用户名: 密码: 验证码:
机械活化—碳热还原法LiFePO_4/C材料的制备、结构与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橄榄石型的LiFePO4用作锂离子二次电池正极材料具有工作电压稳、容量较高、结构稳定、高温性能和循环性能好、安全无毒以及成本低廉等优点,已成为国内外的研究热点。但是目前LiFePO4实用化生产所需要解决的3个问题是:(1)找到一种低成本,规模化生产的制备方法;(2)大幅度改善LiFePO4的导电性;(3)有效的控制LiFePO4的粒径分布和表面形貌,提高其填充密度。相对于其它制备方法,碳热还原法由于其具有低成本、工艺简单的优点,被认为是最有望实现产业化的制备方法。然而,碳热还原法在高温下制备时颗粒容易聚集长大,粒径大小不容易控制,从而大大地影响了其产业化发展的进程。本文在传统的机械球磨的基础上,采用机械活化法与碳热还原法相结合制备了LiFePO4/C复合材料,研究了前驱体的机械活化工艺(球料比、球磨介质、球磨气氛、球磨温度和时间等)对LiFePO4/C复合材料颗粒尺寸及电性能的影响,并系统的考察了原料配比、煅烧温度、煅烧时间、升温速率等工艺条件对LiFePO4正极材料晶体结构、表观形貌及电化学性能的影响。主要研究工作的结论如下:
     (1)研究了前驱体的机械活化工艺(球料比、球磨介质、球磨气氛、球磨温度和时间等)对LiFePO4/C复合材料颗粒尺寸及电性能的影响。结果表明,球料比为6:1的机械活化工艺所制备的LiFePO4/C的颗粒细小均匀,平均粒径约为500nm,其1C首次放电比容量最优,达到134mAh/g,循环20次后容量保持率为99.2%;利用玛瑙球磨罐球磨所制LiFePO4/C材料为类球形,颗粒粒径较小,平均粒径约500-600nm,1 C首次放电比容量达到136mAh/g,循环20次后容量保持率为99%;在氩气气氛保护下的前驱体机械活化工艺制备的样品的含碳量最高(5.27%),比表面积最大(30.452m2/g),其1C首次放电比容量为132mAh/g,循环20次后容量保持率为99.3%;在25℃下球磨6h所制备的LiFePO4/C的比表面积达29.152m2/g,其1 C首次放电比容量可达136mAh/g,循环20次后容量保持率为98.9%。
     (2)研究了合成条件(煅烧温度、煅烧时间、原料配比和升温速率)对材料的粒径分布、颗粒形貌、晶体结构以及电性能的影响。研究结果表明,随着煅烧温度的增加,LiFePO4/C材料的放电比容量和循环性能先增加后减小,其中煅烧温度为650。C所制备的LiFePO4/C材料同时具有较小的颗粒尺寸和较高的结晶度,其1C充放电倍率下的首次放电比容量达到138mAh·g-1,循环20次后放电比容量为138.6mAh/g,容量保持率为99.7%;随着煅烧时间的增加,LiFePO4/C材料的放电比容量和循环性能呈现先增加后减小的趋势。其中煅烧时间为12h所制备的LiFePO4/C材料具有较小的颗粒尺寸(400nm左右)和较高的结晶度,其1C充放电倍率下的首次放电比容量达到137mAh·g-1,循环20次后放电比容量为136.2mAh/g,容量保持率分别为99.4%;当原料中Li、Fe和P的物质的量比为1.02:1:1时,所合成的材料具有较高的放电比容量(137mAh.g-1)和最高的放电平台(3.36V),循环20次以后,放电比容量为134.6mAh/g,容量保持率为99%;升温速率为2℃/min所制备的LiFePO4/C材料具有最优的放电比容量和最高的库仑效率,其1C充放电倍率下的首次放电比容量为134.6mAh·g-1;在最佳工艺、配比条件下所制备的LiFePO4/C材料在0.1C充放电倍率下首次放电比容量为158.7mAh/g。其在0.2C、0.5C、1.0C和2.0C倍率放电下,首次放电比容量分别为150.9mAh/g、143.2mAh/g、135.9mAh/g和128.8mAh/g,分别相当于0.1C容量的95.1%、90.2%、85.6%和81.1%。经过20次循环后,其1C和2C倍率的放电比容量分别为137.6mAh/g和126mAh/g,容量保持率高达99.6%和98.3%,具有良好的倍率性能和循环性能。
Olivine-type LiFePO4 have been known as an interesting cathode material for lithium ion batteries due to its flat potential plateau, high thermal and chemical stability and high specific capability, as well as good cycle performance, non-toxicity and low cost. However, there are three main things to do to put LiFePO4 into commercially used. The first one is to find a low-cost preparation method which could be large-scale produced. The second one is to find an effective way to improve its ion and electrochemical conductivity. The third one is to synthesize fine and homogeneous particle sizes of LiFePO4 and improve its tap-density. Compared with other synthesis techniques, CTR (carbothermal reduction method) is the most promising method for industry producing with its low cost and simple process. However, the hard-controlled particle size during the calcination at high temperatures makes it an obstacle for its practical applications. In this paper, LiFePO4/C composite cathode materials have been synthesized by mechanical activation combined with carbothermal reduction method. The influences of parameters of mechanical activation (ball-to-power weight ratio, milling media, the atmosphere, temperature and time of ball-milling) on the structure and performance of the material were investigated. The structure, morphology and electrochemical properties of LiFePO4/C prepared at different temperature, time, proportion ratio and heating rate were also studied. The main results and conclusions were listed as following:
