-311.
    [29]Debart A, Paterson A J, Bruce P G, etc. a-MnO2 Nanowires:A Catalyst for the O2 Electrode in Rechargeable Lithium Batteries [J].Angewandte Chemie,2008,120(24): 4597-4600.
    [30]Chabre Y, Pannetier, J. Structural and electrochemical properties of the proton/λ-MnO2 system [J]. Progress in Solid State Chemistry,1995,23(1):1-130.
    [31]A.S. Arico, P.G. Bruce, B. Scrosati, etc. Nanostructured materials for advanced energy conversion and storage devices [J]. Nature Materials,2005,4:366-377.
    [32]Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for Rechargeable Lithium Batteries [J]. Angewandte Chemie International Edition,2008,47(16):2930-2946.
    [33]Bruce P G, Paterson A J, Debart A, etc. Rechargeable Lithium Batteries:Going the Extra Mile. The Electrochemical Society,2008, Abstract 1138.
    [34]Wei M, Konishi Y, Zhou H, etc. Synthesis of single-crystal manganese dioxide nanowires by a soft chemical process [J]. Nanotechnology,2005,16(2):245-249.
    [35]Villegas J C, Garces L J, Gomez S, etc. Particle Size control of cryptomelane nanomaterials by use of H2O2 in acidic conditions [J]. Chemistry of Materials,2005, 17(7):1910-1918.
    [36]Bach S, Henry M, Baffler N, etc. Sol-gel synthesis of manganese oxides [J]. Journal of Solid State Chemistry,1990,88(2):325.
    [37]Li Q W, Luo G A, Xia X, etc. Preparation of ultrafine MnO2 powders by the solid state method reaction of KMnO4 with Mn (II) salts at room temperature [J]. Journal of Materials Processing Technology,2003,137(1-3):25-29.
    [38]H. Cheng, K. Scott. Carbon-supported manganese oxide nanocatalysts for rechargeable lithium-air batteries [J].Journal of Power Sources,2010,195, (5):1370-1374.
    [39]Gong K P, Yu P, Su L, etc. Polymer-Assisted Synthesis of Manganese Dioxide/Carbon Nanotube Nanocomposite with Excellent Electrocatalytic Activity toward Reduction of Oxygen [J]. The Journal of Physical Chemistry C,2007,111(5):1882-1887.
    [40]Lima F H B, Calegaro M L, Ticianelli E A. Electrocatalytic Acitivity of Manganese Oxides Prepared by Thermal Decomposition for Oxygen reduction [J]. Electrochimical Acta,2007,52(11):3732-3738.
    [1]Bruce P G. Energy storage beyond the horizon:Rechargeable lithium batteries [J]. Solid State Ionics,2008,179(21-26):752-760.
    [2]Machefaux E, Verbaere A, Guyomard D. Synthesis and Characterization of New Nanostructured Manganese Oxides for Lithium Batteries [J]. Ionics,2005,11(1-2):24-28.
    [3]Li Y P, Zhou X Q, Zhou H J, et.al. Hydrothermal Preparation of Nanostructured MnO2 and Morphological and Crystalline Evolution [J]. Chem Journal of Chinese Universities. 2007,28(7):1223-1226.
    [4]Yuan A B, Zhou M, Wang X L, et al. Synthesis and Characterization of Nanostructured Manganese Dioxide Used as Positive Electrode Material for Electrochemical Capacitor with Lithium Hydroxide Electrolyte [J]. Chinese Journal of Chemistry.2008, 26(1):65-69.
    [5]Wang X Y, Wang X Y, Huang W G, et al. Sol-gel template synthesis of highly ordered MnO2 nanowire arrays [J]. Journal of Power Sources,2005,140(1):211-215.
    [6]Sugantha M, Ramakrishnan P A, Hermarm A M, et al. Nanostructured MnO2 for Li batteries [J]. International Journal of Hydrogen Energy,2003,28(6):597-600.
