用户名: 密码: 验证码:
宝钢高配比镜铁矿与含铁粉尘的复合造块工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:随着钢铁工业的迅速发展,我国铁矿石自给能力严重不足,进口铁矿石价格不断攀升,国内钢铁企业的炼铁成本也随之上涨。高效、大配比使用价格相对较低的非传统铁矿资源(如镜铁矿)及二次资源(如含铁尘等)作为炼铁原料,对于降低炼铁成本和企业节能减排都具有重要的现实意义,但由于上述原料大多存在难成球、难焙烧等原因,使得现有造块工艺中无法大量使用。铁矿粉复合造块工艺是近期发展起来的一种新的造块技术,在难处理复杂矿、细粒铁矿及含铁二次资源等方面具有显著优势。
     随着宝钢新建高炉投产及原有高炉大修扩容,烧结产能已远远不能满足炼铁生产要求。在宝钢当前炼铁原料结构和烧结技术条件下,研究采用复合造块新工艺来提高烧结矿生产能力,解决宝钢炼铁原料短缺的问题、改善烧结矿产质量、实现烧结节能降耗、降低炼铁成本具有重要的意义。
     本文以镜铁矿和宝钢自产含铁粉尘为研究对象,在研究镜铁矿与含铁粉尘的成球性能、焙烧固结性能,以及配加镜铁矿粉和(或)含铁粉尘对宝钢生产现场用匀矿烧结性能影响的基础上,考查了采用复合造块工艺实现高配比镜铁矿和含铁粉尘造块的可行性及工艺条件,并通过料层透气性试验及料层气体力学分析,研究球团料及基体料对复合造块料层透气性的影响规律,揭示了复合造块工艺可显著提高产量的机理;考查了镜铁矿球团在复合造块过程中的固结和成矿行为,揭示复合造块工艺改善产品质量的机理。本研究的创新点和获得的主要结论如下
     (1)研究镜铁矿与含铁粉尘的造块性能,查明了镜铁矿粉和含铁粉尘的难造块的原因。镜铁矿粉表面光滑、结构致密、成球性能较差,所需焙烧温度较高(需要达到1280℃以上)。用于球团生产时,需要经过60min-90min湿式球磨和3次高压辊磨预处理后所制备的生球质量指标方能满足要求。配入烧结混合料时,与单一匀矿烧结结果相比,在配加19.6%的镜铁矿粉后进行烧结垂直烧结速度降低了5.27mm/min,成品率减小了8.84%,利用系数降低了0.454t·m-2·h-1;同样,在匀矿中直接配加10%含铁粉尘进行烧结,与采用单一匀矿烧结获得的试验指标相比,垂直烧结速度下降了222mm/min,转鼓强度降低了1.79%。
     (2)研究复合造块工艺料层气体运动规律及料层透气性变化规律,探明了复合造块工艺显著提高造块产量的机理。复合造块料层中由于在基体料中加入球团,在两者粒度匹配的条件下,可提高料层透气性透气性,在烧结料细粒含量少于50%的情况下,加入30%~40%的球团,料层透气性可以提高20%~30%。
     (3)研究了镜铁矿球团在复合造块过程中的固结和成矿行为,揭示了复合造块工艺改善造块产品质量的机制。复合造块产品具有比常规烧结矿更好的显微结构强度,该产品由酸性球团矿与高碱度烧结矿紧密镶嵌构成,高温冶金性能研究表明,制备的成品复合烧结矿可作为一种优质的炼铁炉料。对于匀矿基体料,由于其具有超高碱度,针状铁酸钙(SFCA)可大量生成,结晶互连后具有优良的强度;对于镜铁矿球团料,在高温制度下诱导原生Fe2O3发生物相转变,分解、再氧化后生成次生Fe2O3,次生Fe2O3由于具备更高活性,进而可促进球团料的固结。造块产品中的酸性球团料镶嵌在高碱度基体料中,两者依靠烧结过程中高碱度基体料产生的液相紧密相连,形成复合造块产品的整体强度,其主要矿物有铁酸钙,还含有部分赤铁矿和少量橄榄石等。
     (4)开发了高配比镜铁矿和含铁粉尘的复合造块工艺。与常规烧结工艺相比,采用复合造块工艺时镜铁矿的配加量可由10%提高到40%以上,粉尘配比可提高到10%以上,同时料层高度可由常规的700mm提高到820mm以上,有效地实现了烧结生产的增产、节能,目前,该工艺已在宝钢完成工业化可行性研究,证实了该工艺的工业化实施是可行的。
Abstract:With the rapid development of the steel industry of China as well as the increasing price of imported iron ore, the iron-making cost of domestic steel companies has also increased due to a serious shortage of self-sufficiency of domestic iron ore. Efficient utilization of a large proportion of iron ore with relatively low price, such as non-traditional resources (e.g. Specularite ore) and secondary sources (e.g. iron-bearing dust), is of great significance for the reduction of iron-making cost as well as energy conservation and emission reduction. However, the existing processes are not capable of utilizing specularite ore and iron-bearing dust in a large scale, due to their properties of low ballability and refractory performance. Composite Agglomeration Process (CAP) is a brand-new process with significant advantages for the agglomeration of iron-bearing materials in terms of refractory iron ore, fine-grained iron ore and secondary resources currently.
     The sintering capacity of Baosteel has not already met the requirement of feedstock for blast furnace with the expansion of existing BF together with the construction of new BF. Thus, under the current conditions of raw materials source and sintering technology, the research on the application of Composite Agglomeration Process (CAP) to increase the production capacity and improve the quality of sinter is of great significance, for the aims of energy conservation and cost reduction.