     (1) Studied the processing conditions of the precursor including ball-to-power weight ratio, milling media, the atmosphere, temperature and time of ball-milling on the performance of the prepared LiFePO4/C. The result indicated that, LiFePO4/C having an average particle size of about 500nm can be prepared by ball-milling the forerunner with ball-to-powder ration at 6:1, and the powder exhibits a capacity of 134mAh/g at 1C rate. The cycling retention rate of it after 20 cycles was about 99.2% of its maximum capacity. LiFePO4/C material prepared by ball-milling the precursor in agate tank are spherical with average particle size of about 500-600nm. The discharge capacity of it reaches 134mAh/g at 1C rate and the capacity retention after 20 cycles is 99%. LiFePO4/C material prepared by ball-milling the precursor in Ar atmosphere with the highest specific surface area of 30.452m2/g and carbon content of 5.27% has an excellent discharge capacity of 132mAh/g at 1C rate. LiFePO4/C material prepared by ball-milling the precursor at 25℃for 6h can deliver 136mAh/g of reversible capacity at 1C rate with a low capacity fading after 20 cycles.
     (2) Studied the allocated proportion of the precursor (FePO4 and Li2CO3), calcining temperature, the calcine time and heating rate on the performance of the prepared LiFePO4/C. The result indicated that increasing the sintering temperature and extending sintering time resulted in higher crystallinity but a larger particle size. In the range of 600~750℃and 6~24h, 650℃and 12h are the optimum synthetic temperature and sintering time for the LiFePO4/C with small particle sizes and perfect crystal. The specific discharge capacity reaches as high as 138mAh/g at 1C rate. When the raw material mole ratio (nLi:nFe:nP) is 1.02:1:1, the LiFePO4/C showed the highest potential plateau at 3.36V and the best capacity of 137mAh/g at 1C rate with capacity retention of 99% after 20 cycles. When the heating rate is 2℃/min, LiFePO4/C reaches the best specific discharge capacity and Coulomb's efficiency with 134.6mAh/g at 1C rate In the present case, LiFePO4/C synthesized at 650℃for 12h with raw material mole ratio (nLi:nFe:nP) of 1.02:1:1 and heating rate of 2℃/min shows best electrochemical performances. Under this condition, the obtained LiFePO4/C shows an initial discharge capacity of 158.7 mAh/g,150.9.2 mAh/g,143.2mAh/g and 135.9mAh/g at 0.1C, 0.2C,0.5C and 1.0C rate, respectively. After 20 cycles, the composite cathode retains 99.6% and 98.3% of the first cycle discharge capacity at 1.0C and 2C, respectively.
