用户名: 密码: 验证码:
油漆渣—焦油渣工业危险废物焚烧特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随我国社会生产力的发展和工业化程度的提高,工业危险废物的产生量迅速增长。危险废物的毒性、易爆性、腐蚀性、易燃性、化学反应性和传染性等危害特性对人类的健康和环境具有极大威胁。如对它们处置不妥,其中的有毒有害物质如重金属、化学物质、病原微生物等可以通过土壤、大气、水体进入环境,造成严重污染。目前我国对工业危险废物的处理处置还处于初级阶段,技术比较落后,规范和标准尚未完全建立。因此,研究工业危险废物处理处置技术,对控制危险废物造成的污染、保证人类健康有重要意义,已受到政府、科技界、产业界和环境保护界的重视。在现有的工业危险废物处理处置方法中,焚烧法以其减量化、无害化、资源化和二次污染小等优势被大力发展。本文以油漆渣-焦油渣成型工业危险废物为对象,对粉状、单颗粒、颗粒群等工业危险废物的热解特性、燃烧特性进行全面研究,并根据研究结果,设计了处理量为1500kg/h的工业危险废物焚烧系统和焚烧装置。
     利用热重-红外连用装置,对粉状油漆渣-焦油渣工业危险废物进行热解试验,得到热解特征温度、热解产率、主要热解气体析出量随升温速率、热解终温和样品粒径的变化规律;以及一氧化碳、二氧化碳、氨气和甲烷的析出温度段、析出量、析出最大速率温度。在试验基础上,提出热解动力学模型,并分段计算出热解过程中的指前因子和活化能。
     利用自行搭建的单颗粒热重试验台,对单个油漆渣-焦油渣工业危险废物颗粒的热解特性进行了试验研究,得到了热解产率,以及升温速率、热解终温对单个废物颗粒热解特性的影响;建立了热解动力学模型,计算了热解动力学参数;研究了单个废物颗粒的燃烧特性,得到了燃烧失重率随过量空气系数和炉膛温度的变化规律。
     利用固定床燃烧试验台,对油漆渣-焦油渣工业危险废物颗粒群进行了燃烧试验。得到了危险废物的失重过程、燃烧速率、火焰前锋传播速度、床层内最高温度、气态燃烧产物及氧气浓度随一次风量、物料水分、床层高度和粒径的变化规律。通过Phoenics计算平台,对层燃炉排上的油漆渣-焦油渣工业危险废物的燃烧特性进行了研究。建立了一维非稳态模型,确定了基本控制方程、水分蒸发模型、挥发分析出及燃烧模型、焦炭燃烧模型和NO生成模型。得到了床层质量变化、床层内温度分布、燃烧产物的计算结果,以及一次风量对燃烧速率、床层内最高温度及床层内气体影响的计算结果,计算结果与试验结果趋势一致。
     确定了处理量为1500t/h工业危险废物焚烧处理的系统工艺流程,设计了焚烧炉,得到了焚烧炉结构、热力、阻力等参数,研究了炉膛温度对CO浓度、NOx浓度和烟尘浓度的影响。监测表明,该焚烧炉的有害气体、烟尘、重金属等均达标排放,烟气黑度、焚烧炉残渣热灼减率、残渣二噁英、飞灰二噁英等也满足国家相关标准。
Generation of industrial hazardous waste increases rapidly with the increase of the productive development and improvement of industry. Toxicity, explosibility, causticity, inflammability, chemical reactivity and infectiousness of hazardous waste do great harm to human health and surroundings. If hazardous waste is not treated appropriately, poisonous matters such as heavy metal, chemical matters and pathogenic microorganism could transmit to the circumstance by soil, air and water. At present, treatment of industrial hazardous waste in China is in a primary stage, with technology falling behind and standard not being built. Thus, research of industrial hazardous waste treatment is of great benefit to control pollution and ensure human health. The government, science and technology circle, industry circle and environmental protection circle has pay plenty attention to this object. Among the present industrial hazardous waste treatment, incineration is well developed because of its decrement, harmless, resource and low secondary pollution. In this work, pyrolysis and combustion characteristics of hazardous waste powder and particles are carried out. Hazardous waste treatment procedure and incinerator of 1500kg/h are designed.
