用户名: 密码: 验证码:
改性膨润土用于城市污水处理厂二级出水深度处理的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
再生水是指污水经过适当处理后,达到一定的水质指标,满足某种使用要求,可以进行有益使用的水。同海水淡化、跨流域调水相比,再生水具有明显的优势。从经济角度看,再生水的处理成本低;从环保角度看,污水再生利用有助于改善生态环境,实现水生态的良性循环。再生水是城市的第二水源,将再生水深度处理后回灌到地下,不但可以防止海水入侵、地面沉降,而且可以补给地下水资源,缓解水资源紧缺的矛盾,是贯彻可持续发展的重要措施。
     再生水在回灌地下之前需要经过一定的处理,达到《城市污水再生利用地下水回灌水质》(GB/T 19772-2005)中的标准限值才可以进行回灌。再生水的深度处理工艺主要包括絮凝、过滤、吸附、反渗透、消毒。虽然工艺已经比较成熟,但是在絮凝剂的选择,特别是新型絮凝剂的研发、过滤滤料和吸附剂的选择等方面还可以进行更为深入的研究。此外,对再生水深度处理的工艺技术集成也有待进一步研究。
     本论文以武汉市某城市污水处理厂二级出水为研究对象,以处理后回灌地下为研究目的,对天然矿物改性作絮凝剂、以适用于再生水的深度处理进行研究,规避使用传统絮凝剂后对水体造成二次污染或致毒的风险。实验内容包括:适用于再生水深度处理的膨润土改性方案、适用改性方案的参数优化、最佳污水处理参数的选取。最后以武汉某城市污水处理厂二级出水为处理对象,将已得成果应用于室内中试模拟实验。实验将PAC作为对比絮凝剂,研究改性膨润土用于污水深度处理一体化装置对污水的处理效果,判断其回灌地下的可行性,为野外实验基地工作的顺利开展提供理工基础和实验依据。
     通过实验,得到如下重要结论:
     1、选取焙烧活化(马弗炉焙烧、微波焙烧)、酸活化、铝柱撑改性、微波协同硫酸亚铁改性这四种常见的膨润土改性方案,确定适用于再生水深度处理的膨润土改性方案。通过实验研究得出结论:马弗炉焙烧和微波焙烧活化的改性产物,对再生水的处理效果较差,几乎不能对污水中的有机物和总磷进行去除;铝柱撑改性的产物对污水中的有机物及总磷有一定的去除效果,值得注意的是,再加入了微波活化的铝柱撑改性产物对污水中总磷的去除能力十分显著,说明微波对膨润土改性起着重要的作用;微波协同硫酸亚铁改性产物对有机物和总磷的去除效果最好,其去除率可达50%、20%左右。从微观结构分析,数据证明微波协同硫酸亚铁的改性方案能够有效增大膨润土的层间距,使其具有更强的吸附能力。故确定微波协同硫酸亚铁改性工艺为最佳膨润土改性方案。
     2、实验对微波协同硫酸亚铁改性膨润土的工艺参数进行深入研究,探讨改性剂浓度、固液比、微波辐照功率、微波辐照时间对改性产品吸附性能的影响。实验得出:改性剂浓度、固液比、微波辐照时间对改性膨润土吸附性能的影响较大。改性剂浓度直接影响改性基团的大小和种类,从而影响膨润土的比表面积,由此决定改性产物吸附性能的强弱;固液比同样影响改性基团的浓度,若反应不充分,则会导致改性产物的吸附性能降低;微波加热能够在短时间内针对膨润土的内部分子进行加热,疏通孔道,使其失去层间水和结合水。但当微波辐照时间过长时,膨润土内部可能形成卷边,分子结构崩塌,从而影响改性膨润土对污水的处理效果。而微波辐照功率对改性膨润土吸附性能的影响不大。因此,最佳的改性参数为:改性剂浓度为0.75mol/L,固液比为1:9,微波辐照功率为420W,微波辐照时间为5min。
     3、实验将上述实验研发的改性膨润土应用于污水处理,优化其使用参数,包括改性膨润土投加量、混凝时间、pH及温度。实验得出:改性膨润土最佳投加量为1.4g/L,最佳混凝时长为5min,pH宜控制在7~8的范围内,在室温或接近室温的条件下处理污水最为有效。
     4、实验集成已得的研究成果,将改性膨润土、纤维球和MWB型活性炭应用于室内中试实验,并按照野外实验基地的实际参数制造出一套再生水预处理和深度处理一体化装置。实验证明:该模拟装置对污水中的悬浮物、有机物及总磷污染物的去除率均高于80%,出水除氮类污染物没有达到回灌标准限制外,其他指标均低于国标要求的限值。分析原因,可能由于进水水质和装置条件不利于硝化细菌的生长。同时,该室内中试还模拟了过滤、吸附柱的反冲洗步骤,实验证明一体化装置在多次反冲洗前后,能保持稳定运行,出水水质良好,无较大波动。
     5、经计算得出,项目的运行成本为0.71元/m3污水。虽然稍贵于使用PAC作絮凝剂时的运行成本,但处理后产生的改性膨润土污泥可用于建筑材料、回填衬层等领域。并且改性膨润土作为一种新型天然矿物絮凝剂能在短时间自行沉降,真正具备了絮凝剂的基本性能,为今后的实验研究奠定了一定的理论和实践基础。
     6、实验研究了微波协同硫酸亚铁改性提高膨润土吸附性能的机理:改性剂中的铁离子平衡了硅氧四面体上的负电荷,从而使层间的阳离子具有可交换性,因而增强了膨润土对阳离子的吸附能力。并且游离出的铁离子还能与污染物发生混凝反应,进而去除更多的污染物。另外,微波辐照能使得膨润土的晶体结构排列的更为紧密,增强其化学稳定性,从而能适用于不同的应用领域。