     In this paper, specularite ore and iron-bearing dust derived from Baosteel were used as the main raw material, and the properties in terms of ballability, roasting consolidation performance, and their effects on the sintering performance of ordinary iron ore were investigated. Feasibility and optimal process parameters of CAP for the utilization of high-ratio of specularite ore and iron-bearing dust were examined. Subsequently, effects of pellet and matrix material on the permeability of sintering bed were investigated to interpret its function of increasing productivity, via gas mechanics analysis of sinter bed. Moreover, consolidation and mineralization behaviors of specularite ore were studied, in order to reveal the mechanism of sinter quality improvement by using CAP. The innovations of this study and the main conclusions obtained are as follows:
     (1) Agglomeration performances of specularite ore and iron-bearing dust were examined and reasons for difficulty in agglomeration were explained. Specularite ore is with smooth surface, compact structure and poor ballability, as well as a higher roasting temperature requirement (more than1280℃). As for the pellet production, specularite ore needs pretreatment of60~90min wet ball grinding and three times high-pressure roller grinding, so that the quality indicators of green balls can only meet the basic requirements. The sintering indexes of ordinary iron ore was deteriorated with addition of19.6%specularite ore, and the vertical sintering velocity decreased by5.27mm/min, yield decreased by8.84%, and productivity decreased by0.454t·m-2·h-1. Likewise, with addition of10%iron-bearing dust, vertical sintering velocity dropped by2.22mm/min, and the drum strength decreased by1.79%.
     (2) The permeability changes of sintering bed were investigated and the mechanism of yield improvement of CAP was proposed. The permeability of the sinter bed increased by20%-30%when the matrix material was mixed with30%~40%pellet material.
     (3) Consolidation and mineralization behaviors of specularite ore during CAP were studied and the enhancement mechanism of sinter quality revealed. The CAP product possesses better microstructure strength than conventional sinter, which is composed of acidic pellets and high basicity sinter. High-temperature metallurgical properties of the CAP product show that it can be used as a qualified feed for iron-making. Regarding with the matrix material of ordinary iron ore, needle-like calcium ferrite (SFCA) can generate a lot after crystallization resulting in an excellent strength because of its ultra-high alkalinity; as for the pellet material of specularite ore, the consolidation of pellet was promoted due to the formation of secondary Fe2O3with high activity sourced from the decomposition and re-oxidation of the original Fe2O3. In the CAP product, acidic pellets are embedded in the high alkalinity matrix material, both of them are bonded by the liquid phase generated from the high alkalinity matrix material during sintering, and it is mainly constituted of calcium ferrite and hematite, and also a small amount of olivine.