     Pyrolysis experiments of industrial hazardous waste powder are carried out by using TG-FTIR. The change law of pyrolysis characteristic temperatures, pyrolysis yields, released pyrolysis gas with heating rate, final temperature and particle size are discussed. The release temperature range of CO, CO2, NH3 and CH4, gas release and maximum release rate temperature are curtained. Pyrolysis kinetics model are proposed. Preexponential factor and activation energy of the pyrolysis process are calculated.
     Pyrolysis characteristics of industrial hazardous waste particle are discussed by using pyrolysis and combustion experimental rig. Pyrolysis yields and influence of heating rate and final temperature on pyrolysis characteristics are discussed. Pyrolysis kinetics model are developed and pyrolysis kinetics parameters are calculated. Combustion characteristics of hazardous waste and influence of excess air coefficient and furnace temperature on combustion weight loss rate are discussed.
     Combustion experiments of industrial hazardous waste particles are carried out by using fixed bed experimental rig. Influence of primary air flow, moisture, bed height and particle size on weight loss rate, combustion rate, igration front speed, highest temperature within the bed, combustion gas and O2 concentration are discussed.
     Combustion characteristics of industrial hazardous waste on grate furnace are studied with PHOENICS. One-dimensional unstable state model is developed. Basic control equation, moisture evaporation model, volatile release model, char combustion model and NO generation model are developed. Calculation results of bed weight, temperature distribution and combustion gas are obtained. Influence of primary air flow on combustion rate, highest temperature and combustion gas in the bed are discussed. The results show that calculated results are in agreement with experimental results.
     Treatment procedure of 1500kg/h industrial hazardous waste is determined and incinerator is designed. Incinerator structure, thermal and hindrance are obtained. Influences of furnace temperature on CO, NOx and dust concentration are discussed. The monitoring show that release of harmful gas, dust, heavy metal reaches the standard. Blackness, dioxins in ash residue and dioxins in fly ash satisfy the national standard.
引文
1国家环保总局污染控制司.城市固体废物管理与处理处置技术.中国石化出版社, 2000: 18-25
    2 I. D. Marco, B. M. Caballero, A. Lo′pez, M. F. Laresgoiti, A. Torres, M. J. Chomo′n. Pyrolysis of the rejects of a waste packaging separation and classification plant. J. Anal. Appl. Pyrolysis. 2009, 85: 384–391
    3 T. Karayildirim, J. Yanik, M. Yuksel, H. Bockhorn. Characterisation of products from pyrolysis of waste sludges. Fuel. 2006, 85: 1498–1508
    4陆树立,戴颂宪,邢华.我国危险废物处置设施建设存在的问题及对策研究.环境研究与监测. 2006, 19(1): 43-45
    5中华人民共和国环境保护部,中华人民共和国国家发展和改革委员会令.国家危险废物名录. 2008.06: 24
    6 GB 5085.7-2007,危险废物鉴别标准?通则.北京.国家环境保护总局,国家质量监督检验检疫总局, 2007
    7 http://www.stats.gov.cn/tjsj/ndsj/
    8 http://www.stats.gov.cn/tjsj/ndsj/2008/indexch.htm
    9 H. Y. Wu, Y. P. Ting. Metal extraction from municipal solid waste (MSW) incinerator fly ash—Chemical leaching and fungal bioleaching. Enzyme and Microbial Technology. 2006,38: 839–847
    10 C. Chan, C. Q. Jia, J. W. Graydon, D. W. Kirk. The behaviour of selected heavy metals in MSW incineration electrostatic precipitator ash during roasting with chlorination agents. Journal of Hazardous Materials. 1996, 50: 1- 13