Reclaimed water is a kind of water which can reach to a certain degree of water quality objectives, meet certain application requirements and can be used beneficially. Compared to seawater desalination and inter-basin water transfer, reclaimed water has obvious advantages. From the economy point of view, the treatment cost of reclaimed water is lower. From the environmental protection point of view, recycling of sewage contribute to the improvement of the ecological environment and to achieve a virtuous circle of aquatic ecosystems. Reclaimed water is the second water source of a city. Reclaimed water recharge to groundwater after advanced treatment not only can prevent seawater intrusion and land subsidence, but can also supply the groundwater resources, alleviate the shortage of water resources conflicts. It is an important measure carrying out the sustainable development.
     Reclaimed water need to go through some processes, reach to the standard "The reuse of urban recycling water, Water quality standard for groundwater recharge" (GB/T 19772-2005) before recharged to groundwater. The pre-treatment and deep treatment processes for reclaimed water mainly include coagulation, filtration, adsorption, reverse osmosis and disinfection. Although the processes have been more mature, but on the aspects of coagulant selection, especially the research on the new type of coagulant, filtration media selection and the type of adsorbent etc, are needed. In addition, the research on the integration of different processes need to be improved.
     Taking secondary effluent of a sewage treatment plant in WuHan as study object,groundwater recharge as the aim, the article research on modified natural mineral as coagulant used on pre-processing and deep processing. Using the new type of natural mineral coagulant could avoid secondary pollution and toxicity compaired with the traditional coagulants. The content of the research include:the appropriate program of modified bentonite to pre-processing and deep processing of reclaimed water, the best conditions of modified program and wastewater treatment. Finally, using secondary effluent as object, the research combine pre-treatment and deep treatment processes to study the effections by using modified bentonite as coagulant, comparied with PAC. On this basis, we could determine the feasibility of underground recharge, meanwhile, provide theoretical foundation and parameter reference for field test.