     (4) CAP for utilization of a high ratio specularite ore and iron-bearing dust was developed. Compared with conventional sintering process, the dosage of specularite ore can be increased from10%to40%, and the iron-bearing dust ratio can be increased to over10%, meanwhile the height of sinter bed could be increased to from700mm to820mm or above. CAP has advantages of increasing production yield and reducing energy consumption, and a feasibility study of this process has been performed in Baosteel and proves that the implement of this process for industrialization is practicable.
引文
[1]周取定主编.中国冶金百科全书(钢铁冶金)[M].北京:冶金工业出版社,2001:472-477.
    [2]中国钢铁研究研究院.2010-2011钢铁行业分析报告[R].2011.
    [3]何金祥.对我国钢铁工业发展的若干战略性思考[J].国土资源情报,2009(3):12-19.
    [4]张庆云,张思友.我国烧结球团现状及“八五”技术发展设想[J].烧结球团,1991(2):3-6.
    [5]唐先觉,朱雪琴.浅论我国烧结球团业50年来的技术进步[J].烧结球团,2004(6):3-5.
    [6]国外铁矿粉造块[M].北京:冶金工业出版社,1981:341.
    [7]潘宝巨,李正廉,张成吉.国外烧结技术现状及展望[J].钢铁,1994(12):66-70+74.
    [8]N. OYAMA, H. SATO, K. TAKEDA, et al. Development of Coating Granulation Process at Commercial Sintering Plant for Improving Productivity and Reducibility[J]. ISIJ International,2005,45(6):817-826.
    [9]T. OTOMO,Y. TAKASAKI, H. SATO. Granule Design for the Sintering with Less Amount of Liquid Phase Formation[J]. ISIJ International,2009,49(5):659-666.
    [10]郜学.“十五”我国烧结发展和技术进步[J].冶金信息导刊,2007(3):13-16.
    [11]单尚华,李春风.加快实施烧结烟气脱硫促进区域环境改善[J].冶金经济与管理,2006(4):10-14.
    [12]郜学.中国烧结行业的发展现状和趋势分析[J].钢铁,2008(1):88-91.
    [13]孔令坛.我国炼铁原料技术的进步和展望[J].炼铁,2002(5):23-26.
    [14]曾鹏飞.浅议我国今后十年的钢铁发展战略[J].冶金信息工作,1995(2):1-6.
    [15]叶匡吾.面对新的炼铁技术——也谈“炼铁技术”[J].中国冶金,2005(2):17-20.
    [16]李光辉,姜涛,范振宇,等.烟气循环烧结新技术的研究[C]//2010年全国炼铁生产技术会议暨炼铁学术年会,2009:1184-1185.
    [17]布林佐.北美的铁矿石和热压块市场[J].国外金属矿山,2000(5):60.
    [18]李蒙,任伟,陈三凤.国内外球团矿生产现状和展望[J].中国冶金,2004(11):3-5.
    [19]杨金善.世界钢铁工业发展简介[J].冶金信息导刊,1999(1):20-22.
    [20]赵云.全球球团矿产量不断增长[N/OL].世界金属导报.2007-9-11.
    [21]M.J. STOOP, M.W.I.V. HOOFT, R.C. SCHIMMEL. Doubling Production Capacity of the IJmuiden Pellet Plant Between 1970 and 2006[J]. Australasian Institute of Mining and Metallurgy Publication Series,2007:27-30.
    [22]叶匡吾.三种球团焙烧工艺的评述[J].烧结球团,2002(1):6-9.