    [7]Cheng H, Scott K. Carbon-supported manganese oxide nanocatalysts for rechargeable lithium-air batteries [J]. Journal of Power Sources,2010,5(195):1370-1374.
    [8]Wang X, Li Y D. Synthesis and Formation Mechanism of Manganese Dioxide Nanowires/Nanorods [J]. Chem. Eur. J.2003,9(1):300-306.
    [1]Freunberger S A, Chen Y H, Bruce P G, etc. Reactions in the Rechargeable Lithium O2 Battery with Alkyl Carbonate Electrolytes[J].J. Am. Chem. Soc.2011,133:8040-8047.
    [2]Laoire C O, Mukerjee S, Abraham K M. Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications [J]. The Journal of Physical Chemistry C, 2009,113(46):20127-20134.
    [3]A. Dobley, R. Rodriquez, K.M. S Abraham, Proceedings of the Electrochemical Society, 2004, October 3-8, Abstract No.496.
    [4]Williford R E, Zhang J G. Air electrode design for sustained high power operation of Li/air batteries [J]. Journal of Power Sources,2009,194(2):A1164-A1170.
    [5]Xiao J, Wang D Y, Zhang J G, etc. Optimization of Air Electrode for Li/Air Batteries [J]. Journal of the Electrochemical Society,2010,157(4):487-492.
    [6]Xu W, Xiao J, Wang D Y, Zhang J G. Effects of Nonaqueous Electrolytes on the Performance of Lithium/Air Batteries [J]. Journal of the Electrochemical Society,2010, 157(2):219-224.
    [7]Laoire C O, Mukerjee S, Abraham K M. Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications [J].The Journal of Physical Chemistry C, 2009,113:20127-20134.
    [8]Read J, Mutolo K, Ervin M, etc. Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery [J]. Journal of the Electrochemical Society,2003, 150(10):A1351-A1356.
    [9]Xie B, Lee H S, Li H, etc. New electrolytes using Li2O or Li2O2 oxides and tris (pentafluorophenyl) borane as boron based anion receptor for lithium battery [J]. Electrochemistry Communications,2008,10(8):1195-1197.
    [1]Johnson L G, Tamirisa P A, Zhang J G. Rechargeable Air Battery and Manufacturing Method [P]. US:20090053594,2009.
    [2]Imagawa H, Nakano H, Azuma H. Lithium-air battery [P]. US:20080176124,2008.
    [3]陈水生,周志晖,周震涛LiNixMn2-xO4的制备、结构及其电催化性能[J].研究与设计电源技术,2008,32(4):239-241.
    [4]Xiao J, Wang D H, Xu W, Wang D Y. Optimization of Air Electrode for Li/Air Batteries[J]. Journal of the Electrochemical Society,2010,157 (4):487-492.
    [5]Rolison D R, Long J W, Lytle J C, Fischer A E, et at. Multifunctional 3D nanoarchitectures for energy storage and conversion [J].Chemical Society Reviews,2009, 38(1):226-252.
    [6]Rhodes C P, Long J W, Pettigrew K A, Stroud R M, et al. Architectural integration of the components necessary for electrical energy storage on the nanoscale and in 3D[J]. Electrochemical Power Sources Symposium,2011,3(4):1731-1740.
    [7]Beattie S D, Manolescu D M, Blair S L. High-Capacity Lithium-Air Cathodes [J]. Journal of The Electrochemical Society,2009,156(1):A44-A47
    [8]Kowalczk I, Read J, Salomon M. Li-air batteries:A classic example of limitations owing to solubilities Pure Appl. Chem.,2007,79(5):851-860.
    [9]Read J, Mutolo K, Ervin M, Behl W. Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery [J]. Journal of the Electrochemical Society,2003,150(10):A1351-A1356.
    [10]Zheng J P. Liang R Y. Hendrickson M, etc. Theoretical Energy Density of Li-Air Batteries[J]. Journal of the Electrochemical Society,2008.155(6):A432-A437.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700