引文
[1]查全性.化学电源选论[M].湖北:武汉大学出版社,2005:4-8
    [2]郭炳坤,李新海,杨松青.化学电源—电池原理及制造技术[M].湖南:中南工业大学出版社,2000:32
    [3]刘建睿,王猛,尹大川等.高能锂离子电池的研究进展[J].材料导报,2001,15(7):32—35
    [4]Wakihara M.. Recent developments in lithium ion batteries[J]. Materials Science and Engineering R,2001,33:109-134
    [5]Jones C. D. W., Rossen E., Dahn J. R.. Structure and electrochemistry of LixCryCo1-yyO2[J]. Solid State Ionics,1994,68(1-2):65-69
    [6]Koksbang R., Barker J., Shi H., Saidi M.Y.. Cathode materials for lithium rocking chair batteries[J]. Solid State Ionics,1996,84(1-2):1-21
    [7]王新喜,宫志刚,尹燕华等.锂离子电池的研究进展[J].舰船防化,2005(1):15-19
    [8]王剑,李桐进,其鲁.高功率锂离子二次电池的研究进展[J].物理化学学报,2007(11):75-79
    [9]唐琛明,沈晓峰,张校东.锂离子电池的进展及其在电动工具上应用前景[J].电动工具,2007(3):1-4
    [10]Thomas M. G. S. R., Bruce P. G., Goodenough J. B.. Lithium mobility in the layered oxide Li1-xCoO2[J]. Solid State Ionics,1985,17(1):13-19
    [11]汤宏伟,陈宗璋,钟发平.锂离子电池的正极材料[J],化学通报,2002,35:1-7
    [12]K. Mizushima, P.C. Jones, J. B. Goodenough. LixCoO2 (0    [13]张晓雨.锂离子电池简介[J].北京大学学报(自然科学版),2006,42(S1):96
    [14]刘景,温兆银,吴梅梅等.锂离子电池正极材料的研究进展[J].无机材料学报,2002,17(1):1-9
    [15]M Yoshio, H Tanaka, K Tominaga, et al. Synthesis of LiCoO2 from cobalt-organic acid complexes and its electrode behaviour in a lithium secondary battery[J]. Power Sources, 1992(40):347-353
    [16]吴宇平,方世壁,刘昌炎等.锂离子电池正极材料氧化钻锂的进展[J].电源技术, 1997,21(5):205-226
    [17]Arora P, White R E, Doyle M. Capacity fade mechanisms and side reactions in lithium-ion batteries [J]. J. Electrochem. Soc.,1998,145(10):3647-3667
    [18]刘光明,李美栓,高虹等.锂离子蓄电池正极材料LiMn2O4的合成[J].电源技术,2002,9(1):9-10
    [19]Barboux P., Tarascon J.M., Shokoohi F.K.. The use of acetates as precursors for the low-temperature synthesis of LiMn2O4 and LiCoO2 intercalation compounds [J]. Solid State Chem,1991(94):185
    [20]陈军,陶占良,袁华堂.锂离子二次电池电极材料的研究进展[J].电源技术,2007,31(12):946-950
    [21]高原,顾大明,史鹏飞.锂离子电池正极材料LiNiO2的研究进展[J].电池,2005,35(6):471-473
    [22]解晶莹,鸽平,史鹏飞.锂镍氧化物的合成和电化学行为研究[J].电源技术,1997,21(5):185-189
    [23]郭鸣凤,叶劲草,张洪有等.锂离子电池用正极材料LiCoxNil-xO2的研究[J],电源技术,1999,23(增刊):47-49
    [24]王素敏,黄学杰,薛荣坚等.高性能LiNiO2制备方法研究[J].稀有金属,1999,23(5):353-355
    [25]张胜利,韩周详,宋文顺等.LiCoxN1-xO2的合成及其性能[J]电池,1999,29(2):61-63
    [26]Delmas C, Saadoune I, Pougier A, The cycling properties of LiNi1-xCoyO2 electrode[J]. J. Power Sources,1993,43:595-602
    [27]Ohzuku T, Ueda A, Kouguchi M, Synthesis and characterization of Li Al1/4Ni3/4O2 (R3m) for lithium-ion(shuttlecock) batteries[J]. J. Electrochem. Soc,1995,142(12):4033-4039
    [28]Kubo K, Fujiwara M, Yamada S, et al., Synthesis and electrochemical properties for LiNiO2 substituted by other elements [J]. J. Power Sources,1997,68:553-557
    [29]W. Li, J. C. Currie. Morphology effects on the electrochemical performance of LiNi1-xCoxO2[J]. J. Electrochem. Soc.,1997,144:2773-2776
    [30]Gao Y., Dahn J. R.. The high temperature phase diagram of Li1+xMn2-xO4 and its implications[J]. J. Electrochem. Soc,1996,143(6):1783-1788