    11 E. Desroches, G. Antonini. Impact of incinerator internal hydrodynamics on hazardous organic waste destruction efficiency. Fuel. 2000, 79: 1195-1207
    12 J. G. Jiang, X. Xu, J. Wang, S. J. Yang, Y. Zhang. Investigation of basic properties of fly ash from urban waste incinerators in China. Journal of Environmental Sciences. 2007, 19: 458–463
    13 C. M. Huang, C. T. Chiu, K. C. Li, W. F. Yang. Physical and environmental properties of asphalt mixtures containing incinerator bottom ash. Journal of Hazardous Materials. 2006, 137: 1742–1749
    14 M. J. Quina, R. C. Santos, J. C. Bordado, R. M. Quinta-Ferreira. Characterization of air pollution control residues produced in a municipal solid waste incinerator in Portugal. Journal of Hazardous Materials. 2008,152: 853–869
    15王起,刘淑玲,王琦,曾理.重庆市危险废物处理处置方式的选择与应用.环境卫生工程. 2007, 15(3): 32-34
    16 J. R. Corner. Stabilizing hazardous waste. CHEMTECH.1993, 23(2): 229-236
    17 C. F. Lin, C. H. Wu, H. M. Ho. Recovery of municipal waste incineration bottom ash and water treatment sludge to water permeable pavement materials. Waste Management 2006, 26: 970-978
    18 F. Y. Chang, M. Y. Wey. Comparison of the characteristics of bottom and fly ashes generated from various incineration processes. Journal of Hazardous Materials. 2006, 138: 594-603
    19 A. Suwimol, C. Duangruedee. Solidification of electroplating sludge using alkali- activated pulverized fuel ash as cemetitious blinder. Cement and Concrete Research. 2004. 34: 349-353
    20 S. Kim. Pyrolysis of waste PVC pipe. Waste Management. 2001, 21(7): 609-616
    21刘刚.典型危险废物回转窑热处置特性和技术研究.浙江大学工学博士学位论文. 2006: 12-18
    22 S. C. Huang, F. C. Changb, S. L. Lob, M. Y. Lee, C. F. Wang, J. D. Lin. Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash. Journal of Hazardous Materials. 2007, 144: 52-58
    23 P. H. Taylora, D. Lenoir. Chloroaromatic formation in incineration processes. The Science of the Total Environment. 2001, 269: 1-24
    24 P. T. Williams, S. Besler. The pyrolysis of municipal solid waste. Journal of Institute of Energy. 1992, 65: 192-200
    25 K. S. Lin, H. P. Wang, S. H. Liu. Pyrolysis kinetics of refuse derived fuel. Fuel Processing Technology. 1999, 60(2): 455
    26 E. F. Zanoelo, L. A. C. Meleiro. Adynamic optimization procedure for non-catalytic nitric oxide reduction in waste incineration plants. Chemical Engineering Science. 2007, 62: 6851– 6864
    27 R. G. Evans, B. N. Shadel, D. W. Roberts, S. Clardy, D. Jordan-Izaguirre, D.G. Patterson, L. L. Needham. Dioxin incinerator emissions exposure study Times Beach, Missouri. Chemosphere. 2000, 40: 1063-1074
    28 T. E. Mckone, S. K. Hammond. Managing the Health impacts pf Waste Incineration. Environmental Science & Technology. 2000, 9: 280-387
    29 J. P. Zhao, S. Q. Jiao, Q. Z. Xing. Risk assessment and management of hazardous wastes. Industrial Safety and Environmental Protection. 2004, 30(10): 38-42
    30芈振明,高忠爱,祁梦兰,吴天宝等.固体废弃物的处理与处置.高等教育出版社. 1993: 38-55
    31 M. D. Heydenrych, P. Gree, A. B. M. Heesinkb. Mass Transfer in Rolling Rotary Kilns: a Novel Approach. Chemical Engineering Science. 2002, 57: 3851-3859
    32 R. G. Sherritt, J. Chroukib, A. K. Mehrotra. Axial Dispersion in the Three- Dimensional Mixing of Particles in a Rotating Drum Reactor. Chemical EngineeringScience. 2003, 58: 401-415