     Through the experiment, the following results and conclusions are gained:
     First:Select the most appropriate program of modified bentonite to pre-processing and deep processing of reclaimed water among roasting activation (muffle furnace calcination and microwave heating), acid activation, modification of Al-pillared and modification of micro-Ferrous sulfate.The products of roasting activation can hardly remove pollutants. The product of Al-pillared modification can partly remove the pollutants. It is worth noting that the micro-Al-pillared modified bentonite has the strong removal capacity to total phosphorus, this could explain the important role of microwave towards the modification of bentonite. The treatment effect of secondary effluent by using micro-Ferrous sulfate modified bentonite is the best, the removal rates of organic and total phosphorus are about 50% and 20%. The analysis of microstructure improve that the program of micro-Ferrous sulfate can expand the interlayer spacing of bentonite effectively and increase its adsorption capacity. Therefore, the program of micro-Ferrous sulfate is the most appropriate program to pre-processing and deep processing of reclaimed water.
     Second:The article conducts in-depth study of best conditions of modified program, including the influences of the concentration of modifier, the ratio of solid to liquid, the power and time of microwave irradiation to the adsorption capacity of modified bentonie. The results show that the concentration of modifier, the ratio of solid to liquid and the time of microwave irradiation effect its adsorption capacity. The concentration of modifier can directly effect the size and variety of modified group, and effect the ratio suface of bentonite as a result, and decide the degree of strength of modified product's adsorption capacity. The ratio of solid and liquid could effect the concentration of modifier as well, if happen a inadequate response, the adsorption capacity of modified product may weaken. Microwave can heat the intra-molecule of bentonite in a very short time, dredge its channel and remove its interlayer water and bound water. But, when the time of microwave irradiation is too long, curling and collapse of molecular structure will happen in the inner part of bentonite, and affect the effect of sewage treatment by using the modified bentonite. In the other hand, the power of microwave irradiation nearly has the effect to the adsorption capacity of modifed bentonite. Hence, the best conditions of modified program are:the concentration of modifier is 0.75mol/L, the ratio of solid to liquid is 1:9, the power and time of microwave irradiation are 420W and 5min. Third:The research use the best modified poduct on sewage treatment, and optimize its operation parameters.The result shows:when the dosage of modified bentonite is 1.4g/L, the adsorption time is 5min, the range of pH is 7 to 8, and the temperture is about room temperature, the effection of sewage treatment is the best.
     Fourth:The research integrate the obtained results (included modified bentonite,fiber ball filtration and MWB activated carbon) in the indorr pilot experiment, and product a set of pre-processing and deep processing integrated device compaired to the actual device in our field experiment base.The result shows:the integrated device can effectively remove the SS, organic and total phosphorus of sewage effluent water, and the removal rates are all higher than 80%. The effluent quality almost reach the limit of recharge standard except nitrogen pollutants. The water quality and the conditions of the integrated device are not conductive to the growing of nitrifying bacteria, this may be the reason of the low removal rate of nitrogen pollutants. At the same time, the research simulate the anti-washing step of filtration and activated carbon part.lt shows that after several times of anti-washing, the integrated device can operate stablely, and effluent quality are good without large fluctuations.
     Fifth:Through calculated, the project's operating cost is 0.71 yuan er cubic meter wastewater. Although the cost is a little bit higher than the cost by using PAC as the coagulation, the sludge of modified bentonite could be used in many different ways,like producing building materials or used in backfill lining. As the new type of natural mineral coagulant, it can realize self-settlement in a very short time, and truly have the basic ability of coagulation.This apply a theoretical and practical basis for future experimental research.
     Sixth:The research also study on the mechanism of micro-Ferrous sulfate modification.lt maybe work in this way:the iron ion from modifier could balance the negative charges on silico-oxygen tetrahedron, and make the cations from interlayer have the exchangeable ability.Thus, the adsorption capacity of bentonite is enhanced.On the other hand, some free iron ion could occur coagulation with pollutants, this will remove much more pollutants and increase the quality of water. Besides that, microwave irradiation can re-arrange the crystal structure of bentonite and make it more closely. This can increase the chemical stability of modified bentonite, and expand its applications.
引文
[1]高前兆,李小雁,俎瑞平.水资源危机.北京:化学工业出版社,2002:33-50.
    [2]钱正英,张光斗.中国可持续发展水资源战略研究.北京:中国水利水电出版社,2001:28-31.
    [3]周彤.污水回用是解决城市缺水的有效途径.给水排水[J].2001.27(11):1-6.