    [31]Y.P.Fu, C.H.Lin, Y.H.Su, et al..Eleetroehemieal properties of LiMn2O4 synthesized by the microwave-induced combustion method[J]. Ceramics international,2004,30:1953-1959
    [32]K T Hwang, W S Um, H S Lee, et al.Power synthesis and eleetroehemical properties of LiMn2O4 prepared by an emulsion drying method[J]. J. Power Sources,1998, 74(2):169-174
    [33]Liu W., Kowal K., Farrington G. C.. Mechanism of the electro-chemical insertion of lithium into LiMn2O4 spinels[J]. J. Electrochem. Soc,1998,145(2):459-461
    [34]陈召勇,刘兴泉,尖晶石LiMn2O4高温电化学容量衰减及改进[J],无机化学学报,2001,17(3):326-328
    [35]陈彦彬,刘庆国.高温下LiMn2O4的容量衰减及对策[J].电池,2001,31(4):198-201
    [36]唐致远,李建刚,薛建军.锂电池正极材料LiMn2O4的改性与循环寿命[J].化学通报,2000,8:10-14
    [37]陈彦彬,韩景立,张刚等.锂离子电池正极材料LiMn2O4的研究进展[J].电源技术,2000,24(4):238-242
    [38]黄启明,罗穗莲,李伟善等.锂离子电池锂锰氧正极材料的研究进展[J].电池工业,1999,4(3):102-105
    [39]G. G.Amatucci, A.Blyr. C.Sigala, P.Alfonse, J.M.Tarascon, Surface treatments of Li1+xMn2-xO4 spinels for improved elevated temperature performance, Solid State Ionics[J],1997,104:13-25
    [40]周震涛,李新生.溶胶凝胶法合成LiMn2-xCoxO4及其性能研究[J],电源技术,2000,24(6):241-343
    [41]T.Nakamura, A.Kajiyama. Synthesis of Li-Mn spinel oxide using Mn2O3 particles[J]. Solid State Ionics,1998,124:45-52
    [42]A. de Kock, E. Ferg, R. J. Gummow. The effects of multivalent cation dopants on lithium manganese spinel cathodes[J]. J. Power Sources,1998,70:247-252
    [43]Lourdes Hernan, JulianMorales, LuisSanchez, etal. Use of Li-M-Mn-O [M=Co,Cr,Ti] spinel prepared by a sol-gel method as cathode in high-voltage lithium batteries [J]. Solid State Ionics 1999,118:179-185
    [44]Yang Z., Yang W., G. Evans D., et al. The effect of a Co-Al mixed metal oxide coating on the elevated temperature performance of a LiMn2O4 cathode material [J]. Journal of Power Sources,2009,189(2):1147-1153
    [45]冯淑波.动力型锂离子二次电池市场发展的情景[J].河北能源职业技术学院学报,2006,(2):56-58
    [46]Andersson A.S., Thomas J.O. The source of first-cycle capacity loss in LiFePO4[J]. J. Power Sources,2001,97-98:498-502
    [47]Padhi A. K., Nanjundaswamy K. S., Masquelier C., et al. Effect of structure on the Fe3+/Fe2+redox couple in iron phosphates [J]. J. Electrochem. Soc.,1997,144(5): 1609-1613
    [48]Takahashi M., Tobishima S., Takei K., et al Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries [J]. Journal of Power Sources,2001,97-98: 508-511
    [49]Zhang S.S., Allen J.L., Xu K., et al. Optimization of reaction condition for solid-state synthesis of LiFePO4-C composite cathodes [J]. Journal of Power Sources,2005, 147(1-2):234-240
    [50]Zaghib K., Ravet N., Gauthier M., et al. Optimized electrochemical performance of LiFePO4 at 60℃ with purity controlled by SQUID magnetometry [J]. Journal of Power Sources,2006,163(1):560-566
    [51]Jiang J., Dahn J.R. ARC studies of the reaction between LioFeP04 and LiPF6 or LiBOB EC/DEC electrolytes [J]. Electrochemistry Communications,2004,6(7):724-728