    [23]陈三凤,任伟.链篦机-回转窑球团工艺有关技术问题的探讨[J].烧结球团,2006(4):14-17.
    [24]H. PHAM, M. DARBY, F. LOVELL, et al. Improvement in Australian Bulk Minerals'Iron Ore Pellet Quality and Process Performance[J]. First Extractive Metallurgy Operators'Conference,2005:137-142.
    [25]R MENDOZA, I SANDOVAL, J MENDEZ, et al. Development of a High Reducibility Acid Pellet at Imexsa[J]. Materials and Manufacturing Processes, 2001,16(4):519-529.
    [26]V. A. GORBACHEV. Theoretical Foundations and New Energy-Saving Technologies of Iron-Ore Pellet Production [C]. STAL',2002:16-18.
    [27]范晓慧,代林晴,王讳,等.我国球团矿生产技术进展[C]//2006年全国金属矿节约资源及高效选矿加工利用学术研讨与技术成果交流会,2006:73-74.
    [28]杨佳龙,谭穗勤,王朝平,等.增加球团矿用量以优化高炉炉料结构[J].钢铁,2005(10):16-20.
    [29]范晓慧,袁礼顺,曹亮.高炉精料与科学配矿[J].烧结球团,2004(4):3-6.
    [30]叶匡吾.大力推进我国球团矿的生产[J].冶金管理,2007(10):11-14.
    [31]刘文权.对我国球团矿生产发展的认识和思考[J].炼铁,2006(3):26-29.
    [32]胡宾生.铁矿粉造块工艺的进步和发展[J].江苏冶金,1992(1):30-33.
    [33]De-Qing ZHU, Zhi-Yuan WANG, Jian PAN, et al. Improvement of Sintering Behaviors of Brazilian Specularite Concentrate By Damp Milling[J]. Kang T'ieh/iron and Steel,2007,42(1):12-16.
    [34]S.C. PANIGRAPHY, A. CHOUDHURY, M. RIGAUD, et al. Effect of Micropelletization on the Structure and Properties of Sinters Produced From a Canadian Mix Containing High Percentage of Specularite Concentrate [C]//Publ By Inst of Chemical Engineers,1993:13-13.
    [35]S. PRAKASH. Reduction and Sintering of Fluxed Iron Ore Pellets-a Comprehensive Review[J]. Journal of the South African Institute of Mining and Metallurgy,1996,96(1):3-16.
    [36]J.K. WRIGHT, I.F. TAYLOR, D.K. PHILIP. Review of Progress of the Development of New Ironmaking Technologies[J]. Minerals Engineering,1991, 4(7):983-1001.
    [37]T.C. EISELE, S.K. KAWATRA. A Review of Binders in Iron Ore Pelletization[J]. Mineral Processing and Extractive Metallurgy Review,2003,24(1).
    [38]姜曦,裴元东,韩宏亮.铁矿粉烧结技术进展[J].科技导报,2011,29(15):70-74.
    [39]姜曦,韩宏亮,段祥光,等.含铁尘泥在烧结生产中高效使用技术研究[J].科技导报,2011,29(32):52-55.
    [40]N. SAKAMOTO, A. KUMASAKA, O. KOMATSU, et al. Development of the Hybrid Pelletized Sinter Process for Blast Furnace Burden[J]. Nkk Technical Review,1989(57):65-73.
    [41]于恒.铁矿粉复合造块过程中的气体力学及成矿行为研究[D].长沙:中南大学,2011.
    [42]范振宇.烟气循环烧结的基础研究[D].长沙:中南大学,2011.
    [43]谢光.国内外烧结技术发展现状[J].海南矿冶,1995(2):43-48+47.
    [44]隆飞亮.强化烧结过程的途径浅议[J].湖南冶金,1998(2):36-39.
