用户名: 密码: 验证码:
PDA的制备及对水中有机污染物的絮凝去除
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
邻苯二甲酸酯类化合物(PAEs)作为一种重要的化工原料,广泛应用于各个行业当中,导致了对环境的普遍污染。由于它还具有干扰人类及动物的内分泌系统的功能,能够损害生殖和发育,因此也被称为内分泌干扰物,环境激素。这类化学物质的性质很稳定,且在自然界中具有持久性、累积性、难自然降解的特点。当前作为城市水源水的许多江河、湖泊受到PAEs的普遍污染,如果不能将其控制在适当的浓度以下,将会对人类和动物的健康产生威胁,因此研究去除水体中PAEs的有效方法和技术已经变得十分迫切、必要。腐殖酸类物质(humic acid,HA)是天然水体中一类重要的有机物,也是天然有机物的重要组成成分,由于其特殊的化学结构和性质,也会对人体和水生生物产生影响,因此研究其去除方法、机理对于保障饮用水安全是必不可少的。
     论文首先对常规絮凝法能否有效去除水体中的PAEs类物质进行了大量探讨实验,从而论证了应用絮凝法能够有效去除环境激素PAEs类物质,进而有针对性的合成了高性能的聚二甲基二烯丙基氯化铵-丙烯酰胺共聚物(PDA),并对得到的产物进行了表征,分析验证了PDA的性质。采用近红外反射光谱法,通过建立模型提出了测定PDA阳离子度和AM单体残留量的新方法。最后将制得的PDA产物应用于处理水体中PAEs类物质和HA,采用单因素实验对去除条件进行了优化,并研究其去除机理。
     论文的主要研究结论如下:
     (1)采用絮凝法去除水体中PAEs类物质时,目标物为邻苯二甲酸二甲酯(DMP)和邻苯二甲酸二乙酯(DEP),发现有机絮凝剂PDMDAAC和CPAM对其有很好的去除效果,使用PDMDAAC时,对DMP的最大去除率可达到63.8%;使用自制CPAM时,对DMP的最大去除率可达到97.3%;当PDMDAAC与CPAM复合使用时,其中PDMDAAC为主絮凝剂,CPAM为助凝剂,对DMP的最大去除率可达到99.8%;PDMDAAC与CPAM对环境激素DEP也有很好的去除效果,最大去除率分别为49.2%、88.3%。采用主成分分析法得出:絮凝过程中对絮凝剂去除效果的影响依次为絮凝剂投加量> pH >搅拌时间>沉降时间。
     (2)采用反相乳液聚合法,以二甲基二烯丙基氯化铵(DMDAAC)与丙烯酰胺(AM)单体为原料,研究了引发体系、引发剂用量、引发剂质量比、单体配比、油水体积比、体系pH值、EDTA加入量、反应时间、氮气通入时间对特性粘度的影响,确定了较优的制备工艺条件。优化条件为:选用引发剂NaHSO_3与K_2S_2O_8为引发体系,氧化还原引发剂的最佳用量为0.03%,其中NaHSO_3与K_2S_2O_8质量比为5:3 ,单体DMDAAC与AM质量比为2:8,油水体积比为1:1.2,体系最佳pH值为8.0,1.0mol/L的EDTA加入量为0.6mL,反应时间为4.0h,通氮时间为40.0min。用红外光谱(FTIR)对自制产物的结构进行了表征,差热分析表明,产物常温下较稳定,不易发生分解,扫描电镜分析表明,PDA产物的表面结构具有大量相互交叉的蘑菇状结构,表面凸起较多,具有很强的吸附、架桥能力。
     (3)利用化学法测定出产物PDA的阳离子度和残留AM单体的含量,再通过对PDA样品进行近红外反射光谱扫描,获得近红外光谱图,对图谱进行分析,采用小波分析法对光谱进行降噪处理,采用RBF神经网络的数学转换方法建立近红外反射光谱(NIRS)定标模型,建立PDA阳离子度的近红外预测模型,采用偏最小二乘法建立PDA中AM单体残留量的预测模型。
     (4)采用强化絮凝法,将自制的PDA用于处理水体中PAEs时,发现去除效果与PDA投加量、溶液初始pH值、搅拌时间、沉降时间、PDA特性粘度等因素有关,而且自制絮凝剂PDA对PAEs类物质具有较好的去除效果。
     (5)将PDA用于去除水体中HA,采用单因素分析法研究各个影响条件对去除效果的影响,取出絮凝后的絮体照片,通过显微镜拍摄絮体照片,采用分形维数法研究絮凝机理。
Phthalate esters (PAEs) is such an important chemical raw material that is commonly present in environmental medium, which is also called endocrine disruptors or environmental hormones. Although the PAEs has been widely used in many fields, the material has posed a potential threat to human or animal endocrine systems, and thus a toxic to reproduction and development. Furthermore, continuing pollution of the urban source water from PAEs has also posed a lot of attention. Because PAEs was generally characterized by stability, cumulative, durability and resistant to degradation under common condition, we should carry out more effective measures on preventing the urban source water from PAEs pollution. Humic acid is an important class of natural organic matter in water, and also an important component of natural organic matter, due to its unique physical and chemical properties, It could affect Human and aquatic life, so it is essential to do the research for removing it.
     In this study, firstly, coagulation-flocculation experiments were carried out in an attempt to obtain higher removal efficiency of phthalate esters in water. Secondly, the organic coagulant diallyl dimethyl ammonium chloride and acrylamide (PDA) was grafted by free radical polymerisation of acrylamide monomer (AM) onto the cationic monomer dimethyl diallyl ammonium chloride (DMDAAC). Thirdly, the synthesized PDA was characterized and the properties of which were analyzed. Fourthly, a new method to detect the residual monomers AM concentration in PDA was proposed using PDA near infrared spectroscopy. Lastly, coagulation-flocculation process was applied to the removal of PAEs and Hunic Acid in water with the prepared product, which also included the investigation of the coagulation-flocculation mechanism, and parameters affecting the coagulation-flocculation behavior.