    [4]北京,清华大学.城市污水资源化暨地下回灌技术国际研讨会文集,2000
    [5]周彤.污水回用决策与技术[四],北京:化学工业出版社,2002:45-50
    [6]张悦,郑兴灿.城市污水再生利用是缓解缺水危机的重要途径[J].21世纪国际城市污水处理及资源化发展战略研讨会与展览会,2001.
    [7]张学真.地下水人工补给研究现状与前瞻[J].煤田地质与勘探,2006,34(4):4144.
    [8]皮运正,叶裕才,陈维芳.深度处理污水回灌地下的数值模型[J].污染防治技术,2000,13(1):21-22
    [9]皮运正.污水处理厂出水用于人工地下回灌的水质研究及风险评价[学位论文].北京:清华大学,2002.
    [10]姜应和,张发根.混凝法在城市污水强化处理中的应用[J].中国给水排水,2002,18(3):30-32.
    [11]栾兆坤,范彬,贾建军等.水回用技术发展及其趋势[J].化工技术经济,2003,21(11):31-39,46.
    [12]邓书平,张冰.正交方法研究改性膨润土吸附处理含砷废水[J].中国非金属矿工业导刊,2009,(1):28-30.
    [13]郭海霞,杨维.无机-有机复合膨润土用于焦化废水的深度研究[J].中国给水排水,2008,24(21):57-59,63.
    [14]熊慕慕.我国膨润土矿资源及发展方向[J].洛阳师范学院学报,2008,27(3):183-184.
    [15]王贵领,赵经贵等.膨润土应用开发研究现状[J].硅铝化合物,2004,(2):2-4.
    [16]J.Drewes,P.Fox.Fate of natural organic matter (NOM) during groundwater recharge us ing[J] reclaimed water.Water Science&Technology,1999,40(9):241-248
    [17]赵璇,胡俊,王建龙.土壤基质对回灌水的净化效果[J].清华大学学报(自然科学版).2004,44(3):347-349
    [18]王丽娜.城市污水再生用于地下水回灌及健康风险评价:[学位论文].哈尔滨工业大学,2006.
    [19]R.David,G.Pyne.Groundwater Recharge and Wells[J].USA:Lewis Publishers.CRC Press, 1995,40-80
    [20]朱慧峰,顾慧人.上海市污水厂出水用于地下水回灌探讨[J].中国给水排 水.2005,21(4):91-93
    [21]徐征和,陈吉亭,刘健勇等.地下水回灌补源生态修复技术研究[J].地下水,2006,28(3):87-89
    [22]刘青勇,潘世兵,武晓峰等.地下水回灌补源防治咸水入侵技术研究[J].自然灾害学报,2006,15(3):78-82
    [23]栾文楼,李明路.膨润土的开发应用[M].地质出版社,1998,4.
    [24]张富韬,方少明,松全元.膨润土在废水处理中的应用综述[J].工业水处理,2003,23(6):11-13.
    [25]M.Vlasova,I.Leon,Y.Enn'quez Me'ndez,G.Dominguez-Patin,M.Kakazey,M.Dominguez-Pat in,M.V.Nikolic,M.M.Ristic.Monitoring of transformations in bentonite after NaOH-TM A treatment[J].2006,2295:1-8.
    [26]吴杰.膨润土制备活性白土及废液后处理研究[学位论文].吉林大学,2008.
    [27]吴东印,等.膨润土的提纯与开发应用[J].矿产保护与应用,2000(3):14-16.
    [28]郭瓦力,等.多功能原料—膨润土[J].辽宁化工,1999,28(4):191-193,203.
    [29]刘怡,唐燕,郑骏鸣等.物理改性膨润土吸附苯胺的比较研究[J].华南农业大学学报,2007,28(2):116-118.
    [30]张一平.膨润土的疏基功能化研究[J].浙江教育学院学报,2007,(1):35-39.
    [31]孙传庆,五占省,李春等.不同酸化剂对乌兰林格膨润土活化效果的影响[J].化工矿物与加工,2007,(2):19-21,25.