    [45]C.E. LOO, N.J. BRISTOW. Mechanism of low-temperature reduction degradation of iron ore sinters[J]. Transactions of the Institution of Mining and Metallurgy. Section C. Mineral Processing and Extractive Metallurgy,1994, 103.
    [46]O. KIMURA, K. SHOJI, H. MAIWA. Low Temperature Sintering of Iron Deficient Z Type Hexagonal Ferrites[J]. Journal of the European Ceramic Society,2006,26(13):2845-2849.
    [47]邹志毅.铁矿烧结技术新进展[J].烧结球团,1992(5):52-56+32.
    [48]杨敬顺.一种造块新技术[J].钢铁研究学报,1990(3):18.
    [49]杨振和.烧结用矿的经济性探讨[J].炼铁,2001(2):54-56.
    [50]A. JANUZZI, G. BRANDaO. Influence of the Raw Materials on the Cold Agglomeration in Hps (Hybrid Pelletized Sinter) Process[C]//ANNALS-3rd International Meeting on Ironmaking and 2nd International Symposium on Iron Ore,2008:12-21.
    [51]W. BORGES, C. MELO, R. BRAGA, et al. Application of Hps (hybrid Pelletized Sinter) Process at Monlevade Works[J]. Revue De Metallurgie-cahiers D Informations Techniques,2004,101(3):189-194.
    [52]T. INAZUMI. Recent Progress of Iron Ore Agglomeration Technology[J]. Journal of the Iron and Steel Institute of Japan-tetsu to Hagane,1996,82(12): 965-974.
    [53]单继国,石红梅.新型小球烧结技术[J].中国冶金,2004(1):32-34+43.
    [54]张永明,柳望洵,陈庆恒.小球烧结新技术工业生产实践[C]//1999中国钢铁年会,1999:299-300.
    [55]薛跃,刘永田,朱永田.小球团烧结的生产实践[J].烧结球团,1997(3):21-23.
    [56]薛跃,刘永田.小球烧结生产实践[J].上海金属,1997(1):55-58.
    [57]柳望洵,张永明.小球团烧结新技术[J].中国矿业,1999(S4):114-116.
    [58]任志国.小球团烧结技术[J].中国冶金,2000(6):28.
    [59]刘竹林.炼铁原料[M].北京:化学工业出版社,2007.
    [60]李益慎.国外烧结技术发展的动向[J].武钢技术,1989(8):10-17.
    [61]许彦斌,李贵松,张俊方,吴锦文,王有满.双球烧结工艺[P].辽宁:CN85100645,1986-10-08.
    [62]于淑娟.鞍钢齐大山混合精矿双球烧结的基础研究[J].鞍钢技术,1993(1):7-11.
    [63]许彦斌.一种新型的烧结工艺——双球烧结工艺通过鉴定[J].冶金能源,1989(3):39.
    [64]麻瑞田,刘振达,吴锦文,等.双球烧结的实验研究[J].钢铁,1991(2):5-10.
    [65]麻瑞田,刘振达,许彦斌,等.双球烧结工业试验[J].钢铁,1991(3):4-9.
    [66]V. SESHADRI, C.B. VIERA, C.A. ROSIERE. Microstructural Characterization of Brazilian Iron Ores for Quality Control in Iron Making:a Geometallurgical Approach[C]//TMS Annual Meeting,2006:11.
    [67]V. SESHADRI, C. B. VIERA, C. A. ROSIERE. Microstructural Characterization of Brazilian Iron Ores for Quality Control in Iron Making-a Geometallurgical Approach[C]//TMS Annual Meeting,2006:229-239.
    [68]何奥平.巴西镜铁矿球团工艺及机理研究[D].长沙:中南大学,2005.
    [69]王富生,苏允隆.马钢球团配加CVRD精矿试验[J].烧结球团,2000(5):8-12.
    [70]陈铁军,张一敏,熊守安.用武钢程潮铁精矿生产氧化球团试验研究[J].矿冶工程,2003(1):50-53.