     The main conclusions and contents in the study were as following:
     (1) Coagulation-flocculation process was carried out for the removal of the PAEs containing dimethyl phthalate (DMP) and diethyl phthalate (DEP) in water, and a comparison was made using the polymeric aluminum chloride (PAC), polymeric ferric sulfate(PFS), poly diallyl dimethyl ammonium chloride(PDMDAAC) and industry CPAM. In addition, parameters affecting the coagulation-flocculation process such as coagulant dosage, pH, mixing and settling time, were investigated. The results showed that the organic coagulant PDMDAAC, industry CPAM and self-made CPAM exhibited higher coagulation efficiency than inorganic coagulant: PAC and PFS. In addition, the composite coagulant (PDMDAAC/CPAM) presented better coagulation effect on treatment efficiency than individual coagulant (PDMDAAC). Effects of the operational variables on the treatment efficiency follow dosage were > pH > mixing time > settling time order using the principal component analysis.
     (2) Cationic polyacrylamide (PDA) was prepared by the copolymerization of a cationic monomer dimethyldiallylammonium chloride (DMDAAC) with acrylamide (AM) through inverse emulsion polymerization, where Span-80 and Tween-80 were used as emulsifier and liquid paraffin respectively with stage addition into the reaction system. The effect of reaction variables such as oxidant/reductant (NaHSO_3/K_2S_2O_8) and DMDAAC /AM mass ratio, pH value, dosage of EDTA, temperature, reaction time, nitrogen blowing time were investigated in detail. The optimum conditions used as followed: the NaHSO_3/K_2S_2O_8 mass ratio was 5:3, the DMDAAC /AM was 2:8, the pH value was was 8.0, the dosage of EDTA was 0.6mL, the reaction time was 5.0h, nitrogen blowing time was 40.0min.
     (3) Near infrared reflectance spectroscopy(NIRS) was used as a rapid and accurate method to determine the residul of acrylamide monomer in the product of diallyl dimethyl ammonium chloride and acrylamide. 38 of samples were self-prepared in the laboratory and their near infrared spectroscopy were scanned, among which, seven bands were investigated and the characteristic peak intensity in each band was as the independent variables, where the residual AM concentration was considered as the dependent variable. Also, partial least squares (PLS) method was used to establish the NIRS calibration modeling. The characteristic peaks and the entire spectrum segment as the input layer neurons in radical basis function (RBF) were investigated for establishing the mathematical conversion NIRS calibration modeling. For reducing the NIRS spectrum noise, the wavelet analysis was used as pre-treatment process. The measured value was determined by using precipitation titration and a comparison was made between the simulated and measured value. The result showed that the calibration model: PLS modeling and (RBF neural network) established in this paper exhibited a remarkable feasibility to predict the cationic degree of PDA based on the near infrared spectroscopy.
     (4) Coagulation-flocculation was carried out for treatment of water containing the phthalic acid ester(PAEs) using the organic coagulant PDA. Parameters affecting the coagulation-flocculation process such as coagulant dosage, pH value, mixing and settling time, were measured. The result showed that PDA has better flocculation efficiency in comparison to inorganic coagulant.
     (5) Humic acid in water was treated with PDA. The results suggested the impact of some factors on the treatment efficiency of humic acid. In addition, the fractal dimension of the flocs generated after the coagulation-flocculation was investigated. In general, the fractal dimension ranges from 1.10 ~ 1.55. The flocs' structure presented the same fractal characteristics with strong self-similarity. It showed a positive correlation between the humic acid removal and the fractal dimension of the formed flocs.
引文
[1]田秉晖,潘纲,栾兆坤.阳离子聚电解质强化絮凝去除有机污染物的化学成因[J].化学进展, 2007, 19(2/3): 205-211.
    [2]刘先军,张晶,邵兵,尹杰.固相萃取-液相色谱串联质谱法测定城市污水中他莫昔芬和来曲唑[J].分析化学, 2010, 38(2): 214-218.
    [3]陆金仁,王修林,单宝田,胡海燕,汪严明.采油污水生物处理技术[J].环境污染治理技术与设备, 2004, 5(11): 65-69.
    [4]李彦文,莫测辉,赵娜,张瑞京,亦如翰.高效液相色谱法测定水和土壤中磺胺类抗生素[J].分析化学, 2008, 37(7): 954-958.
    [5]蒋凤华,杨黄浩,黎先春,王小如,王修林,殷月芬.胶州湾海水溶解有机物三维荧光特征研究[J].光谱学与光谱分析, 2007, 27(9): 1765-1769.
    [6] M. Lu, Z. Zhang, W. Yu, W. Zhu. Biological treatment of oilfield-produced water: A field pilot study[J]. International Biodeterioration & Biodegradation, 2009, 63(3): 316-321.
    [7] X. Qiao, Z. Zhang, J. Yu, X. Ye. Performance characteristics of a hybrid membrane pilot-scale plant for oilfield-produced wastewater[J]. Desalination, 2008, 225(1-3): 113-122.
    [8] X. Zhao, L. Liu, Y. Wang, H. Dai, D. Wang, H. Cai. Influences of partially hydrolyzed polyacrylamide (HPAM) residue on the flocculation behavior of oily wastewater produced from polymer flooding[J]. Separation and Purification Technology, 2008, 62(1): 199-204.