    [52]Arnold G., Garche J., Hemmer R., et al. Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique [J]. Journal of Power Sources,2003,119-121:247-251
    [53]Xie H., Zhou Z. Physical and electrochemical properties of mix-doped lithium iron phosphate as cathode material for lithium ion batteries [J]. Electrochimica Acta,2006, 51(10):2063-2067
    [54]Huang H., Yin S.C., Nazar L.F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates [J]. Electrochemical Solid-State Letters,2001,4(10): A170-A172
    [55]Park K.S., Kang K.T., Lee S.B., et al. Synthesis of LiFePO4 with fine particle by co-precipitation method[J]. Materials Research Bulletin,2004,39:1803-1810
    [56]Konstantinov K., Bewlay S., Wang G.X., et al. New approach for synthesis of carbon-mixed LiFePO4 cathode materials[J]. Electrochimca. Acta,2004,50:421-426
    [57]Whittingham M. S., Yanning S., Samuel L., et al. Some transition metal(oxy) phosphates and vanadium oxides for lithium batteries[J]. J. Mater. Chem.,2005,15:3362-3379
    [58]吕正中,周震涛.磷酸铁(Ⅱ)锂/碳复合正极材料的研制[A].电动车及新型电池学术交流会论文集[C].上海:电池工业,2003:120
    [59]Arora Panki, White Ralph E., Doyle Marc. Capacity fade mechanisms and side reactions in lithium-ion batteries[J]. J. Electrochem. Soc.,1998,145(10):3647-3667
    [60]Yamada Atsuo, Chung S. C., Hinokuma K. Optimized LiFePO4 for lithium battery bathodes[J]. J. Electrochem. Soc.,2001,148(3):A224-A229
    [61]Li Guohua, Azuma Hideto, Tohda Masayuki. LiMnPO4 as the cathode for lithium batteries[J]. Electrochemical and Solid-state Letters,2002,5(6):A135-A137
    [62]王小建,任俊霞.微波法制备掺碳LiFePO4正极材料[J].无机化学学报,2005,21(2):249—253
    [63]李发喜,仇卫华.微波合成锂离子电池正极复合材LiFePO4/C电化学性能.北京科技大学学报.2005,27(1):56—59
    [64]Higuchi M., Katayama K., Azuma Y, et al. Synthesis of LiFePO4 cathode material by microwave processing[J]. J. Power Sources,2003,119-121:258-261
    [65]HSU K F, TSAY S Y, HWANG B J. Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol-gel route[J]. Journal of Materials Chemistry,2004,14(17):2690-2695
    [66]YANG J S, XU J J. Nonaqueous sol-gel synthesis of high-performance LiFePO4 [J]. Electrochemical and Solid State Letters,2004,7(12):A515-A518
    [67]徐峙晖,徐亮,赖琼钰.改进Sol-gel法合成LiFePO4正极材料及其电化学性能[J].四川大学学报,2006,38(5):112-116
    [68]Xu Z., Xu L., Lai Q., et al. A PEG assisted sol-gel synthesis of LiFePO4 as cathodic material for lithium ion cells[J]. Materials Research Bulletin,2007,42(5):883-891
    [69]Jaewon Lee, Amyn S.Teja. Characteristics of lithium iron phosphate(LiFePO4) particles synthesized in subcritical and supercritical water[J]. J.of Supercritical Fluids,2005,35: 83-90
    [70]Keisuk Shiraishi, Kaoru Dokko, Kiyoshi Kanamura. Formation of impurities on phospho-olivine LiFePO4 during hydrothermal synthesis[J]. Journal of Power Sources, 2005(146):555-558
    [71]G.Arnold, J.Garche, R.Hemmeretal. Fine-Particle Lithium Iron Phosphate LiFePO4 Synthesized by a New Low-cost Aqueous Precipitation Technique[J]. J. Power Sources. 2003, (119-121):247-251