    [32]孙家寿,刘羽,鲍世聪等.交联粘土矿物的吸附特性研究(V)*--硅钛交联膨润土对废水中有机物的吸附[J].武汉化工学院学报.1999,21(1):30-33.
    [33]孙家寿,刘羽,鲍世聪等.铝锆交联膨润土对废水中铬的吸附研究[J].非金属矿.2000,23(3):13-14.
    [34]Makhoukhi B,Amine Didi M,Villemin D.Modification of bentonite with diphosphoniu m salts:synthesis and characterization[J].Mater Lett.2008,62:2493-2496.
    [35]莫伟,马少健,韩跃新等.膨润土的铝酸酯表面改性研究[J].金属矿山,2008,380(2):2493-2496.
    [36]Srinivasan K R,Fogler H S.Use of inorgano-organo-clays in the removal of priority p-ollutants from industrial wastewaters:structure aspects[J].Clays and Clay Minerals,19 90,38(3):277-286.
    [37]Srinivasan K R,Fogler H S.Use of inorgano-organo-clays in the removal of priority p-ollutants from industrial wastewaters:adsorption of benzo(a) pyrene and chloropheno ls from aqueous solutions[J].Clays and Clay Minerals,1990,38(3):287-293.
    [38]Zhu L Z,Tian S L,Zhu J X,et al.Silylated pillared clay(SPILC):a novel bentonite-base d inorgano-organo composite sorbent synthesized by integration of pillaring and silyl ation[J].Colloid Interface Sc.,2007,31(5):191-199.
    [39]刘闯,羊依金.膨润土颗粒吸附剂的制备及废水中铅离子的处理研究[J].资源开放与市场,2009,25(10):865-867,882.
    [40]李芳蓉,何玉凤.黄原酸化膨润土对Cu2+的吸附性能[J].环境化学,2008,27(6):746-750.
    [41]曹春艳.改性膨润土吸附处理含Cr(Ⅵ)废水的研究[J].中国非金属矿工业导刊,2009,(2):57-58,63.
    [42]邓书平,牟淑杰.改性膨润土吸附处理含Hg Ⅱ废水的实验研究[J].矿冶,2009,18(2):98-100,108.
    [43]邓书平,张冰.正交方法研究改性膨润土吸附处理含砷废水[J].中国非金属矿工业导刊,2009,(1):28-30.
    [44]Gok O,Ozcan A,Erdem B,et al.Prediction of the kinetics,equilibrium and thermodyna m-ic parameters of adsorption of copper(Ⅱ) ions onto 8-hydroxy quinoline immo bilized bentonite[J]. Colloids Surf A:Physicochem Eng Aspects,2008,317:174-185.
    [45]Cristina Volzone,Liliana Beatriz Garrido. Use of modified hydroxy-aluminum bentonit-es for chromium(3) removal from solutions[J].Journal of Environmental Managemen t,2008,88:1640-1648.
    [46]R Naseem and S S Tahair.Removel of Pub (Ⅱ) from aqueous/acidic solutions by u-sing bentonites as an adsorbent[J].Wat Res,2001,35 (16):3982-3986.
    [47]Anoop Kapoor,T.Viraraghavan,Fellow,ASCE.Use of immobilized bentonite in removal of heavy metals from wastewater[J] Journal of Environmental Engineering,1998,124 (10):1020-1024.
    [48]王通,朱润良,葛飞等.CTMAB/CPAM复合改性膨润土吸附水中苯酚和硝基苯[J].环境科学,2010,31(2):385-389.
    [49]孙建华,孙伶.壳聚糖改性膨润土处理实验室废水的研究[J].辽宁化工,2007,36(2):107-109.
    [50]李志娟,甄卫军.中低品位膨润土对城市污水中COD吸附行为研究[J].环境科学与技术,2007,30(5):83-85.
    [51]郑宾国,崔节虎.粉煤灰-膨润土复合吸附剂处理苯酚有机废水的研究[J].精细石油化工进展,2008,9(8):18-20.
    [52]Carrizo J G,Molina R,Moreno S.A study on Al and Al-Ce-Fe pillaring species and t h-eir catalytic potential as they are supported on a bentonite[J].Appl Cataly A:Genera 1,2008,334:168-172.