    [9]周松英. DnBP同系物共基质体系生物降解性研究[M].广州,中山大学硕士学位论文, 2004: 1-2.
    [10]陈惠,汪瑗,朱若华.两种色谱法对塑料食品包装袋中邻苯二甲酸酯类化合物的分析[J].分析实验室, 2006, 25(4): 45-49.
    [11] J. C. Corton, P. J. Lapinskas. Peroxisome proliferator-activated receptors: mediators of phthalate ester-induced effects in the male reproductive tract[J]. Toxicological Sciences, 2005, 83(1): 4-17.
    [12] R. M. David. Proposed mode of action for in utero effects of some phthalate esters on the developing male reproductive tract[J]. Toxicologic Pathology, 2006, 34(3): 209-219.
    [13] T. Lovekamp-Swan, B. J. Davis. Mechanisms of phthalate ester toxicity in the female reproductive system[J]. Environmental Health Perspectives, 2003, 111(2): 139-145.
    [14] R. S. Ge, G. R. Chen, C. Tanrikut, M. P. Hardy. Phthalate ester toxicity in Leydig cells: developmental timing and dosage considerations[J]. Reproductive Toxicology, 2007, 23(3): 366-373.
    [15] T. F. Parkerton, W. J. Konkel. Application of quantitative structure-activity relationships for assessing the aquatic toxicity of phthalate esters[J]. Ecotoxicology and Environmental Safety, 2000, 45(1): 61-78.
    [16]李悦,王鹏,赵宝秀. TiO2/NiPECO体系降解DMP的动力学和光电协同作用研究[J].环境工程学报, 2009, 3(2): 293-297.
    [17]李魁晓,顾继东.环境激素邻苯二甲酸二丁基酯的好氧微生物降解[J].海洋环境科学, 2006, 25(1): 7-9.
    [18] C. A. Stales, D. R. Peterson, T. F. Parkerton, W. J. Adams. The environmental fate of phthalate esters: a literature review[J]. Chemosphere, 1997, 35(4): 667-749.
    [19] P. Foster, E. Mylchreest, K. Gaido, M. Sar. Effects of phthalate esters on the developing reproductive tract of male rats[J]. Human Reproduction Update, 2001, 7(3): 231-235.
    [20]曾巧云,莫测辉蔡全英,王伯光.菜心对邻苯二甲酸酯(PAEs)吸收途径的初步研究[J].农业工程学报, 2005, 21(8): 137-141.
    [21]吴平谷,韩关根,王惠华,赵莹.饮用水中邻苯二甲酸酯类的调查[J].环境与健康杂志, 1999, 16(6): 338-340.
    [22]舒为群,曹佳.三峡库区水环境中持久性有毒物质污染及其对人群健康危害的研究[J].持久性有机污染物论坛2006暨第一届持久性有机污染物全国学术研讨会论文集, 2006: 297-299.
    [23]曹波,任谦,崔志鸿,李鹏,舒为群,曹佳.嘉陵江C市段源水中有机污染物定性研究[J].四川环境, 2006, 25(6): 78-80.
    [24]罗固源,杜娴,许晓毅,蔡文良,曹佳,舒为群.邻苯二甲酸酯在长江重庆段水体的概率风险分析[J].长江流域资源与环境, 2011, 20(1): 79-83.
    [25]郑和辉,钱城.邻苯二甲酸酯降解状况研究进展[J].中国公共卫生, 2006, 22(2): 228-230.
    [26]李改枝,李桂芝.邻苯二甲酸二甲酯在内蒙古粘土中的吸附特性[J].烟台师范学院学报, 2005, 21(2): 130-132.
    [27]韩关根,吴平谷,王惠华,马冰洁,方跃强.水中邻苯二甲酸酯类化合物去除方法实验研究[J].中国公共卫生, 2003, 19(2): 199-200.
    [28]郭栋生,李艳霞,赵艳红,周建军.活性炭吸附黄河水中邻苯二甲酸二丁酯、壬基酚和双酚A的研究[J].给水排水, 2007, 33(1): 30-33.
    [29] A. Yamaguchi, T. Awano, K. Oyaizu, M. Yuasa. Surface-Modified Mesoporous Silicas as Recyclable Adsorbents of an Endocrine Disrupter, Bisphenol A[J]. Journal of Nanoscience and Nanotechnology, 2006, 6(6): 1689-1694.
    [30] C. A. Stales, D. R. Peterson, T. F. Parkerton, W. J. Adams. The environmental fate of phthalate esters: a literature review[J]. Chemosphere, 1997, 35(4): 667-749.
    [31]程桂荪.邻苯二甲酸酯的生物降解[J].环境科学, 1986, 7(6): 25-29.
    [32]叶张荣,夏凤毅,马鲁铭. 4种邻苯二甲酸酯的降解及其降解菌株生长特性的研究[J].江苏工业学院学报, 2004, 16(3): 34-37.
    [33]曾锋,傅家谟,盛国英,杨慧芳.不同菌种的微生物对邻苯二甲酸二乙酯生物降解性的比较[J].环境科学, 2000, 21(1): 62-65.
    [34] B. Chang, C. Yang, C. Cheng, S. Yuan. Biodegradation of phthalate esters by two bacteria strains[J]. Chemosphere, 2004, 55(4): 533-538.
    [35] X. R. Xu, H. B. Li, J. D. Gu. Biodegradation of an endocrine-disrupting chemical di-n-butyl phthalate ester by Pseudomonas fluorescens B-1[J]. International Biodeterioration & Biodegradation, 2005, 55(1): 9-15.
    [36] M. Muneer, J. Theurich, D. Bahnemann. Titanium dioxide mediated photocatalytic degradation of 1, 2-diethyl phthalate[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 143(2-3): 213-219.