    [72]Park K.S., Kang K.T., Lee S.B., et al. Synthesis of LiFePO4 with fine particle by co-precipitation method[J]. Materials Research Bulletin,2004,39(12):1803-1810
    [73]沈湘黔,占云,周建新等.共沉淀-焙烧法制备LiFePO4[J].功能材料,2006,37(8),1198-1203
    [74]吴昭俏,郑育英,黄慧民等,机械力活化固相化学反应法制备纳米粉体的机理研究[J].中国粉体技术,2006,3:26-31,35
    [75]Jae-Kwang Kim, Jae-Won Choi. A modified mechanical activation synthesis for carbon-coated LiFePO4 cathode in lithium batteries [J]. Materials Letters,2007,61, 3822-3825
    [76]Barker J, Saidi M Y, Swoyer J L, Lithium iron(II)phospho-olivines prepared by a novel carbothermal reduction method[J]. Electrochemical and Solid-State Letters,2003,6(3): 53-55
    [77]C. H. Mi, G. S. Cao, X. B. Zhao. Low-cost, one-step process for synthesis of carbon-coated LiFePO4 cathode[J]. Materials Letters,2005,59(1):127-130
    [78]张宝,李新海,朱炳权,等,沉淀—碳热还原联合法制备橄榄石磷酸铁锂[J].中国有色金属学报,2006,16(8):1445-1449
    [79]唐昌平,应皆荣,雷敏,等,控制结晶—微波碳热还原法制备高密度LiFePO4/C[J].电化学,2006,12(2):188-191
    [80]Cushing B. L., Goodenough J. B.. Influence of carbon coating on the performance of a LiMn0.5Ni0.5O2 cathode[J]. Solid State Sci.,2002,4(11-12):1487-1493
    [81]Ravet N., Goodenough J. B., Besner S., et al. Abstract 127, The Electrochemical Society and The Electrochemical Society of Japan Meeting Abstracts, Vol.99-2, Honolulu, HI, Oct 17-22,1999
    [82]Thackeray M. Lithium-ion batteries-An unexpected conductor[J]. Nature Mater.,2002, 1(2):81-82
    [83]Liu H.P., Wang Z.X., Li X.H., et al. Synthesis and electrochemical properties of olivine LiFePO4 prepared by a carbothermal reduction method [J]. Journal of Power Sources, 2008,184(2):469-47
    [84]Chung S.Y., Bloking J.T., Chiang Y.M., et al. Electronically conductive phosphor-olivines as lithium storage electrodes [J]. Nature Materials,2002,1(2): 123-128
    [85]Liu H., Cao Q., Fu L.J., Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries [J]. Electrochemistry Communications,2006,8(10):1553-1557
    [86]Zhang M., Jiao L.F., Yuan H.T., et al. The preparation and characterization of olivine LiFePO4/C doped with MoO3 by a solution method [J]. Solid State Ionics,2006, 177(37-38):3309-3314
    [87]Yamada Atsuo, Chung Sai-Chong. Crystal chemistry of the olivine-type Li(MnyFe1-y)PO4 and (MnyFe1-y)PO4 as possible 4 V cathode materials for lithium batteries[J]. Journal of Electrochemical Society,2001,148(8):A960-A967
    [88]Chen Zhaohui, Dahn J. R.. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy and tap density [J]. J. Electrochem. Soc., 2002,149(9):A1184-A1189
    [89]Prosini Pier Paolo, Zane Daniela, Pasquali Mauro. Improved electrochemical performance of a LiFePO4-based composite cathode[J]. Electrochimica Acta,2001,46: 3517-3523
    [90]Cheol Woo Kim, Moon Hee Lee, Woon Tae Jeong, et al. Synthesis of olivine LiFePO4 cathode materials by mechanical alloying using iron (Ⅲ) raw material [J]. Journal of Power Sources,2005,146:534-538