    [71]朱德庆,唐艳云,Vi. MENDES,等.高压辊磨预处理强化巴西镜铁矿球团[J].北京科技大学学报,2009(1):30-35.
    [72]朱德庆,王志远,潘建,等.巴西某镜铁精粉的烧结特性及强化工艺[J].中南大学学报(自然科学版),2006(5):878-883.
    [73]朱德庆,王志远,潘建,等.润磨强化镜铁精粉烧结特性的研究[J].钢铁,2007(1):12-16.
    [74]唐艳云.高压辊磨强化PFC镜铁矿球团工艺及机理研究[D].长沙:中南大学,2008.
    [75]李晓芹.内配碳在赤铁矿氧化球团制备中的行为研究[D].长沙:中南大学,2009.
    [76]刘国防.济(南)钢提高球团矿品位的实践[J].烧结球团,2001(6):37-38.
    [77]胡长庆,张玉柱,尹海生,等.竖炉球团配加巴西精粉的试验研究[J].烧结球团,2003(6):15-17.
    [78]陈伟,高丙寅,杨玉兵,等.镜铁矿烧结性能试验研究[J].河南冶金,2012(3):6-8+21.
    [79]张元波,李光辉,姜涛,等.难烧结焙烧镜铁矿的复合造块研究[C]//2010年全国炼铁生产技术会议暨炼铁学术年会文集(上),2010.
    [80]S.C. PANIGRAHY,刘树立.赖特山镜铁矿精矿的烧结特性[J].烧结球团,1987(4):78-87.
    [81]曾丹林,马亚丽,王光辉,等.钢铁厂含铁粉尘综合利用研究进展[J].烧结球团,2011(6):45-49.
    [82]曾丹林,刘胜兰,龚晚君,等.从含铁粉尘中湿法回收锌的研究现状[J].湿法冶金,2013(4):217-219.
    [83]王东彦,王文忠,陈伟庆,等.转炉和含锌铅高炉尘泥的物性和物相分析[J].中国有色金属学报,1998(1):138-142.
    [84]徐匡迪.中国国民经济的发展与钢铁工业[J].中国冶金,2003(12):8-14.
    [85]殷瑞钰.21世纪初中国钢铁业发展战略的初步评估[J].炼钢,2002(1):1-8.
    [86]张寿荣.进入21世纪我国钢铁工业面临的机遇与挑战——兼论中国需要产多少钢[C]//冶金工业出版社,2003.
    [87]Anon. Laboratory Investigation of Zinc Recovery Fromeaf Dust By Bath Smelting Reduction[J]. Journal of University of Science and Technology Beijing, 2000(1):18-23.
    [88]Y. Yin, J. Wang, J. Bai, et al. Recovery of Zn-bearing Blast Furnace Dust By Alkaline Extraction[C]//Proceedings of Conference on Environmental Pollution and Public Health,2012.
    [89]V. PETER, A. HERCK, V. CARLO, et al. Zinc and Lead Removal From Blast Furnace Sludge with a Hydrometallurgical Process[J]. Environmental Science & Technology,2000,34(17):3802-3808.
    [90]A. Masud. Fundamentals of Zinc Recovery From Metallurgical Wastes in the Enviroplas Process[J]. Minerals Engineering,2002,15(11):945-952.
    [91]王琼,贵永亮,宋春燕.冶金含铁尘泥再资源化的技术现状与展望[J].河北联合大学学报(自然科学版),2013(3):19-23.
    [92]黄志华,伍喜庆,彭冠兰.高炉尘泥化学除锌[J].中国有色金属学报,2007(7):1207-1212.
    [93]于留春.梅山高炉瓦斯泥综合利用的研究[J].宝钢技术,2003(6):22-25.
    [94]蒋晓东.钢铁行业沉泥综合利用及本钢实践研究[C]//冶金工业出版社,2003.