    [53]Chen B L,Huang W H,Mao J F,et al.Enhanced sorption of naphthalene and nitroaro m-atic compounds to bentonite by potassium and cetyltrimthylammonium cations[J].H azard.Mater.,2008,158:116-123.
    [54]Palor,Vanjara AK.Removal of malathion and butachlor from aqueous solution by clay s and organoclays[J].Separation and Prurification technology,2001,(24):167-172.
    [55]何冰月,李织宏.用Al-Ag盐改性膨润土处理染料废水[J].非金属矿,2009,(5):56-58.
    [56]张秀兰,栗印环,胡福欣.膨润土微波改性及对废水中甲基橙吸附的研究[J].信阳师范学院学报:自然科学版,2008,21(2):266-269.
    [57]李冬冬,韦藤幼.表面活性剂协同膨润土处理染料废水的研究[J].环境科学与技术,2009,32(1):158-161.
    [58]Felycia Edi Soetaredjo, Jaka Sunarso, Suryadi Ismadji. Acid Green 25 removal from wastewater by organo-bentonite from Pacitan[J].Applied Clay Science,2010,3(48):81-86.
    [59]Zohra B,Aicha K,Fatima S,et al.Adsorption of direct red 2 on bentonite modified by cetyltrimethylammonium bromide[J].Chem Engin J.2008,136:295-305.
    [60]Zhu L Z,Ma J F. Simultaneous removal of acid dye and cationic surfactant from wat er by bentonite in one-step process[J].Chem Engin 1.2008,139:503-509.
    [61]Yang Y W,Zhou T L,Qiao Q C,et al.Experimental study of wastewater treatment of r-eactive dye by phys-chemistry method[J].J China Univ Mining&Techn.,2007,17(1):96-100.
    [62]邵红,庄新贺,李辉.钢铁冶金高浊度废水处理技术[J].科技导报,2010,28(2):101-104.
    [63]张凤杰,吴迪.钠化膨润土的制备及其对含油废水吸附性能的研究[J].非金属矿,2009,32(5):50-52.
    [64]张小华,李璟.膨润土吸附-微波催化氧化处理番茄酱生产废水的研究[J].河北师范大学学报(自然科学版),2009,33(3):357-361.
    [65]李署,孙亚兵.天然Na基膨润土吸附处理高浓度PAM废水的研究[J].环境工程学报,2007,1(7):47-50.
    [66]邵红,程慧.钼酸铵改性膨润土处理啤酒废水的研究[J].酿酒科技,2009,(2):118-120.
    [67]A. Marsal,E. Bautista,I. Ribosa,et al. Adsorption of polyphenols in wastewater by org-ano-bentonites[J].Applied Clay Science,2009,(44):151-155.
    [68]李芳蓉,王荣民.膨润土复合无机高分子絮凝剂的制备及其在淀粉废水处理中的应用[J].甘肃高师学报,2008,5.
    [69]刘廷志,段希磊,段韦江等.制浆造纸低浓废水的吸附絮凝法深度处理[J].中国造纸,2010,29(1):43-46.
    [70]马林转,宁平.改性膨润土在污水脱磷中的应用研究[J].武汉理工大学学报,2007,29(8):67-69.
    [71]聂锦旭.改性膨润土吸附废水中氨氮的试验研究[J].非金属矿,2006,29(1):43-45.
    [72]Ma J F,Zhu L Z. Simultaneous sorption of phosphate and phenanthrene to inorgano-or-gano-bentonite from water [J].Hazard Mater,2006,B 136:982-988
    [73]Runliang Zhu,Lizhong Zhu,et al.Sorption of napthalene and phosphate to the CTMA-Al 13 intercalated bentonites[J].Journal of Hazardous Materials,2009,(108):1590-1594.
    [74]Zhu L Z,Tian S L,Zhu J X,et al.Silylated pillared clay(SPILC):a novel bentonite-base d inorgano-organo composite sorbent synthesized by integration of pillaring and silyl at-ion[J].Colloid Interface Sc.,2007,31(5):191-199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700