    [91]Yamada A, Chung S C, Hinokuma K. Optimized LiFePO4 for lithium battery cathodes[J]. Journal of Electrochemical Society,2001,148(3):224-229
    [92]Huang H, Yin S C, Naza r L F, Approaching theoretical capacity of LiFePO4 at room temperature at high rates [J]. Electrochem Solid-State Lett,2001,4(1):A170-A172
    [93]Fanger S, Le C F, Bourbon C, Comparison between different LiFePO4 synthesis routes and their influence on its physic-chemical properties [J]. Power Sources,2003,119-121: 252-257
    [94]Prosini P P, Zane D, Pasquali M, Improved electrochemical performance of a LiFePO4-based composite cathode[J]. Electrochimica Acta,2001,46:3517-3523
    [95]George Ting-Kuo Key, Yun Geng Chen, Hsien-Ming Kao. Electrochemical properties of LiFePO4 prepared via ball-milling[J]. Journal of Power Sources,2009,189:169-178
    [96]Fanger S, Le C F, Bourbon C. Comparison between different LiFePO4 synthesis routes and their influence on its physic-chemical properties[J]. Journal of Power Sources,2003, 119-121:252-257
    [97]Kyung Tae Lee, Kyung Sub Lee. Electrochemical properties of LiFeo.9Mn0.1PO4/Fe2P cathode material by mechanical alloying[J]. Journal of Power Sources,2009,189: 435-439
    [98]钱逸泰.结晶化学导论[M].合肥:中国科学技术大学出版社,2002,89-93
    [99]LU Zheng-zhongi(吕正中),ZHOU Zhen-taoi[周震涛).LiFePO4/C复合正极材料的结构与性能[J].Battery(电池),2003,33(5):2699-2711
    [100]韩海涛,杨海涛,尚富亮等.机械球磨制备纳米WO3粉末的研究[J].稀有金属与硬质合金,2006,34(4):22-24
    [101]Andersson A S, Thomas J O. The source of first-cycle capacity loss in LiFePO4[J]. Journal of Power Sources,2001,97/98:211-218
    [102]Jae-Kwang Kim,Gouri Cheruvally,Jae-Won Choi. Effect of mechanical activation process parameters on the properties of LiFePO4 cathode material[J]. Journal of Power Sources,2007,166:211-218
    [103]肖松文,肖骁,曾子高.球磨作用下陶瓷粉体材料的机械化学相变行为机制研究进展[J].材料导报,2008,22(1):37-40
    [104]杨伏良,易丹青.Al-Si合金粉末的高能球磨及其表征[J].中南大学学报,2008,39(1):29-34
    [105]Ke Wang, Rui Cai, Tao Yuan, et al. Process investigation, electrochemical characterization and optimization of LiFePO4/C composite from mechanical activation using sucrose as carbon source[J]. Electrochimica Acta 2009,54:2861-2868
    [106]蒋永,赵兵,万小娟,等.气相沉积碳包覆磷酸铁锂的制备及性能[J].硅酸盐学报,2008,36(9):1295-1299
    [107]席生歧.高能球磨固态扩散反应研究[J].材料科学与工艺,2000,18(3):563-567
    [108]唐致远,邱瑞玲,腾国鹏,等.锂离子电池正极材料LiFePO4的研究进展[J].化工进展,2008,27(7):995-1000
    [109]关璐,曲选辉,贾成厂,等.用机械合金化法制备含氮不锈钢粉末[J].北京科技大学学报,2005,27(6):692-694
    [110]张亚萍,鲁玉祥,郭进.球磨环境对机械合金化合成纳米TiC的影响[J].石油大学学报,2005,29(2):136-144
    [111]黄可龙,吕正中,刘素琴.锂离子电池容量损失原因分析[J].电池,2001,31(3):142-145
    [112]徐如人.无机合成化学[M].北京:高等教育出版社,1991
    [113]张东云,袁秋华,张培新,等.柠檬酸包覆合成LiFePO4/C工艺的优化[J].功能材料,2009,40(5):763-766
    [114]丁燕怀.正极材料LiFePO4的合成与性能研究[D].湖南:湘潭大学,2006
    [115]郭静.锂离子电池正极材料LiFePO4的合成及电化学性能研究[D].湖南:湖南大学,2008
    [116]何素玉,张进修.Sol-gel法制备(Ba0.95Ca0.05)(Sn0.05Ti0.095)O3薄膜及升温速度对形貌的影响[J].中山大学学报,2002,441:34-36
    [117]任金栋.锂离子电池正极材料LiMn2O4的制备及其机理研究[D].华南理工大学工学硕士学位论文.1999:27-29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700