    [37]芮旻,高乃云,徐斌,赵建夫,乐林生,吴今明. UV、H2O2、O3及其联用工艺对水中DMP的去除效果和降解机理分析[J].环境科学学报, 2005, 25(11): 1457-1463.
    [38] G. P. Yang, X. K. Zhao, X. J. Sun, X. L. Lu. Oxidative degradation of diethyl phthalate by photochemically-enhanced Fenton reaction[J]. Journal Of Hazardous Materials, 2005, 126(1-3): 112-118.
    [39] G. Mailhot, M. Sarakha, B. Lavedrine, J. Caceres, S. Malato. Fe (III)-solar light induced degradation of diethyl phthalate (DEP) in aqueous solutions[J]. Chemosphere, 2002, 49(6): 525-532.
    [40] B. Xu, N. Y. Gao, X. F. Sun, S. J. Xia, M. Rui, M. O. Simonnot, C. Causserand, J. F. Zhao. Photochemical degradation of diethyl phthalate with UV/H2O2. Journal of Hazardous Materials, 2007, 139(1): 132-139.
    [41] C.T. Kim, E.S. Hwang, H.J. Lee. An improved LC-MS/MS method for the quantitation of acrylamide in processed foods[J]. Food Chemistry, 2007, 101(1): 401-409.
    [42] K. L. Jones, C. R. O’Melia. Protein and humic acid adsorption onto hydrophilic membrane surfaces: effects of pH and ionic strength[J]. Journal Of Membrane Science, 2000, 165(1): 31-46.
    [43] A. B. M. Giasuddin, S. R. Kanel, H. Choi. Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal[J]. Environmental Science & Technology, 2007, 41(6): 2022-2027.
    [44]张文燕.混凝过程中腐殖酸与铝盐的化学反应特性研究[M].西安,西安建筑科技大学, 2008: 8-9.
    [45]唐秀华,吴星五.引用水源中有机物的危害及去除方法[J].进水技术, 2003, 22(2): 7-10.
    [46] X. Wang, S. Tao, B. Xing. Sorption and competition of aromatic compounds and humic acid on multiwalled carbon nanotubes[J]. Environmental Science & Technology, 2009, 43(16): 6214-6219.
    [47] X. Feng, A. J. Simpson, M. J. Simpson. Investigating the role of mineral-bound humic acid in phenanthrene sorption[J]. Environmental Science & Technology, 2006, 40(10): 3260-3266.
    [48] M. Fukushima, K. Tatsumi, S. Nagao. Degradation characteristics of humic acid during photo-Fenton processes[J]. Environmental Science & Technology, 2001, 35(18): 3683-3690.
    [49] H. Zheng, X. Sun, Q. He, K. Liang, P. Zhang. Synthesis and trapping properties of dithiocarbamate macromolecule heavy-metal flocculants[J]. Journal Of Applied Polymer Science, 2008, 110(4): 2461-2466.
    [50] F. Yang, G. Li, Y. G. He, F. X. Ren, G. Wang. Synthesis, characterization, and applied properties of carboxymethyl cellulose and polyacrylamide graft copolymer[J]. Carbohydrate Polymers, 2009, 78(1): 60~69.
    [51] W. Lan, H. Qiu, J. Zhang, Y. Yu, K. Yang, Z. Liu, G. Ding. Characteristic of a novel composite inorganic polymer coagulant-PFAC prepared by hydrochloric pickle liquor[J]. Journal of Hazardous Materials, 2009, 162(1): 174-179.
    [52] Y. B. Zeng, J. B. Park. Characterization and coagulation performance of a novel inorganic polymer coagulant-poly-zinc-silicate-sulfate[J]. Colloid Surface A: Physicochemical and Engineering Aspects, 2009, 334(1-3): 147-154.
    [53]郑怀礼,李凌春,蔚阳,唐雪,杨铀,张胜涛.离子聚丙烯酰胺污泥脱水絮凝剂的制备[J].化工进展, 2008, 27(4): 564-568.
    [54]郑怀礼,谢礼国,高旭,谭红芳,杨波,吉方英.以TEOS为硅源的聚硅硫酸铁的制备与除藻性能的研究[J].土木建筑与环境工程, 2009, 31(6): 102-106.
    [55] J. Vaxelaire, P. Cezac. Moisture distribution in activated sludges: a review[J]. Water Research, 2004, 38(9): 2215-2230.
    [56]王丽坤,王启山,孙晓明,杨健康,刘艳芳.壳聚糖助凝对三氯化铁絮凝形态和强度的影响[J].中国环境科学, 2009, 29(7): 718-721.
    [57]秦梅枝,王晶.环境生物技术的研究现状与发展趋势[J].内蒙古环境保护, 1997, 9(3): 15-17.
    [58]要玲.微生物絮凝剂的研究及其应用[J].河北化工, 2010, 33(10): 11-13.
    [59]刘秉涛,姜安玺,李瑞涛.给水混凝处理中壳聚糖的助凝作用和机理[J].哈尔滨工业大学学报,2008,40(12):1945-1948.
    [60]郑怀礼,唐雪,沈烈翔,高旭,王薇,尤艳飞.阳离子P(AM-DAC)污泥脱水剂的合成、表征与应用[J].重庆大学学报, 2010, 33(7): 115-122.
    [61] D. Liu, F. T. Li, B. R. Zhang. Removal of algal blooms in freshwater using magnetic polymer[J]. Water Science and Technology, 2009, 59(6), 1085-1091.