    33 Hazardous Waste Destruction by High Temperature Incineration. ASTM. 1991.
    34 G. L. Piao, K. Hakamada, S. Mori. Behariour of chlorine compound with combustion of RDF in fluidized bed. Kagaku Kagaku Ronbunshu. 2000, 26(4): 609-613
    35 M. Li, J. Xiang, S. Hu, L. S. Sun, S. Su, P. S. Li, X. X. Sun. Characterization of solid residues from municipal solid waste incinerator. Fuel 2004, 83: 1397-1405
    36别如山,樊庆锌.高浓度有机废液焚烧参数的确定.电站系统工程. 2003, 19(4): 39-40
    37 A. Bissonier, C. Chauveau, J. L. Delfau, C. Vovelle, Y. D. D. Mera. An Experimental Investigation of the Combustion of Technical Tetrachlorobenzene in a Laboratory Scale Incinerator. Combustion and flame. 2002, 129: 239-252
    38 L. Reijnders. Disposal, uses and treatments of combustion ashes: a review. Resources, Conservation and Recycling. 2005, 43: 313-336
    39 M. J. Quina, R. C. Santos, J. C. Bordado, R. M. Quinta-Ferreira. Characterization of air pollution control residues produced in a municipal solid waste incinerator in Portugal. Journal of Hazardous Materials. 2008, 152: 853-869
    40 T. Malkow. Novel and innovative pyrolysis and gasification technologies for energy efficient and environmentally sound MSW disposal. Waste Management. 2004, 24(1): 53-79
    41 J. J. Santoleri. Introduction to hazardous waste incineration. Wiley Interscience. 2000: 55-96
    42 Y. Cao, W. Y. Xu. A review on the risk assessment methods of system engineering. Engineering Science. 2005, 7(6): 88-94
    43王晓峰.危险废物理化特性分析及其对废物焚烧的影响.同济大学硕士论文. 2006: 10~18
    44赵由才,蒲敏,黄仁华.危险废物处理技术.化学工业出版社. 2003: 1~47
    45 G. Q. Liu, H. Goto, Y. Chen. International Conference on Incineration and Treatment Technologies. 1997: 205-255
    46 V. Cozzani, C. Nicolella, M. Rovatti, L. Tognotti. Modeling and experimental vertification of physical and chemical proceedings during pyrolysis of a refused derived fuel. Industrial & Engineering Chemistry Research. 1996, 35: 90-96
    47 V. Cozzani, L. Petarca. Devolatilization and pyrolysis of refuse derived fuels: characterization and kinetic modelling by a thermogravimetric and calorimetric approach. Fuel. 1995, 74(6): 903-912
    48 S. Zhao, H. B. Li, C. F. Yan, Z. L. Zhao, Y. Chen. NOx formation of RDF combustion in a fluidized bed reactor. Journal of Fuel Chemistry and Technology. 2005, 33(5): 633-636
    49 G. Piao, S. Aonoa, M. Kondoh. Combustion test of refuse derived fuel in a fluidized bed. Waste Management. 2000, 20: 443-447
    50汪熊平,洪丽娟,吴家正,肖彬松,朱彤.压模成型对RDF热解动力学的影响.环境科学. 2002, 23(3): 102-106
    51吴家正,朱彤,肖彬松,谢洪,汪熊平,洪丽娟,张鹤声.酸洗对RDF热解动力学影响及半焦表面结构变化. 2001, 29(2): 135-139
    52解强,吴国光,武建军,周敏.垃圾衍生燃料(RDF)热解特性的研究.苏州科技学院学报. 2003, 16(1): 16-21