    [95]于家慧,亓立军.莱钢矿建公司成功研制出含铁粉尘回收利用新法[N/OL].世界金属导报.2002-4-30. http://epub.cnki.net/kns/detail/detail.aspx? FileName = WJSD200204300023&DbName=CCND2002.
    [96]许海川,周和敏,齐渊洪,等.转底炉处理钢厂固废工艺的工程化及其生产实践[J].钢铁,2012(3):89-93.
    [97]姜涛,李光辉,张元波,等.铁矿粉复合造块法[C]//2010年全国炼铁生产技术会议暨炼铁学术年会文集(上),2009.
    [98]T. JIANG,G.H. LI, H.T. WANG, et al. Composite Agglomeration Process (cap) for Preparing Blast Furnace Burden[J]. Ironmaking & Steelmaking,2010,37(1): 1-7.
    [99]J. ZENG, T. JIANG, Q. LI, et al. Study and Application of Composite Agglomeration Process of Fluoric Iron Concentrate[C]//ICSTI'09,2009.
    [100]G. CHEN, R.J. WANG, M. SHEN, H. WU. Research on Composite Agglomeration Technology of Baotou Steel Iron Ore Concentrates[C]// ICSTI'09,2009.
    [101]T. JIANG, Y.M. HU, Q. LI, et al. Mechanisms of Composite Agglomeration of Fluoric Iron Concentrate[J]. Journal of Central South University of Technology, 2010(6):1190-1195.
    [102]赵改革,范晓慧,陈许玲,等.含铁炉料在高炉各区的冶炼特性[J].中南大学学报(自然科学版),2010(6):2053-2059.
    [103]闫友,高永学,王志华,等.关于改善烧结料层透气性途径的探讨[J].有色矿冶,2008(4):36-38.
    [104]张英杰.改善烧结料层透气性途径的探讨[J].南方金属,2004(3):43-45.
    [105]宫作岩.改善烧结料层透气性的研究[D].沈阳:东北大学,2008.
    [106]李博.浅谈改善烧结料层透气性的几点措施[J].南钢科技,1995(3):9-12.
    [107]张展雷,吕娟珍.提高烧结料层透气性的实践[J].烧结球团,2004(4):54-56.
    [108]叶大年,张金民.非等大球体的任意堆积[J].地质科学,1990(2):29-38.
    [109]叶大年.球体任意堆积的统计几何分析[J].地质科学,1990(4):22-29.
    [110]戴宏钦.球体随机堆积及其堆积结构的研究[D].苏州:苏州大学,2011.
    [111]郭仁炳.规则球粒堆积体的孔隙度[J].地球科学,1994(4):117-122.
    [112]付菊英,姜涛,朱德庆.烧结球团学[M].长沙:中南工业大学出版社,1996.
    [113]贺先新.Voice公式在高料层烧结中的应用[J].武钢技术,1987(11):9-38+35.
    [114]邱先彩.关于Voice公式几个问题的讨论[J].烧结球团,1984(2):57-64.
    [115]付守澄,蔡汝卓,邱先彩.Voice公式中m、n值的变化规律[J].烧结球团,1985(6):13-21.
    [116]邱先彩,蔡汝卓,付守澄.Voice公式在烧结实践中的应用[J].烧结球团,1986(3):18-29.
    [117]吴朝刚,顾云松,阿中.烧结生产技术指标与风机参数关系的分析[J].安徽冶金,2011(2):50-52.
    [118]奚兆元.高炉气体动力学[J].钢铁,1979(4):74-82.
    [119]力杰,张浩浩,毛虎军,等.球团竖炉的阻力特性研究[J].工业炉,2010(1):7-9.
    [120]张亚田,蔡九菊,董辉,等.球团竖炉料层阻力特性实验研究[C]//2004全国能源与热工学术年会,2004:290-291.
    [121]傅世敏译.高炉过程气体动力学[M].北京:冶金工业出版社,1990:370.
    [122]李文绚,金保侠.气体动力学计算方法[M].北京:机械工业出版社,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700