    [62] J. H. Barajas, D. Hunkeler, C. Wandrey. Polyacrylamide Copolymeric Flocculants with Homogeneous Branching: Hetereophase Synthesis and Characterization[J]. Polymer News, 2004, 29(8): 239-246.
    [63] K. Azlan, W.N. Wan Saime, L. Lai Ken. Chitosan and chemically modified chitosan beads for acid dyes sorption[J]. Journal of Environmental Sciences, 2009, 21(3): 296-302.
    [64] S. Simon, B. Pairo, M. Villain, P. D'Abzac, E.V. Hullebusch, P. Lens, G. Guibaud. Evaluation of size exclusion chromatography (SEC) for the characterization extracellular polymeric substances(EPS) in anaerobic granular sludges[J]. Bioresource Technology, 2009, 100(24): 6258~6268.
    [65]陈平.混凝剂的开发进展[J].污染防治技术, 2009, 19(1): 20-22.
    [66]张光华.水处理化学品制备与应用[M].中国石化出版社, 2003.
    [67]袁宗宣,郑怀礼,舒型武.混凝科学与技术的进展[J].重庆大学学报, 2001(2):143-147.
    [68]贺晓唯,毕诗文,朱龙,门贺,文卫华,赵美娟.可溶性聚硅酸铝铁的制备及其在废水处理中的应用[J].分子科学学报, 2006, 22(3): 200-205.
    [69] B. Y. Gao, Y. Wang, Q. Y. Yue, et al. Color removal from simulated dye water and actual textile wastewater using a composite coagulant prepared by ployferric chloride and lydimethyldially lammonium chloride. separation and purification technology, 2007, 54(2): 157-163.
    [70]白强.无机高分子混凝剂聚合氯化铁的制备与应用[J].技术与工程应用, 2009, 38(4): 38-40.
    [71]刘兴洁,张光华.有机/无机高分子絮凝剂在制革废水处理中的应用综述[J].中国皮革, 2005, 34(1): 16-18.
    [72] H. L. Zheng, Y. Q. Wu. Study on Flocculants performance of High Effective Fashion Composite Flocculants, PFS-CSM[J]. Journal of Central South University of Technology, 2007, 14(suppl3): 282-286.
    [73] H. L. Zheng, Y. Y, Y. Q. Wu, L. T. Li, L. G. Xie. Study on effects of compound flocculants on civil sludge dewatering[J]. Journal of Central South University of Technology, 2007, 14(suppl3): 303-307.
    [74]吴幼权,郑怀礼,张鹏,焦世珺,杨铀.复合絮凝剂CAM-CPAM的制备及污泥脱水性能研究[J].环境科学研究, 2009, 22(5): 535-539.
    [75]申娟娟,刘根起,宋金月,杨晶华,程永清.有机高分子絮凝剂的研究现状[J].材料开发与应用, 2011, 26(2): 96-99.
    [76] H. Ai, F. Wang, Q. Yang, F. Zhu, C. Lei. Preparation and biological activities of chitosan from the larvae of housefly, Musca domestica[J]. Carbohydrate Polymers, 2008, 72(3): 419-423.
    [77]高维,丁文平.低分子量壳聚糖的制备及其应用研究[J].武汉工业学院学报, 2007, 26(3): 28-31.
    [78] R. Dolphen, N. Sakkayawong, R. Thiravetyan, W. Nakbabpote. Adsorption of Reactive Red 141 from wastewater onto modified chitin[J]. Journal of Hazardous Materials, 2007, 145(1-2): 250-255.
    [79] P. Opanasopit, M. Petchsangsai, T. Rojanarata, T. Ngawhirunpat, W. Sajomsang, U. Ruktanonchai. Methylated N-(4-N, N-dimethylaminobenzyl) chitosan as effective gene carriers: Effect of degree of substitution[J]. Carbohydrate Polymers, 2009, 75(1): 143-149.
    [80] N. Sankararamakrishnan, R. Sanghi. Preparation and characterization of a novel xanthated chitosan[J]. Carbohydrate Polymers, 2006, 66(2): 160-167.
    [81] W. Wanngah, A. Kamari, Y. Koay. Equilibrium and kinetics studies of adsorption of copper (II) on chitosan and chitosan/PVA beads[J]. International Journal of Biological Macromolecules, 2004, 34(3): 155-161.
    [82] G. Z. Kyzas, M. Kostoglou, N. K. Lazaridis. Copper and chromium (VI) removal by chitosan derivatives-equilibrium and kinetic studies[J]. Chemical Engineering Journal, 2009, 152(2-3): 440-448.
    [83]张占业,穆环珍,黄衍初,刘晨.木质素及其改性物在环境污染防治中的应用研究[J].农业环境科学学报, 2006, 25(增刊): 360-364.
    [84]周明松,邱学青,杨东杰.木质素和萘系分散剂在煤水界面的吸附性能[J].高等学校化学学报, 2008, 29(5): 987-992.
    [85]赵松梅,刘昆元.二甲基二烯丙基氯化铵/丙烯酰胺共聚物的合成[J].北京化工大学学报, 2005, 32(4): 29-32.
    [86] J. Rosen, A. Nyman, K.E. Hellenas. Retention studies of acrylamide for the design of a robust liquid chromatography-tandem mass spectrometry method for food analysis[J]. Journal of chromatography, 2007, 1172 (1): 19-24.
    [87] C.T. Kim, E.S. Hwang, H.J. Lee. An improved LC-MS/MS method for the quantitation of acrylamide in processed foods[J]. Food Chemistry, 2007, 101(1): 401-409.
    [88]郑怀礼,李林涛,蒋绍阶,刘君玉,刘宏,高旭. CPAM调制浓缩污泥脱水的影响因素及其机理研究[J].环境工程学报, 2009, 3(6): 1099-1102.