    53王志奇,李海滨,吴创之,陈勇,李保庆.喷流-移动床RDF热解燃烧温度和气体分布.化工学报. 2003, 54(1): 74-79
    54陈江,黄立维,章旭明.垃圾衍生燃料热重-红外联用法的热解特性.环境科学与技术. 2008, 31(1): 29-32
    55张宪生,解强,沈吉敏,厉伟.新型垃圾衍生燃料制备的研究.苏州科技学院学报. 2003, 16(2): 24-28
    56李清海,张衍国,和晋华,任钢炼,康啸.固体废弃物燃烧过程气体分析RGA分析.锅炉技术. 2006, 37(2): 40-45
    57牛牧晨.铁路固体废弃物衍生燃料RDF的燃烧过程与污染特性研究.北京交通大学. 2007: 15-18
    58高明.铁路固体废弃物复合衍生燃料C-RDF的应用技术研究.北京交通大学. 2008: 22-25
    59魏小林,盛宏至,刘典福,田文栋,秦成,肖云汉.流化床中RDF焚烧时CO、SO2和HCl的生成.环境科学学报. 2005, 25(1): 34-38
    60赵凯峰,孙军,赵鹏,傅庚福.垃圾衍生燃料炭化物燃烧特性分析.可再生能源. 2009, 27(4): 81-87
    61阎常峰,陈勇,李海滨.垃圾衍生燃料流化床燃烧过程中HCl和NOx的排放研究.燃料化学学报. 2006, 34(4): 422-426
    62赵松,李海滨,阎常峰,赵增立,陈勇.垃圾衍生燃料(RDF)流化床燃烧过程中NOx的产生.太阳能学报. 2006, 27(2): 212-216
    63赵鹏.可用于层燃炉的RDF固氯特性和燃烧特性的研究.南京林业大学工学硕士学位论文. 2008: 35-45
    64孙明明.高热值垃圾与生物质混合制取RDF及其燃烧特性研究.沈阳航空工业学院工学硕士学位论文. 2009: 13-15
    65刘典福,魏小林,盛宏至.半焦与垃圾衍生燃料混烧的排放特性.燃烧科学与技术. 2005, 11(5): 475-479
    66 F. D. Maria, G. Pavesi. RDF to energy plant for a central Italian region SUW management system: Energetic and economical analysis. Applied Thermal Engineering. 2006, 26: 1291–1300
    67 G. Q. Liu, Y. Itaya, R. Yamazaki, S. Mori, M. Yamaguchi, M. Kondoh. Fundametal study of the behavior of chlorine during the combustion of single RDF. Waste Management. 2001, 21: 427-433
    68 E. Jannelli, M. Minutillo. Simulation of the flue gas cleaning system of an RDF incineration power plant. Waste Management. 2007, 27: 684-690
    69 N. Kobyashia, Y. Itayaa, G. Piaob, S. Moric, M. Kondod, M. Hamaid, M. Yamaguchid. The behavior of flue gas from RDF combustion in a fluidized bed Powder Technology. 2005, 151: 87-95
    70 J. Corella, J. M. Toledo, G. Molina. Performance of CaO and MgO for the hot gas clean up in gasification of a chlorine-containing (RDF) feedstock Bioresource Technology. 2008, 99: 7539-7544
    71 J. H. Yan, H. M. Zhu, X. G. Jiang, Y. Chi, K. F. Cen. Analysis of volatile species kinetics during typical medical waste materials pyrolysis using a distributed activation energy model. Journal of Hazardous Materials. 2009, 162: 646–651
    72 N. Deng, Y. F. Zhang, Y. Wang. Thermogravimetric analysis and kinetic study on pyrolysis of representative medical waste composition. Waste Management. 2008, 28: 1572-1580
    73 X. G. Jiang, C. Y. Li, T. Wang, B. C. Liu, Y. Chi, J. H. Yan. TG-FTIR study of pyrolysis products evolving from dyestuff production waste. Journal of Analytical and Applied Pyrolysis. 2009,84: 103-107
    74 H. M. Zhu, J. H. Yan, X. G. Jiang, Y. E. Lai, K. F. Cen. Study on pyrolysis of typical medical waste materials by using TG-FTIR analysis. Journal of Hazardous Materials. 2008, 153: 670-676