    [89]申迎华,张爱琴,武根壮,张向英.聚合方法对一种正离子聚丙烯酰胺结构与性能的影响[J].高分子学报, 2008, (6): 561-566.
    [90]申迎华,王斌,王志忠.有机高分子絮凝剂在污泥脱水中的应用[J].高分子材料科学与工程, 2004, 20(5): 55-58.
    [91]安仲涛,李清彪,何宁,陈仁彬,江新德,杨坤.谷氨酸棒杆菌合成生物絮凝剂分批发酵过程的动力学模拟[J].化工学报, 2009, 60(12): 3071-3076.
    [92]马放,李淑更,金文标,杨基先.微生物絮凝剂的研究现状及发展趋势[J].工业用水与废水, 2002, 33(1): 7-9.
    [93]张东晨,张明旭,刘志勇,王涛.煤炭絮凝微生物球红假单胞菌光普及电镜研究[J].中国矿业大学学报, 2010, 39(4): 546-549.
    [94]孟路,杨基先,马放,庞长泷,金超.复合型生物絮凝剂处理低温低浊水影响因素[J].哈尔滨工业大学学报, 2009, 41(8): 42-45.
    [95]马放,张惠文,李大鹏,魏利,侯宁.以稻草秸秆为底物制取复合型生物絮凝剂的研究[J].中国环境科学, 2009, 29(2): 196-200.
    [96]冯雅丽,王宏杰,李浩然,杜竹纬,罗小兵.一株产絮凝剂硅酸盐细菌的筛选及其絮凝特性[J].中南大学学报(自然科学版), 2008, 39(5): 934-939.
    [97]李凌春.聚丙烯酰胺(PAM)的共聚合成及表征应用[M].重庆,重庆大学硕士学位论文, 2008: 14-15.
    [98]赵旭.强化混凝-溶气气浮(DAF)工艺去除水中腐殖酸的研究[M].北京,北京林业大学硕士学位论文, 2004: 12-13.
    [99]张跃军,皆可臻,邢云杰,刘瑛.几种阳离子度PDA共聚物的合成[J].精细化工, 2007, 24(6): 592-595.
    [100]张跃军,顾学芳,陈伟忠.阳离子絮凝剂PDA的合成与应用研究—对废纸再生造纸废水的处理研究[J].工业水处理, 2001, 21(2): 12-15.
    [101]赵松梅,刘昆元.二甲基二烯丙基氯化铵/丙烯酰胺共聚物的合成[J].北京化工大学学报, 2005, 32(4): 29-32.
    [102]于兵川,吴洪特,王湘平.二甲基二烯丙基氯化铵-丙烯酰胺共聚物的结构表征[J].化工进展, 2003, 22(7): 731-734.
    [103]皆可臻,张跃军.二甲基二烯丙基氯化铵和丙烯酰胺共聚物的合成研究进展[J].精细化工, 2008, 25(8): 799-805.
    [104]王景霞,范晓东,秦华宇.二甲基二烯丙基氯化铵-丙烯酰胺共聚物的合成与结构表征[J].油田化学, 2003, 20(1): 83-85.
    [105]吴全才. PDA阳离子型絮凝剂合成及应用的研究[J].工业水处理, 1997, 17(4): 40-42.
    [106]魏鑫,钟宏.反相乳液聚合的研究进展[J].化学与生物工程, 2007, 24(12): 12-14.
    [107]李晓,刘戈,袁惠根,张卫英.丙烯酰胺及丙烯酸反相微乳液聚合体系电导行为[J].福州大学学报, 2000, 28(4): 91-94.
    [108]孟昆,赵金波,张兴英.反相乳液聚合制备DMDAAC/AM阳离子型共聚物[J].北京化工大学学报, 2004, 31(5): 106-109.
    [109]李朝艳,武玉民,王玉鹏.二甲基二烯丙基氯化铵-丙烯酰胺共聚物反相乳液合成工艺研究[J].化学工业与工程技术, 2004, 25(5): 20-25.
    [110] L. K. Lawerence, Y. L. Roger. Water soluble cationic copolymers and their use as flocculants[P]. US: 529-699. 1995-04-18.
    [111]李爱飞.速溶粉状(PDA)制备工艺初步研究[M].南京,南京理工大学硕士学位论文, 2008: 3-4.
    [112]张琰.聚(二甲基二烯丙基氯化铵-丙烯酰胺)的反相乳液合成、表征及性能研究[M].南京,南京理工大学硕士学位论文, 2005: 8-9.
    [113]罗固源,李平,许晓毅,梁艳,蔡文良,杜娴,曹佳,舒为群.重庆主城区流域邻苯二甲酸酯生态风险评价[J].环境科学与管理, 2009, 34(4): 166-169.
    [114] I. Shih, Y. Van, L. Yeh, H. Lin, Y. Chang. Production of a biopolymer flocculant from Bacillus licheniformis and its flocculation properties[J]. Bioresource Technology, 2001, 78(3): 267-272.
    [115] D. Wang, W. Sun, Y. Xu, H. Tang, J. Gregory. Speciation stability of inorganic polymer flocculant-PACl[J] Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 243(1-3): 1-10.
    [116] R.J. Zemaitaitiene, E. Zliobaite, R. Klimaviciute, A. Zemaitaitis. The role of anionic substances in removal of textile dyes from solutions using cationic flocculant[j]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 214(1-3), 37-47.
    [117] D. Zeng, J. Wu, J.F. Kennedy. Application of a chitosan flocculant to water treatment[J]. Carbohydrate Polymers, 71(1): 135-139.
    [118] G. Sen, R. Kumar, S. Ghosh, S. Pal. A novel polymeric flocculant based on polyacrylamide grafted carboxymethylstarch[J]. Carbohydrate Polymers, 2009, 77(4): 822-831.
    [119] L. J. Wang, J. P. Wang, S. J. Zhang, Y. Z. Chen, S. J. Yuan, G. P. Sheng, H. Q. Yu. A water-soluble cationic flocculant synthesized by dispersion polymerization in aqueous salts solution[J]. Separation and Purification Technology, 2009, 67(3): 331-335.
    [120] D. R. Burke, J. Anderson, P. C. Gilcrease, T. J. Menkhaus. Enhanced solid-liquid clarification of lignocellulosic slurries using polyelectrolyte flocculating agents[J]. Biomass and Bioenergy, 2011, 35(1): 391-401.
    [121] B. Wang, Y. Zhang, C. Miao. Preparation of cationic chitosan-polyacrylamide flocculant and its properties in wastewater treatment[J]. Journal of Ocean University of China (English Edition), 2011, 10(1): 42-46.
    [122]高廷耀,陈洪斌,夏四清,周增炎.我国水污染控制的思考[J].给水排水, 2006, 32(5):9-13.
    [123] J. L. Fairey, G. E. Speitel, L. E. Katz. Impact of Natural of Organic Matter on Monochloramine Reduction by Granular Activated Carbon:the Role of Porosity and Electrostatic Surface Properties[J]. Environmental Seienee&Teehnology, 2006, 40(13): 4268-4273.
    [124] E. Psillakis, D. Mantzavinos, N. Kalogerakis. Monitoring the sonochemical degradation of phthalate esters in water using solid-phase microextraction[J]. Chemosphere, 2004, 54(7): 849-847.
    [125] E. Ayranci, E. Bayram, Adsorption of phthalic acid and its esters onto high-area activated carbon-cloth studied by situ UV-spectroscopy[J]. Journal of Hazardous Materials ,2005,122(1-2):147-153.
    [126]程爱华,王磊,王旭东,林锋,张莉,张睿.纳滤膜去除水中微量邻苯二甲酸酯的研究[J].水处理技术, 2007, 33(11): 14-16.
    [127]韩玥.基于主成分分析的冲击地压影响因素研究[J].中国煤炭, 2010, 36(8): 101-104.
    [128] P. S. Rao, S. Subrahmanya, D. Sathyanarayana. Inverse emulsion polymerization: a new route for the synthesis of conducting polyaniline[J]. Synthetic Metals, 2002, 128(3): 311-316.
    [129] A. Menner, R. Powell, A. Bismarck. Open porous polymer foams via inverse emulsion polymerization: Should the definition of high internal phase (ratio) emulsions be extended[J]. Macromolecules, 2006, 39(6): 2034-2035.
    [130] Y. Chen, Z. Qian, Z. Zhang. Novel preparation of magnetite/polystyrene composite particles via inverse emulsion polymerization[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 312(2-3): 209-213.
    [131]王新龙,周环,张跃军.反相乳液聚合法制备PDA及其性能[J].功能高分子学报, 2005, 18(4): 660-664.
    [132] R. Losada, C. Wandrey. Copolymerization of a cationic double-charged monomer and electrochemical properties of the copolymers. Macromolecules[J]. 2009, 42(9): 3285-3293.
    [133] J. Barajas, D. Hunkeler, C. Wandrey. Polyacrylamide Copolymeric Flocculants with Homogeneous Branching: Hetereophase Synthesis and Characterization[J]. Polymer News, 2004, 29(8): 239-246.
    [134]郭俊先,饶秀勤,成芳,应义斌,康玉国,李付堂.近红外光谱用于皮面杂质含量预测和分类的研究[J].光谱学与光谱分析, 2010, 30(3): 649-653.
    [135] A. Stobiecka, H. Radecka, J. Radecki. Novel voltammetric biosensor for determining acrylamide in food samples[J]. Biosensors and Bioelectronics, 2007, 22(9-10): 2165-2170.
    [136] A. Gaitan-Jurado, M. Garcia-Molina, F. Pena-Rodriguez, V. Ortez-Somovilla. Near infrared applications in the quality control of seed cotton[J]. Journal Of Near Infrared Spectroscopy, 2008, 16(4): 421-429.
    [137]陈全胜,郭志明,赵杰文,欧阳琴.基于净分析物预处理算法的绿茶中儿茶素的近红外光谱定量分析[J].红外与毫米波学报, 2009, 28(5): 357-361.
    [138] J. Rosen, A. Nyman, K. E. Hellenas. Retention studies of acrylamide for the design of a robust liquid chromatography-tandem mass spectrometry method for food analysis[J]. Journal of chromatography, 2007,1172(1): 19-24.
    [139] C. T. Kim, E. S. Hwang, H. J. Lee. An improved LC-MS/MS method for the quantitation of acrylamide in processed foods[J]. Food Chemistry, 2007, 101(1): 401-409.
    [140]中华人民共和国国家标准-聚丙烯酰胺中残留丙烯酰胺含量测定方法溴化法. GB12005.3-89(标准号: GB12005.3-89)
    [141]江艳,武培怡.近红外光谱在蛋白质和含酰胺基团聚合物研究中的应用[J].化学进展, 2008, 20(12): 2021-2033.
    [142]张志勇,邓元勇,王东光,孙英姿,玄伟佳.基于液晶波片的近红外偏振分析器[J].中国激光, 2010, 37(3): 696-702.
    [143]戴传云,高晓燕,汤波,傅亚,刘火安.近红外光谱法测定双黄连口服液中绿原酸和连翘苷的含量[J].光谱学与光谱分析, 2010, 30(2): 358-362.