    75 G. J. Song, Y. C. Seo, D. Pudasainee, I. T. Kim. Characteristics of gas and residues produced from electric arc pyrolysis of waste lubricating oil. Waste Management. 2009, 85(1): 197-203
    76 J. M. Encinar, J. F. Gonza′lez, G. Mart?′nez, S. Roma′n. Catalytic pyrolysis of exhausted olive oil waste. Journal of Analytical and Applied Pyrolysis. 2009, 85: 197–203
    77 T. Karayildirim, J. Yanik, M. Yuksel, H. Bockhorn. Characterisation of products from pyrolysis of waste sludges. Fuel. 2006, 85: 1498-1508
    78 M. J. Fuentes, R. Font, M. F. Go′mez-Rico, I. Mart?′n-Gullo′n. Pyrolysis and combustion of waste lubricant oil from diesel cars: Decomposition and pollutants. Journal of Analytical and Applied Pyrolysis. 2007, 79: 215-226
    79 R. H. Ma, Y. C. Lin, C. P. Kuo. The study of thermal pyrolysis mechanisms for chloro organic. Journal of Analytical and Applied Pyrolysis. 2006, 75: 245-251
    80 L. J. Zhao, F. S. Zhang, M. J. Chen, Z. G. Liu, D. Bo, J. Z. Wu. Typical pollutants in bottom ashes from a typical medical waste incinerator. Journal of HazardousMaterials. 2010, 173: 181-185
    81 T. Chen, X. D. Li, J. H. Yan, Y. Q. Jin. Polychlorinated biphenyls emission from a medical waste incinerator in China. Journal of Hazardous Materials. 2009, 172 1339-1343
    82关小红,周恭明.低污染的危险废物焚烧技术研究.环境污染治理技术与设备. 2001, 2(5): 67-70
    83刘宇峰.燃煤固硫技术在工业危险废物焚烧中的应用.化工设计. 2003, 13(6): 44-47
    84刘刚,池涌,蒋旭光,朱江,严建华,岑可法.模拟危险废物颗粒回转窑内运动特性试验研究.工程热物理学报. 2005, 26(2): 343-346
    85郭玉文,王伟,乔玮,万晓,叶暾旻,卢欢亮.危险废物焚烧飞灰中重金属污染特性.北京科技大学学报. 2006, 28(1): 17-21
    86 S. Javied, M. Tufail, S. Khalid. Heavy metal pollution from medical waste incineration at Islamabad and Rawalpindi, Pakistan. Microchemical Journal. 2008, 90: 77–81
    87严子庸.美国危险废物的焚烧处理.化工环保. 1989, 9: 341-348
    88洪殿英.冷凝湿式静电沉降系统净化危险废物焚烧排放气.化工环保. 1999, 5: 319
    89吴江.废物气化技术.化工环保. 1999, 5: 319
    90方伟.水泥回转窑处置危险废物的技术研究.环境保护. 2000, 6: 8-11
    91刘清仁.瑞典危险废物的处理.国际科技交流. 1992, 2: 11-13
    92 J. Bujak. Experimental study of the energy efficiency of an incinerator for medical waste. Applied Energy. 2009, 86: 2386-2393
    93朱桂珍.利用水泥回转窑焚烧处置危险废物的评价研究.环境科学学报. 2000, 20(6): 810-812
    94周苗生,汤国伟。危险废物回转窑焚烧系统的工艺设计。环境污染与防治,2001,23(6):299-301
    95沈维民,贺新华,王赛辉,李文辉.我国危险废物焚烧处理中回转窑炉型的探讨.工业炉. 2006, 28(2): 16-18
    96叶东,刘英.鼓泡焚烧炉在污泥焚烧领域中的应用. 2010, 38(2): 163-165
    97杨佳珊.我国垃圾焚烧发电现状与焚烧炉的选择.可再生能源. 2004, 3: 59-62
    98董喜贵,雷群芳,俞庆森.石油沥青质的热解动力学研究.浙江大学学报(理学版). 2004, 31(6): 652-656
    99胡荣祖史启祯.热分析动力学.科学出版社. 2001: 256-261
    100 F. Juan, G. Jose, M.Encinar. Pyrolysis of cherry stones: Energy uses of the different fractions and kinetic study. Journal of Analytical and Applied Pyrolysis. 2003, 67:165-190
    101 M. Müller-Hagedorn, H. Bockhorn, L. Krebs, U. Müller. A comparative kinetic study on the pyrolysis of three different wood species. Journal of Analytical and Applied Pyrolysis. 2003, 68(8): 231-249