    [144] H. Cen, Y. He. Theory and application of near infrared reflectance spectroscopy in determination of food quality[J]. Trends In Food Science & Technology, 2007, 18(2): 72-83.
    [145] J. G. Wu, C. Shi, X. Zhang. Estimating the amino acid composition in milled rice by near-infrared reflectance spectroscopy[J]. Field Crops Research, 2002, 75(1): 1-7.
    [146] Y. Liu, B.G. Lyon, W. R. Windham, C. E. Realini, T. D. D. Pringle, S. Duckett. Prediction of color, texture, and sensory characteristics of beef steaks by visible and near infrared reflectance spectroscopy. A feasibility study[J]. Meat Science, 2003, 65(3): 1107-1115.
    [147] D. Cozzolino, A. Moron. Potential of near-infrared reflectance spectroscopy and chemometrics to predict soil organic carbon fractions[J]. Soil and Tillage Research, 2006, 85(1-2): 78-85.
    [148] O. V. Brenna, N. Berardo. Application of near-infrared reflectance spectroscopy (NIRS) to the evaluation of carotenoids content in maize[J]. Journal Of Agricultural and Food Chemistry, 2004, 52(18): 5577-5582.
    [149] T. Ikeda, S. Kanaya, T. Yonetani, A. Kobayashi, E. Fukusaki. Prediction of Japanese green tea ranking by Fourier transform near-infrared reflectance spectroscopy[J]. Journal Of Agricultural and Food Chemistry, 2007, 55(24): 9908-9912.
    [150] Y. He, X. Li, X. Deng. Discrimination of varieties of tea using near infrared spectroscopy by principal component analysis and BP model[J]. Journal of Food Engineering, 2007, 79(4): 1238-1242.
    [151] R. Albrecht, R. Joffre, R. Gros, J. Le Petit, G. Terrom, C. Perissol. Efficiency of near-infrared reflectance spectroscopy to assess and predict the stage of transformation of organic matter in the composting process[J]. Bioresource Technology, 2008, 99(2): 448-455.
    [152] H. Huang, H. Yu, H. Xu, Y. Ying. Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages: A review[J]. Journal Of Food Engineering, 2008, 87(3): 303-313.
    [153]汪镭,周国兴,吴启迪.人工神经网络理论在控制领域中的应用综述[J].同济大学学报, 2010, 29(3): 357-361.
    [154] T. Kavzoglu, P. Mather. The use of backpropagating artificial neural networks in land cover classification[J]. International Journal Of Remote Sensing, 2003, 24(23): 4907-4938.
    [155] Z. Zhang, K. Friedrich. Artificial neural networks applied to polymer composites: a review[J]. Composites Science and Technology, 2003, 63(14): 2029-2044.
    [156] M. M. Hamed, M. G. Khalafallah, E. A. Hassanien. Prediction of wastewater treatment plant performance using artificial neural networks[J]. Environmental Modelling & Software, 2004, 19(10): 919-928.
    [157]杨榛,顾幸生,梁晓怿,张睿,凌立成.基于RBF神经网络的添加剂改性炭材料高温黏结剂的性能预报模型[J].新型炭材料, 2007, 22(4): 349-354.
    [158]孙勇,章卫国,章萌.基于神经网络的反步自适应大机动飞行控制[J].系统工程与电子技术, 2011, 33(5): 1113-1117.
    [159]段雪厚,王石刚,徐威,汤成龙.基于径向神经网络的薄板平整轧制力预报模型[J].上海交通大学学报, 2011, 45(6): 924-927.
    [160]陈刚,张为公,常思勤.汽车驾驶机器人模糊神经网络换挡控制方法[J].农业机械学报, 2011, 42(6): 6-10.
    [161] H. Zheng, G. Zhu, S. Jiang, T. Tshukudu, X. Xiang, P. Zhang, Q. He. Investigations of Coagulation-Flocculation Process by Performance Optimization, Model Prediction and Fractal Structure of Flocs[J]. Desalination, 2010, 269(1-3): 148-156.
    [162]张晓明,周群,郭宝林,孙素琴.运用RBF径向基神经网络识别基于小波变换的淫羊藿苷红外光谱指纹特征[J].光谱学与光谱分析, 2009, 29(7): 1830-1834.
    [163]谭君,林竹光,刘仲华,黄建安.固相萃取法分析水生生物体中17种酞酸酯类环境激素[J].分析化学, 2008, 36(12): 1072-1076.
    [164]史熊杰,刘春生,余珂,邓君,余丽琴,周炳升.环境内分泌干扰物毒理学研究[J].化学进展, 2009, 21(2/3): 340-349.
    [165]邵晓玲,马军,文刚.松花江流域某自来水厂中内分泌干扰物的调查[J].环境科学, 2008, 29(10): 2723-2728.
    [166]李静,尹衍升,马来鹏,蔡元兴,岳雪涛.分形理论在陶瓷材料断裂行为中的应用[J].稀有金属材料与工程, 2007, 36(1): 707-710.(增刊)
    [167]胡芳,胡慧仁. CPAM对PCC悬浮液絮凝作用的分形研究[J].中国造纸学报, 2009, 24(3): 83-87.
    [168] A. S. Kim, K. D. Stolzenbach. The permeability of synthetic fractal aggregates with realistic three-dimensional structure[J]. Journal Of Colloid and Interface Science, 2002, 253(2): 315-328.
    [169]王峰,李义久,倪亚明.分形理论发展及在混凝过程中的应用[J].同济大学学报, 2003, 31(5): 614-618.
    [170]王东升,汤鸿霄.分形理论在混凝研究中的应用与展望[J].工业水处理, 2001, 21(7): 16-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700