    102 Y. B. Yang, V. N. Sharifi, J. Swithenbank. Effect of air flow rate and fuel moisture on the burning behaviors of biomass and simulated municipal solid wastes in packed beds. Fuel. 2004, 83: 1553-1562
    103熊方勋,吴少华,林伟刚.应用TG-FTIR研究鹤岗烟煤的热解特性.电站系统工程. 2006, 22: 26-28
    104降文萍.煤热解动力学及其挥发分析出规律的研究.大连理工大学工学硕士学位论文. 2004: 56
    105钱原吉,吴占松.油漆废渣的热解特性与热解工艺.清华大学学报(自然科学版). 2008, 48(2): 236-238
    106马孝琴.生物质(秸秆)成型燃料燃烧动力学特性及液压秸秆成型机改进设计研究.河南农业大学博士论文. 2002: 74~76
    107 H. Thunman, B. Leckner. Influence of size and density of fuel on combustion in a packed bed. Proceedings of the combustion Institute. 2005, 30: 2939-2946
    108 H. Frey, B. Peters, H. Hunsinger, J. Vehlow. Characterization of municipal solid waste combustion in a grate furnace. Waste management. 2003, 23: 689-701
    109 Y. B. Yang, C. Ryu, A. Khor, V. N. Sharifi, J. Swithenbank, Fuel size effect on pinewood combustion in a packed bed. Fuel. 2005, 84() 2026-2038
    110 R.Zakaria, Y.R.Goh, Y.B.Yang, C.N.Lim, J.Goodfellow, K.H.Chan, G.Reynolds, D.Ward, R.G.Siddall, V.Nasserzadeh, J.Swithenbank. Fundamentals Aspects of Emissions from the Burning Bed in a Municipal Solid Waste Incinerator. 5th European Conference on Industrial Furnace and Boilers, Porto-Portugal, 11-14 April 2000
    111 H. Zhou, A.D. Jensen, P. Glarborg, P.A. Jensen, A. Kavaliauskas. Numerical Modeling of Straw Combustion in a Fixed Bed. Fuel 84(2005):389-403
    112 J. Fjellerup, U. Henriksen, A. D. Jensen, P. A. Jensen, P. Glarborg. Heat Transfer in a Fixed bed of Straw Char. Energy&Fuels 2003,17:1251~1258
    113 R. J. Kee, M. E. Coltrin, P. Glarborg. Chemically Reacting flow Theory and Practice. A John Wiley& Sons Publication:75~78
    114 Y. R. Goh, Y. B. Yang, R. Zakaria, R. G. Siddall, V. Nasserzadeh, J. Swithenbank. Development of Incinerator Bed Model for Municipal Solid Waste Incineration. Combust. Sci. and Tech. 2001 ,162:37~58
    115 L. D.斯穆特, P. J.史密斯等著.傅维标,卫景彬,张燕屏译.周力行校.煤的燃烧与气化.科学出版社. 1992: 75
    116 M. L. Hobbs, P. T. Radulovic, L. D. Smoot. Combustion and Gasification of Coals inFixed-Beds. Prog. Energy Combust. Sci. 1993, 19:505~586
    117张颉.旋流燃烧煤粉锅炉燃烧过程和NO排放的数值模拟研究哈尔滨工业大学工学硕士学位论文. 2003: 7-12
    118林黎明. PHOENICS计算软件及微气泡减阻的数值模拟.武汉理工大学硕士论文. 2002: 30
    119杨春秋,胡成秋.焦油渣利用的研究.燃料与化工. 2007, 35(4): 39-40
    120刘志全,李金惠,聂永丰.中国危险废物污染防治技术发展趋势与政策分析.中国环保产业. 2000, 12: 15-17
    121金重阳,吕广船,彭万寿.危险废物热处理技术评述.环境保护科学. 1997, 23(2): 31-32
    122王义丹.煤粉再燃与NH3非催化联合还原NOx过程的试验研究.哈尔滨工业大学工学硕士学位论文. 2009.7
    123 GB 18484-2001,危险废物焚烧污染控制标准.北京,国家环境保护总局,国家质量监督检验检疫总局, 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700